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Abstract

Behavior of current communication protocols as well as current and future networked
applications is of fundamental importance for technical and commercial success of
Mobile Internet. The forthcoming wireless Wide-Area Networks, such as GPRS and
UMTS, are quite complex and network operators have a large set of parameters to
tune the transfer performance of these networks. In this situation it is of great value
to be able to execute practical experiments. The Seawind emulation software intro-
duced in this paper enables measurements of protocol implementations in modeled
networking environments. The Seawind software provides a rich set of ways to de-
fine transfer characteristics including delays and errors. The software has also means
to conduct large sets of experiments in an automatic fashion. In addition, tools of
analyzing measurement data has been integrated into the Seawind software.

1 Introduction

Nowadays Wireless Wide Area Networks (WWAN) are widely used by mobile users to
access data services. New mobile data networks, as for example the General Packet Radio
Service (GPRS) [6, 8|, and future third generation mobile communication systems [32] are
expected to provide a high-speed packet data access suitable for a wide range of Internet
services. However, wireless links represent a different communication environment than
the wireline Internet. Hence, protocols and applications not particularly designed for
wireless links often require enhancements in order to achieve reasonable performance in a
wireless environment [4, 17].

Evaluating such enhancements over a real data link or network is often costly; if a sys-
tem is only in a development stage, the evaluation may be impossible. A frequently asked
question is whether next-generation wireless networks could provide multimedia services
that meet the end-user expectations. Network emulation is a convenient tool to examine
how existing multimedia applications behave. An emulator can also be used in usability
studies involving real end-users. The main difference to a field trial is that an existing
network is replaced by a model describing characteristics of transfer, delay and error be-
havior, for example. An emulation also allows controlling the network characteristics and
reproduce the environment. On the other hand, the problems of emulation include the
accuracy of the model; parameters drawn from real-world phenomena and properties are
always estimates.



In this paper we describe the Seawind emulator and present a case study that demon-
strates its practical utility. The primary target of Seawind is performance studies of real
protocols and applications as seen by the end user in the present and future wireless net-
works. Although Seawind was developed for modeling wireless networks, GPRS in the
first hand, the Seawind emulator is rather generic and it can be used in modeling a wide
range of networks.

Emulation is a compromise between two other possible approaches in performance
evaluation; between simulation and measurements using a testbed [2]. The main advantage
of a network emulator is that the performance of actual implementations of protocols and
applications can be examined. This is a clear advantage, for example, over most of the TCP
performance studies that rely on the abstract TCP model available in the NS simulator [14].
However, most end users — if not all — connected to the Internet use TCP implementations
that are not necessarily close to the one found in the NS simulator (for example, those in
Windows or Linux). Therefore, the NS simulator or other simulators having their own TCP
implementations do not allow a network operator to tune the networking parameters so
that the performance is optimized for real end users and their applications. Furthermore,
a real-time emulator provides answers to ”what-if” type of questions. It also allows back-
engineering parameters of closed networking implementations.

Emulation studies can be time-consuming because the duration of an experimental ses-
sion is determined by the speed of the modeled network. In order to enhance the usability
of the emulator, the Seawind emulator supports an automatic set up of tests and collec-
tion of a sufficient number of test repetitions for statistically valid results. Therefore, the
experiments can be run overnight and during weekends without any human intervention.
The Seawind package also provides basic tools for statistical analysis and for graphical
presentation of results. We use Seawind on the Linux operating system. The Seawind
software runs in the user space and can be easily ported to any Unix operating system.

Several extensive performance studies have been made using Seawind. TCP perfor-
mance has been studied in [13, 25] and GPRS performance in [18]. Seawind was also used
in the Monads demonstration at MOBICOM 2000.

The rest of the paper is organized as follows. After a brief summary of related work,
we discuss, in Section 2, common characteristics of wireless links. We also derive the
requirements for a network emulator taking those features into account. In Section 3 we
describe the Seawind architecture. We present the structure of the Seawind simulation
Process that is the core of the Seawind emulator. In Section 4 we discuss the features of
Seawind that are important in emulation of any wireless network. In Section 5 we present
how we validated the Seawind emulator. Finally, a case study is described in Section 6 in
order to illustrate the practical value of Seawind.

2 Related Work

Simulation of communication networks is an active research area. A wealth of different
simulators are found worldwide; most of them are freely available while some are com-
mercial products. The software tools for network simulations can be divided into two
categories: discrete event simulators and real-time simulator or emulators, as we call
them. Many simulation tools are discrete event simulators that operate in virtual time.
These simulators have their own abstract implementations for modeling different links,
protocols, and even applications. Probably the most well-known discrete event simulators
are NS [14] and the commercial simulator OPNET [31]. The Monarch Project at Carnegie



Mellow University has created a set of wireless and mobile extensions to NS that provide
a more detailed model of the physical and link layer behavior of a wireless network and
allow arbitrary movement of nodes within the network [7]. Other network simulation tools
include MobSim [27], SWimNet [5] and GloMoSim [33]. A parallel environment for the
simulation of mobile wireless network systems, based on the parallel simulation language
Maisie [3], has been presented in [26].

Discrete event simulators are great tools for overall network performance simulations
and other more theoretical testing. These cannot, however, be used with actual protocol
implementations and applications, unless the implementations are ported to the simula-
tion package. During a product implementation and test, intermediate versions of the
software emerge from time to time, and it would not be feasible to port each version to
the simulation environment for testing. In addition, simulations cannot give a real-time
view of how a user would experience some service using a new application, protocol, or
network. Therefore, real-time tests and actual protocol implementation studies require a
real-time simulator.

Real-time simulators or emulators allow researchers to create network topologies and
conditions, which are difficult to achieve in a reproducible manner on production networks,
or to perform real-time tests with various prototype protocols and products, for example.
Such an emulator environment is well controlled and reproducible.

The common nominator within the emulators available in this category is that they
provide different delay, packet drop, and queue-handling functionality in order to simulate
some communication medium or network. NIST Net [11] is implemented as a kernel mod-
ule extension to the Linux operating system and an X Window System-based user interface
application. NIST Net provides parameters such as delay, packet drop probability, fraction
of duplicated packets, and link bandwidth. Dummynet [24] is a similar tool, implemented
as a FreeBSD Unix kernel patch in the IP stack. Dummynet works by intercepting packets
on their way through the protocol stack; it uses parameters similar to the ones in NIST
Net to affect the flow of packets. A third similar kind of emulator is the Ohio Network
Emulator, ONE [1]. ONE uses three parameters to simulate a communications network,
namely a transmission delay, a propagation delay, and packet queues.

The functionality offered in these emulators enable the simulation of a variety of dif-
ferent links, networks, and protocols. However, parameters such as delay, bandwidth, and
queue sizes are not enough for all simulation purposes. A key functionality that is missing
in the above emulators is the lack of timed events and changes of the simulated network
environments. Especially in wireless networks, the network characteristics can change
drastically due to the movement of mobile terminals and even the present weather condi-
tions. To expand the area of studies that can be performed with an emulator, changes in
the simulated environment and other timed events, such as handovers, should be provided
by an emulator. In addition, the portability of the emulator to other platforms is more
complicated in the emulators mentioned above since those have been tightly coupled with
specific operating system kernels.

3 Wireless Network Characteristics

In this section we present a summary of properties of wireless links that present challenges
for efficient data communication. Wireless links typically have relatively low bandwidths,
high latency and high error rates. We discuss how these properties relate to the require-
ments for the network emulator.



Slow, asymmetric and changing line rate. The line rate of a wireless WAN link
does not often exceed some tens of kilobits per second. Such a link speed is typical also
for dial-up modem users. For some wireless links, the line rate can vary over time, due to
a change in the amount of radio resources assigned to the user or change of the channel
encoding scheme. The line rates may be asymmetric, for example when using certain
types of satellite links or GPRS. Thus, the emulator should provide the desired line rate
by delaying data packets and provide means to emulate changes in the line rate, in both
directions independently. For the majority of W-WANs a rate up to 100 kbps is sufficient.
However, modeling future broadband wireless networks will require line rates at least up
to 2 Mbps.

High latency and variable delays. The propagation delay of wireless links is typically
high. The delay comes from the special transmission schemas on the wireless link and from
the processing delays of the link hardware. For example, the Global System for Mobile
Communications (GSM) uses interleaving of data on the radio link to reduce the effect
of error bursts, and this introduces a latency of 90 ms independent of packet size [20].
Additional latency in using a GSM data service is caused by the connection to the Internet
Service Provider (ISP) and the processing time within the GSM system. The total one-way
latency in GSM sums up to 200-300 ms!. The emulator should correctly model this delay
by adding a propagation delay to each packet. Variable delays may appear on a wireless
link due to a number of reasons, for example Link-level ARQ recovery, radio resource
(re-)allocation and handovers to mention a few. There should be a possibility to add such
random delays to a packet flow.

Error losses. Some wireless links impose a significant amount of data corruption due
to transmission errors. The error rate depends on the current radio conditions and the
strength of the channel coding schema. For example, in the transparent GSM data service
the residual bit error rate (BER) of the link is allowed to be as high as 10~2 after the
Forward Error Correction (FEC) [21]. Radio conditions can vary greatly. In the ideal
conditions all protocol data units (PDU) are delivered correctly, and in the worst case
nothing can be correctly sent over the link. For accuracy of emulations and ease of use
the emulator should be able to drop packets on a per-packet basis or using a bit error
probability. The transmission error on the link can be seen by the upper layers as a delay
in data delivery (reliable link level), loss of a PDU (error detection in link layer) or as
a corrupted data packet (transparent link layer). The emulator should provide all three
cases.

Congestion losses at the bottleneck queue, over-buffering. The wireless link is
often the bottleneck in the path of a data flow, because fixed networks are fast and reliable
compared to the capabilities of the wireless link. Routers play a significant role because
congestion data losses are most likely to happen at the bottleneck queue. A limited number
of buffers can be allocated in a last-hop router per user. The emulator should contain a
queue at the emulated bottleneck link and provide means to limit the queue size in terms
of bytes and number of packets. Optionally, a timer would be used to limit the time a
packet can be buffered. New queue management algorithms and drop policies should be
easily attached.

!Note, that we do not include the transmission delay into the link latency. Thus the round-trip time
is defined as the sum of transmission and propagation delays in both directions.



Handovers. In a cellular radio network the mobility is accomplished by changing the
access point that serves the user, according to the user’s current location. The handover
process may cause data losses and a drastic change in the service provided, when the
user moves from a less busy to a more occupied service area. Modeling a handover would
cause a change in a number of simulation parameters at once. For example, in a packet
radio network, a new service area may have more users using the same shared medium
than in the previous location; the user will notice this as less available bandwidth after
the handover. In addition, the handover process itself may cause a delay or loss in data
delivery. The emulator should be able to allow changing a set of parameters at the same
point of time to emulate changes in network service.

Link blackouts. Wireless links are prone to temporal interruptions of service. A typical
example is loss of radio coverage; this might happen due to driving in a tunnel or moving
away from the serving access point. Blackouts cause a situation when, for a period of time,
no user data is successfully transmitted through the link. If QoS support is implemented
in the wireless network, higher priority packet traffic can as well cause blocking of lower
priority traffic. The emulator should provide means to specify the timing of blackout
periods and the handling of PDUs during that time, for example, whether to drop or store
the PDUs during the blackout.

Finally, a number of features would enhance the usability of the emulator. It is desirable
that the emulator could be running in user space on an unmodified operating system.
Binding the emulator in the operating system kernel is not desirable because it complicates
the portability of the emulator between different operating systems and even between
different operating system versions. The emulator must provide accurate execution of all
timed events and notify if some scheduled event slipped past a certain threshold value and
would thus affect the result of the test run. The emulator should have an easy to use user
interface to enable its use by a wide range of specialists unfamiliar with its implementation
details.

4 Seawind Architecture

The fundamental architecture behind the Seawind emulator is shown in Figure 1. Seawind
intercepts the traffic flow between the client and the server transparently to the endpoint
hosts. The desired link characteristics are emulated by delaying, dropping and modifying
packets in the flow. The socket API and the protocol implementations in the client and the
server need not be changed. The client and server can be directly connected to Seawind
(e.g. by a serial cable), or they can be located anywhere in the network. For example, the
latter option is useful, if the researcher wants to experiment with a data transfer over an
emulated wireless link to a server located in the global Internet.

We have been mostly interested in studying the TCP/IP protocols and the behavior of
TCP-based applications. However, Seawind can be used with any data flow, for example
with traffic produced by the WAP protocol [19]. This generic approach allows comparing
the performance of different protocols (e.g. WAP and TCP) or different implementations
of the same protocol (e.g. Windows TCP and Linux TCP) under the same emulated
network characteristics.
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Figure 2: Architecture of the Seawind emulator.

4.1 Seawind components

Figure 2 illustrates the Seawind components, which are used in setting up the test runs and
running successive performance tests with various parameters automatically. The core of
the emulation is the Simulation process (SP) that cause delays and packet losses to emulate
the target link or the target network with various queues and buffers. Before describing
the SP functionality in detail, we briefly introduce the other Seawind components shown
in Figure 2.

The user sets up the tests using a Control Tool (CT) with a graphical user interface.
With the control tool the user creates a number of entities called replication sets. A
replication set defines the workload used in the performance tests and the parameters of
the emulated network. For each replication set the user also gives the number of test run
repetitions (replications) to be made with the given parameters. After the user has defined
a sequence of replication sets to be tested, he may save the parameter settings for later
use and start the test run with the given sequence of replication sets.

A replication set configuration consists of a network configuration and a workload
configuration which are set up independently. Any combination of workload and network
configurations can be selected to be repeatedly tested in a replication set. Workload
configuration defines the tools that are used for generating the workload for the test
and the parameters for the tool. Any external tool or script can be used as a workload
generator. For example, the ttcp tool [30] can be used with Seawind to generate simple
bulk data. Seawind also works in manual mode, in which the user may launch arbitrary,



possibly interactive applications for generating the workload (e.g. a web browser and a
http server), which communicate through the network emulated by Seawind. Network
configuration consists of parameters defining the characteristics of the emulated network
and the Network Protocol Adapter (NPA) configuration, which we describe below.

In addition to the CT, Seawind uses a number of other processes to set up the tests.
CT controls the creation and the cleanup of the processes in the beginning and in the
end of each replication set. The processes may be distributed into multiple hosts to avoid
having multiple resource-consuming processes running on the same host. To control the
processes there is a Seawind-daemon process running on each host in the background. A
Seawind-daemon creates the processes needed in a test run according to the requests from
CT and terminates them after the test run.

The task of the NPA is to capture network packets from the endpoint host and forward
the packets to the SP. For example, a NPA that captures IP traffic creates a dedicated
network interface from which it captures packets, and adds a route to the created network
interface in the IP routing table. There are various ways for doing this. One alternative is
to use Point-to-Point Protocol (PPP) [28] that uses a pseudo-terminal device connected to
NPA. Secondly, some operating systems support virtual network interfaces that deliver the
received packets to and from the user-space applications. Finally, it is possible to capture
packets directly from the Ethernet. We have implementations for all above-mentioned
variants.

After the NPAs have been started and the simulation pipeline is properly initialized,
Seawind starts the workload generators (WLGSs) at both ends of the simulation pipeline.
Workload generator can be any conventional tool that generates network traffic. No mod-
ifications need to be made, because the NPAs capture the network traffic transparently to
the WLGs. For example, when IP traffic is used, the workload generator can be any tool
that generates IP packets using the standard application interface (e.g. Berkeley sockets).
The packets that are transmitted to the specified IP address are routed to the network
interface connected to NPA and furthermore to SP. At the receiving end the NPA delivers
the packet to the IP protocol using the created network interface.

The architecture presented above allows replacing any of the WLG, NPA or even SP
components by alternative implementations. It is also possible to read the emulation
data from a serial port, which makes it possible to connect an arbitrary machine to the
emulation host using a null-modem cable. For example, we have used this facility to
connect Windows hosts to Seawind. Furthermore, the receiving end NPA does not have
to be attached to the endpoint host, but it can optionally be used to forward packets from
SP to the network between the SP and the endpoint host. Thus, any Internet host can
be used as an endpoint in the performance tests, making it possible to create a realistic
model of communicating to a host in the Internet over the emulated link.

4.2 Pipelining

A mobile network typically includes several logical entities that affect the overall perfor-
mance and throughput seen by the end user. For example, from the GPRS architecture [8]
we can identify three possible emulated components: the base station subsystem (BSS)
including the wireless link, the Serving GPRS Support Node which acts as a last-hop
router in the GPRS network and the Gateway GPRS Support Node, which is the gateway
router in the mobile terminal’s home GPRS network.

As a single SP is often used to model a single network element with a link, to model
a network path with multiple network elements, Seawind allows connecting several SPs



together to form a simulation pipeline. Data packets are forwarded between SPs, and the
last SP in the pipeline sends the packet out to the destination.

Some links use flow control at the link level. This means that the rate at which the
packets are transmitted from one network element to another is controlled by the receiving
network element. Seawind supports flow control between SPs and between NPAs by using
a sliding window based algorithm.

4.3 Channel model

While computer networks become increasingly complex, the principle of having a set of
routers (switches, etc.) interconnected by communication links remains the same. In
Seawind, a single Simulation Process models an outgoing link, optionally attached to a
network node with buffering and a specified queue management policy. Several SPs can
be pipelined to represent a path through the network between the client and the server.
The emulated link is modeled as a direction-specific channel, which is maintained
separately for the uplink (towards the fixed end) and for the downlink (towards the mobile
end) traffic. The downlink and uplink channels are largely independent, with an exception
of some special events (for example a blackout). The model of the channel is shown
in Figure 3. Packets arriving to the emulator are placed into the input queue. The
maximum queue length can be limited in terms of bytes or packets. Different packet-drop
policies can be applied on the queue (e.g. the traditional tail-drop or RED active queue
management [9]). For example, the input queue can be used to model a queue in a router,
and thus inspect the effect of congestion and congestion-based losses at a network node.

allocation delay
transmission delay
propagation delay
l error delay
Fragmentation ¢ Reassembly
— | | oo |[DoDoDE| ED|l Emm —
INPUT QUEUE LSB LINK LRB

Figure 3: The channel model.

Some link protocols (e.g. Radio Link Control (RLC) [23] in GSM) fragment PDUs of
the upper protocol layer as a part of internal operation. The fragmentation unit before
the link and the reassembly unit after the link allow to logically fragment the data packet
into smaller pieces for the purpose of the different events performed during the emulations.
The actual size of the transmitted data transmitted by lower-level protocols can increase
due to protocol overhead (e.g. added header) or decrease due to compression. This is also
taken into account in the calculations.

The channel model also includes Link Send Buffer (LSB) and Link Receive Buffer
(LRB) to model the send and receive buffers that are present with real links. The link
send buffer is used to store the frames to be transmitted to the link, and the link receive
buffer is used to store frames at the receiving end until all pieces of a fragmented unit
have arrived, allowing reassembly. The link receive buffer is also needed to store out-of-
order frames, when a link layer Automatic Repeat Request (ARQ) mechanism is used
for retransmitting corrupted or missing frames. The size of these buffers should be large
enough allowing the ARQ sliding window protocol to keep the link fully utilized. These
buffers may significantly increase the buffering capacity of the link.



Before data can be delivered over the link, the radio resources often have to be allo-
cated first. The delay can be rather high due to possible contention or even queueing for
resources. In the current model the allocation delay is triggered when a data unit arrives
to an empty queue. Once the resources are allocated, data units are taken from the head
of the queue one-by-one for “transmission” over the link. The length of the transmission
delay is computed according to the line rate and the packet size. When the transmission
delay for the data unit is completed, a propagation delay is issued for the unit.

Transmission errors on a link are modeled by specifying a probability that is evaluated
on per-packet basis or on per-bit basis. If a data unit is corrupted, the following actions
depend on the desired error mode. In the corrupt mode the data unit is forwarded in the
channel with the corrupted bits. In the drop mode the corrupted data unit is dropped by
Seawind (i.e. the link layer receiver is assumed to detect the transmission error). In the
delay model the data unit is delayed for a user-specified amount of time. This can be used
to emulate a link ARQ protocol retransmitting the corrupted data unit to recover from
transmission errors. In such a case the upper protocol layers experience only an excessive
delay for the affected packet.

5 Seawind Features

5.1 Emulation

Protocol filters. A protocol filter is a protocol-specific module that is implemented
separately for each protocol (e.g. TCP, WAP) used with Seawind. New protocol filters
can be easily added using the interface provided. A protocol filter has two functions:
packet recognizer recognizes the packet boundaries from the incoming data and populates
Seawind structures used in different emulation calculations. Usually the packet recognizer
is based on the link layer protocol used for transmitting the Seawind packets (e.g. PPP
used over an asynchronous link). Another function of the protocol filter is the packet
printer, which scans the required information from the protocol headers and stores it to a
log file. This information later allows combining the packet trace with the SP event log to
determine various events, like the reason for a packet loss and to measure round-trip times.
For example, when using TCP/IP protocols the packet outputter uses an output format
which is compatible with the tcpdump [15] tool to allow interoperability with existing tools
used for analysis.

State changes. The user can define multiple sets of parameters (states) that are changed
during a test run. For example, the available bandwidth, error properties and delay
properties can be changed simultaneously according to the given time interval distribution.
This feature can be used to model changes in the mobile communication environment, e.g.
due to handoffs. The state is changed synchronously at all SPs used in the emulation.
Seawind also provides an interface to trigger state changes from an external program, thus
providing a flexible way for creating a wide range of mobility scenarios.

Random distributions. A wide variety of random distributions are included in Seawind
to model different kinds of network properties. The list includes the basic distributions
(e.g. uniform, exponential, Cauchy) and a two-state Markov distribution. Additionally,
any arbitrary distribution can be stored in a file to be used by different parameters during



the emulation. Seawind uses its own random number generator to avoid being affected by
the biased random number generators that some operating systems may have.

Parallel workload generators. Seawind allows using an arbitrary number of WLGs in
automatically run tests and in manually executed tests. Starting the workload generating
tools manually is straightforward, as user may launch any number of applications using the
command shell, and Seawind transparently captures the data generated by the applications
from the network device interface. In automatic operation the user may enter a number of
WLG definitions with a starting time relative to the beginning of the test run. This makes
it possible to inspect competing traffic flows over the network emulated by Seawind.

Multiple queues. The user data packets may belong to different priority classes. Mul-
tiple queues are present in SP to hold user packets of different priority and background
load packets (Figure 4). A number of algorithms are given for each queue. The classifier
algorithm assigns a specific queue to an arrived packet. The queue management algorithm
(e.g. RED [9]) actively marks packets based on the averaged queue length. The drop
policy algorithm (e.g. head drop) discards packets that exceed state queue size or length
limits. Finally, packets can be marked using Fzplicit Congestion Notification (ECN) [10].
All algorithms have well-defined interfaces so new implementations can be easily added.
We currently have a basic implementation of the single-priority traffic, but in the near
future we will implement more classifier algorithms for handling multiple queues.

Background load. In addition to the main workload captured by the NPA components,
Seawind provides a framework for generating virtual background load (BGL ), which affects
the internal queueing and delay calculations of SP components. With this feature, the user
may create a flexible model of the effects caused by other users in the emulated access
network. Figure 4 illustrates the background load framework and how it can be used
with multiple Seawind input queues. A BGL generator can be attached to any SP in the
simulation pipeline to generate packets according to the defined model. Because the BGL
packets exist only virtually, the information about BGL packets is forwarded to the next
SP using a dedicated BGL channel. The BGL can be consumed by any SP in the pipeline,
but it is not forwarded to the NPAs.

Source SP #1 SP #2 Destination

—

—

workload data workload data

BGL generator BGL sink

Figure 4: Background load generators with two pipelined SPs with multiple queues.

5.2 Output analysis

The CT collects the log output from various Seawind components and stores them on the
disc for further analysis. Two kinds of logs are generated by the Seawind components.
Filter log is generated by the NPAs and SPs. It contains information about the network
packets that have traversed through Seawind. For example, when monitoring IP packets,
Seawind uses tcpdump for this purpose. The filter log is created by the protocol filter



described above and is protocol dependent. Seawind log contains Seawind-specific infor-
mation of the test run. SP stores the information about the events such as delays or losses
on each data unit. For each event a timestamp is stored to make it possible to verify that
the events have been performed on time. Seawind log is also collected from NPAs and
WLGs. The contents of those Seawind logs depend on the mechanism used in NPA or on
the tool used as WLG.

During a test run there are usually a large amount of log information generated. There-
fore it is essential to have tools and scripts for analyzing the logs. For a filter log containing
tcpdump-compatible information about IP packets this is easy, as there are a wide variety
of publicly available tools such as tcptrace [22] available.

Currently our scripts collect information about various time measurements, through-
put, number of retransmissions, number of packet losses and fairness (using Jain’s fairness
index [16]). Optionally, the information about different TCP variables in the Linux kernel,
such as congestion window size or RT'T/RTO estimates, can also be stored to be coupled
with the other statistics. We also plan to enhance the graph plotting scripts to show
various Seawind or Linux TCP events such as delays, packet losses and retransmission
timeouts.

6 Implementation Issues

Developing a real-time emulator for an operating system and network environment that
do not guarantee real-time response is not straightforward [12]. An off-the-shelf personal
computer and Unix OS are not designed for real-time use, have coarse timer resolution,
and are prone to delays caused by the I/O (a disk or network access). Especially in a
multi-process environment, keeping a real-time schedule is hard, because processes have
to compete for the system resources.

We have not set any absolute real-time requirement for the response times of Seawind
events, as it would be impossible to guarantee the required response time in the general
case. However, in this section we introduce how we try to ensure that the Seawind response
times are accurate enough for performance tests and how we monitor the accuracy of
emulation.

Simulation process. We have enhanced the timing accuracy of the events by waking
up SP a configurable amount of milliseconds prior the event is due and wait in a busy
loop until the actual event time is reached. Before running the performance tests, the
user can take a few preliminary runs to adjust the timing estimator for his environment,
if the default value is not good for some reason. By distributing the Seawind processes we
wanted to make it possible to run the simulation process in a lightly loaded host in order
to avoid competition of the system resources.

After each event Seawind takes a timestamp from the system clock and stores it to
the log. If a threshold value given by the user is exceeded, a warning message is printed
so that the user can discard the results for the particular test. However, if the timing
estimator is correctly set and there are no other resource-consuming processes running,
this occurs very rarely. In our experience the accuracy of Seawind remains within 1 ms
with rare exceptions.

During the test runs Seawind avoids unnecessary I/O access, which could cause harmful
context switches. It only reads and writes the workload and background load to and from
its neighboring processes. The configuration file is read before the test starts and the log



is only stored in the memory buffers during the test. After the test is over, the memory
buffer is flushed on the disk.

Communication. The inter-process communication between Seawind components need
to be performed in a timely manner to ensure correct emulation results. Seawind uses TCP
connections between the neighboring components. This is an obvious selection, because
the components can be distributed into multiple hosts located anywhere in the network,
and the connection is required to be reliable. However, certain TCP features, namely
the slow start and Nagle’s algorithm [29], may cause unwanted delays in the delivery of
workload data.

The packet size for the workload data should be selected to be small enough to fit in
a single TCP segment in order to avoid the effect of slow start on the transmission rate.
Usually this is the case, as the packet size is selected to be small on the emulated slow link,
and on the other hand, Seawind is often used over Ethernet using 1500-byte frames. We
have disabled Nagle’s algorithm from the TCP connections used in the internal Seawind
communication in order to allow TCP sender to transmit the TCP segments without
delaying them. Finally, it is assumed that the link used to transmit the packets between
NPAs and SPs is substantially faster than the emulated link. For example, 100 Mbps
Ethernet is sufficient when emulating line rates up to 2 Mbps.

7 Case Study

We now show an example of how to study the behavior of a real TCP implementation
by using Seawind. Figure 5 illustrates the target environment we are modeling and how
it is emulated using Seawind. In this test case we assume a wireless last-hop link with
a bandwidth of 9600 bps and a last-hop router with a buffer size for 7 network packets.
The last-hop router is located on the same 10 Mbps LAN with the remote end host.
Additionally, there are link buffers for four packets at both ends of the wireless link.
Thus, the sending link buffer extends the total buffering capacity to 11 packets. These
network properties are close to what GSM data has, for example. We do 20 replications
of this test case.
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Figure 5: The emulated environment and its setup in Seawind.




In our scenario the wireless link is prone to transmission errors. The transmission
errors are assumed to be detected and the corrupted packets are dropped. In our model
the packet-drop probability is 1 % for the first 40 seconds of the test run. After 40 seconds
the link quality decreases (e.g. the mobile user moves to a location with a weaker radio
link quality) and the packet drop probability decreases to 10 %.

In Figure 5 we can see how the emulation is configured to use three hosts. One of the
hosts acts as the mobile-end receiver, one of the hosts is the fixed end sender and one host
is dedicated to the real-time emulation. Table 1 summarizes the Seawind parameters that
were used by the Seawind SP to model the link at the emulation host. The router buffer
is modeled with an input queue that drops the packets that do not fit in the queue using
the tail-drop algorithm. The scenario is modeled with two distinct states in the Seawind
state machine, one state for the first 40 seconds and another state for the rest of the test.
We have left out from the table the Seawind parameters regarding the features that were
not used in this test case. The workload we are using in this test is a bulk transfer of 100
KB using a single TCP connection over the IP protocol.

Table 1: Seawind parameters used in the case

study.
¥ Table 2: Summary of measure-
ments.

| Parameter Name | Value Mot Val
input queue length 7 pkts | e - - | aue |
queue overflow handling | drop Elapsed time, 10th percentile | 153.27 s.
queue drop policy tail-drop Elapsed time, median 170.51 s.
link send buffer size 4 pkts Elapsed time, 90th percentile | 196.40 s.
link receive buffer size 4 pkts Throu.ghput, medlan' 601 Bps
transmission rate 9600 bps Rexmitted pkts, me?dlan 65
propagation delay 200 ms Dropped pkts, median 47
error handling drop
packet error probability | state 1: 0.01, state 2: 0.10

After the 20 replications of the test have been run, Seawind has generated the logs of
the test runs. First, we can have a look at the summary of the measurement results, which
are shown in Table 2. The shown values are measured from the sending end TCP log.
The table shows the median of the selected metrics. Additionally, 10- and 90- percentiles
are shown for the elapsed time to illustrate the level of variability in the results. It is
also possible to have a separate look at the statistics of each of the 20 replications. As
every packet is logged with timestamps, protocol information and related Seawind events,
measuring different kinds of metrics and performing different kinds of analysis is only a
matter of having suitable scripts for the purpose.

After inspecting the general statistics for the replication set, the user can have a detailed
look at what happens at the packet level. One way to do this is to generate a time-sequence
diagram of the TCP segments, which is shown in Figure 6. When comparing the time-
sequence diagram to the the Seawind event log, we can have an understanding of what
happened during the test run.

There are only two corruption losses before the error rate changes after 40 seconds.
These two packet losses occur in the beginning of the test and they cause the TCP sender
to adjust its slow start threshold and enter congestion avoidance, in other words, reduce its
sending rate. Thus, the last-hop router buffer load increases moderately, and there are no
congestion-related losses until 35 seconds have passed. After the error rate has changed,
there are 44 packet losses due to emulated transmission errors. Because of the higher loss
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Figure 6: A time-sequence graph of the TCP segments in a test run.

rate, the TCP sender keeps transmitting at a low rate and the router buffer queue does
not overflow for the rest of the test run.

We used Linux kernel version 2.4.0 at the endpoint hosts. Therefore the phenomena
shown in the trace would really occur, if the Linux machine in question is used in the
environment similar to what was modeled here.

8 Concluding Remarks

This paper presented a wireless network emulator called Seawind. The emulation approach
allows performance evaluation of existing implementations of protocols and applications
over a wide range of network characteristics. User scenarios that are difficult to reproduce
in existing wireless networks or impossible when the network is only in the design phase
can be easily presented in the emulator. Distinguishable features of the Seawind network
emulator are its wireless-oriented design, portability, easy extendibility and an extensive
environment of scripts and tools for the automatic set up of tests and analysis of results.
The practical utility of Seawind is demonstrated by a case study and a number of studies
beyond this paper. We have experimented with different operating systems and discovered
a number of implementation specific features, of which some did not conform to the RFC
specifications. We believe that slow links are an environment which have not been consid-
ered carefully enough when designing and testing the different implementations of TCP
and other protocols. Therefore, we believe that Seawind is a valuable tool for testing the
protocol implementations in different networking environments in a controllable fashion.
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