
Control plane benchmark specification

Heikki Lindholm, Taneli Vähäkangas

Helsinki November 27, 2006

Final

University of Helsinki

Department of Computer science

i

Abstract

There are not many comprehensive control plane and telecommunica-

tions benchmarks. This paper presents a component-based benchmark that

is transport and hardware agnostic.

The benchmark specifies system under test (SUT) and driver components.

The SUT consists of telephony server and load generator components. The

telephony server is further composed of signalling protocol, user location

register, and logging components. APIs for the components are provided for

user implementation.

The presented benchmark specification assumes a transport capable of

basic telephony signaling actions: call connecting and disconnecting. Fur-

thermore, a mechanism for logging signalling layer events is required. The

user location register is a database for looking up call participants. No con-

nectivity to external databases is required.

The benchmark specifies a typical telephony usage profile and relevant

metrics to measure. The central metric is the busy hour call attempts. The

benchmark is constructed so that the performance of the components should

linearly affect that metric. A skeleton for a reference implementation is also

presented.

ii

Contents

1 Introduction 1

1.1 Why a new benchmark? . 1

1.2 Related work . 1

1.3 Purpose . 1

2 General system architecture and requirements 2

2.1 Requirements for individual components 2

2.1.1 Signalling layer . 2

2.1.2 Call state tracking . 3

2.1.3 User location register . 3

2.1.4 Load generator . 3

2.1.5 Logging . 3

3 Test profiles 4

3.1 Telephony service test . 4

3.1.1 Description . 4

3.2 Echo test . 6

3.2.1 Description . 6

4 Performance metrics 7

4.1 Measuring . 7

4.1.1 Driver . 7

4.1.2 The SUT . 7

4.1.3 Methodology . 7

4.2 Calculated metrics . 8

4.2.1 Transaction metrics . 8

4.2.2 System metrics . 8

5 Benchmark environment 9

iii

5.1 Requirements . 9

5.1.1 Hardware specifications . 9

5.2 Software components . 9

5.2.1 The signalling layer . 9

5.2.2 The driver . 9

5.2.3 Telephony server . 9

5.2.4 Load generator . 10

5.3 Network topology . 10

6 Benchmark implementation 11

6.1 Driver . 11

6.2 Telephony server . 11

6.2.1 Component overview . 11

6.2.2 Messages and events . 12

6.2.3 Data structures . 13

6.2.4 Mutual exclusion API . 14

6.2.5 Signalling API . 14

6.2.6 User location register API . 14

6.2.7 Logger API . 15

6.2.8 Event processor . 15

7 Reporting 18

7.1 Report Format . 18

7.1.1 Executive summary . 18

7.1.2 Report details . 18

References 19

1 INTRODUCTION

1 Introduction

1.1 Why a new benchmark?

There are a lot of existing benchmarks for telecom applications. Why specify a
new one and not employ an existing, tried and commonly accepted benchmark?
Some of the reasons are laid out in [1]. Microbenchmarks are good at pin-pointing
performance problems. However, they can not reliably be used to compare per-
formance of distinct systems. Application-level benchmarks exist, but only very
few are applicable at all to the problem at hand: benchmarking control plane
applications in telecom environments.

1.2 Related work

SIPStone[2] is a benchmark for SIP proxy servers. It resembles the work pre-
sented here in the context of that specific transport and configuration. However,
our desire is to remain agnostic to the signaling layer. With SIPstone this is not
possible, unless we heavily modify it.

The ETSI TISPAN working group has proposed a telecom benchmark called
IMS. Their work is not yet available so details are not known, but the benchmark
goals possibly overlap with the work presented here. Some work related to IMS
is available at http://www.open-ims.org/.

1.3 Purpose

For the reasons stated above in chapters 1.1 and 1.2 we present a new application-
level benchmark specification for measuring the performance of different trans-
port, operating system, database, and hardware configurations for control plane
applications. In contrast to SIPstone, which measures different SIP proxy server
implementations and treats the server as a black box, our benchmark has a fixed
server core implementation, but requires user to provide implementations of the
other core components of the server, most importantly the signalling layer and
the user location database. This allows us to change only one component at a
time and see the difference it has on total system performance in typical control
plane usage.

NOKIA / University of Helsinki 1

2 GENERAL SYSTEM ARCHITECTURE AND REQUIREMENTS

2 General system architecture and requirements

The control plane benchmark architecture is shown in Figure 1. The internal or-
ganization of the SUT is restricted in section 2.1.

2.0.0.1. Externally the SUT must connect to the driver using a physically separate
network for each driver node.

2.0.0.2. If the logger is not run on the SUT, the SUT must connect to it using a
network physically separate from any networks connecting to driver nodes.

2.0.0.3. The clocks in the nodes must be synchronized within 5 ms.

Client 1

Client 2

Client 2N

SUT Logging
Client

Figure 1: Control plane benchmark architecture.

2.1 Requirements for individual components

The control plane benchmark measures the following components of the system:
the signalling layer, the user location register, and call state tracking facility.

2.1.1 Signalling layer

2.1.1.1. The signalling layer is implemented in the SUT and in the driver. 1

2.1.1.2. The signalling layer must be able to perform the echo test in chapter 3.2.

2.1.1.3. The SUT and driver must be able to perform the call scenario presented
in chapter 3.1. All the functions must be implemented.

1It is possible that the implementation of the signalling layer in the driver skews the results.
This is mitigated by performing a simple request—response test whose results are used to define
upper limits for SUT latencies.

NOKIA / University of Helsinki 2

2 GENERAL SYSTEM ARCHITECTURE AND REQUIREMENTS

2.1.1.4. Optionally, a single benchmark operation may be implemented as several
operations and messages between the driver and the SUT.

2.1.1.5. If a protocol is connection-oriented, a set of operations belonging to the
same transaction may share the connection. Operations belonging to distinct
transactions must not share a connection (for example, two distinct connect events
in the driver may not use the same TCP connection).

2.1.2 Call state tracking

2.1.2.1. The call state tracking must be implemented to the level of detail that
would allow time-based accounting in a real application.

2.1.2.2. The granurality at which the call connect and disconnect events are recorded
must be equal to or shorter than 10 milliseconds.

2.1.3 User location register

2.1.3.1. The user location register must contain the following fields on every sin-
gle user in the system: ID, ADDRESS.

2.1.3.2. The ID field must be unique within the system.

2.1.3.3. Optionally, the call state tracking may be implemented within the user
location register.

2.1.4 Load generator

2.1.4.1. The generated background activity should have the same priority as the
telephony server, and it should stress the processor, memory, and secondary stor-
age resources.

2.1.4.2. The load generator load must be configurable by specifying how often
and for how long per round it runs.

2.1.5 Logging

2.1.5.1. The telephony server must log all actions that are specified in the corre-
sponding test description in chapter 3.1.

NOKIA / University of Helsinki 3

3 TEST PROFILES

3 Test profiles

3.1 Telephony service test

The telephone service test simulates the usual telephone call scenario.

3.1.1 Description

One possible call sequence is shown in Figure 2.

A SUT B

INITIATE

INITIATE

TRYING

RINGING

RINGING

ANSWERED

ANSWERED

optional USER DATA

optional ANSWERED_ACK

optional ANSWERED_ACK

CLOSE

CLOSE

optional CLOSE_ACK

optional CLOSE_ACK

Figure 2: Basic call sequence diagram.

NOKIA / University of Helsinki 4

3 TEST PROFILES

3.1.1.1. A test is carried out by performing the following steps in the specified
order. Here Ri is the call rate at step i (as specified in clause 4.1.3.3) and Ni must
be large enough to accommodate a test at the rate of Ri for the duration of 15
minutes without exhausting the population (i.e. 15 minutes ∗Ri < Ni).

• Initialize the SUT (including the load generator)

• Initialize the driver

• Optionally, the driver primes the SUT by performing N ′
i calls, where N ′

i

equals 0.01 ∗ Ni.

• The driver waits until all priming calls are finished and there are no out-
standing requests

• The driver performs calls at rate Ri for at least 15 minutes

• Report test results

3.1.1.2. The user location register in the SUT is populated with Ni user records at
initialization. The ID fields of the records are of the form USERNAME.n, where
n is a sequential number from 1 to Ni.

3.1.1.3. The user A chooses the recipient user B by selecting one of the USER-
NAME.n, where n is evenly distributed random variable in the range 1 to Ni,
excluding the value of the ID field of user A.

3.1.1.4. The user B answers x seconds after receiving the INITIATE message,
where x has exponential distribution with parameter λ = 1

7s
.

3.1.1.5. Optionally, users A and B may exchange data on the established connec-
tion, if that data is not transmitted through the SUT.

3.1.1.6. User A closes the connection x seconds after the ANSWERED message,
where x has exponential distribution with parameter λ = 1

30s
.

3.1.1.7. After receiving the first RINGING message, the A process will wait for
ANSWERED message for 45 seconds. If the message is not received, A should
report the failure.

NOKIA / University of Helsinki 5

3 TEST PROFILES

3.2 Echo test

The echo test measures the performance of the signalling layer. It is meant as an
auxiliary test case for isolating the effects of the signalling layer or layers below
it.

3.2.1 Description

The echo test is performed between the driver and the SUT. Sequence diagram
for the echo test is shown in Figure 3.

SUT

ECHO

ECHO

driver

Figure 3: Echo test sequence diagram.

3.2.1.1. The test is carried out by performing the following steps in order:

• Initialize the SUT

• Initialize the driver

• Transmit 1,000 ECHO messages from the driver to the SUT

• Measure response times of the received ECHO messages

• Report test results

3.2.1.2. The rate between ECHO messages is one second.

NOKIA / University of Helsinki 6

4 PERFORMANCE METRICS

4 Performance metrics

4.1 Measuring

4.1.1 Driver

4.1.1.1. The driver should measure the time from sending the INITIATE request
to the first server reply, which could be TRYING, RINGING or ANSWERED.

4.1.1.2. The driver should measure the time from the B party sending RINGING,
ANSWERED or CLOSE to the A party receiving the message for each of the mes-
sages.

4.1.2 The SUT

4.1.2.1. The SUT should measure the time from starting a lookup to getting a
successful lookup results.

4.1.2.2. The SUT should measure the number of failed lookup attempts.

4.1.2.3. The SUT should measure the number of answered calls.

4.1.2.4. The SUT should measure the number of failed calls.

4.1.2.5. The SUT should measure the number of Calls Serviced Late. A call that
is serviced after one second has elapsed after it is received by the SUT is also
considered failed.

4.1.2.6. The SUT should measure the length of every call.

4.1.2.7. The SUT should measure the CPU load every second.

4.1.2.8. The SUT should measure the memory usage every second.

4.1.3 Methodology

The methodology of measuring the maximum call throughput of the server is
described by the following clauses. The methodology only applies to the test
described in section 3.1.

4.1.3.1. Every test run is separate and done according to the clauses in 3.1.

4.1.3.2. Every test run should run for at least 15 minutes.

NOKIA / University of Helsinki 7

4 PERFORMANCE METRICS

4.1.3.3. Starting from a call rate that the server can easily handle, the call rate is
increased in each successive test run until a test run with 10% call failure rate is
reached.

4.1.3.4. The maximum call rate the SUT can handle is derived by first plotting the
successful and failed call attempts per second of all the test runs and then taking
the maximum successful call rate from where the failure rate is below 10−4.

4.1.3.5. Busy Hour Call Attempts is the number of attempted calls during a busy
hour of the day. The BHCA value is calculated from the maximum call rate as
specified in 4.1.3.4 by multiplying it by 3,600.

4.1.3.6. Whole tests, as described by the previous clauses (4.1.3.3, 4.1.3.4, 4.1.3.5),
should be run with background loads of 0% and 50% and a random load that
varies between 0-50% and changes once per minute.

4.2 Calculated metrics

4.2.1 Transaction metrics

4.2.1.1. The maximum, average, and 90th percentile of the amount of calls per
second should be reported.

4.2.1.2. The 10th, 25th, 50th, 75th, and 90th percentiles of the realised call lengths
should be reported.

4.2.1.3. The variation of call processing times should be reported.

4.2.1.4. The amount of Calls Serviced Late in the last test run should be reported.

4.2.1.5. The Busy Hour Call Attempts as specified in clause 4.1.3.5 should be re-
ported.

4.2.2 System metrics

4.2.2.1. The maximum and average CPU load should be reported. The CPU load
at the beginning and at the end of the benchmark should be reported.

4.2.2.2. The maximum and average memory usage should be reported. The mem-
ory usage at the beginning and at the end of the benchmark should be reported.

NOKIA / University of Helsinki 8

5 BENCHMARK ENVIRONMENT

5 Benchmark environment

5.1 Requirements

5.1.1 Hardware specifications

5.1.1.1. It is required that the SUT has enough memory; the benchmark result
must not be affected by the slowdown caused by paging memory from or to sec-
ondary storage.

5.1.1.2. It is required that the connection between the SUT and the driver will pro-
vide enough bandwidth to not become a bottleneck in the system. With today’s
systems this requirement translates to a network connection of at least 100 Mbps.

5.2 Software components

This section describes the software components that comprise the benchmark.

5.2.1 The signalling layer

The requests, which the clients (user agents) make to the server, and the corre-
sponding answers are carried by the signalling layer. For example, the signalling
layer could be an implementation of the SIP protocol. The minimum require-
ments for the signalling layer are specified in clauses 2.1.1.1, 2.1.1.2, and 2.1.1.3.

5.2.2 The driver

The driver generates the client-side test load for benchmark. It is composed of one
or several applications that perform calls using the signalling layer. The driver
applications can reside on one or several nodes.

5.2.3 Telephony server

The main component of the SUT is the telephony server, which handles the in-
coming call requests made by the user agents simulated by the driver. The server
uses the signalling layer to accept requests and has a local or external database

NOKIA / University of Helsinki 9

5 BENCHMARK ENVIRONMENT

connectivity for performing lookups from the user location register (and possibly
for recording state information.)

5.2.4 Load generator

The load generator is part of the SUT. It is used to generate background load
to the server, simulating activities on the server that are not directly related to
the control plane activity being benchmarked. This will provide a more realistic
usage scenario.

5.3 Network topology

The suggested network topology is shown in Figure 4. There may be several
users. The database may reside within the SUT. It is assumed that the network
topology resembles that of a real system.

User

User

Switch SUT

DB

Figure 4: Suggested network topology.

NOKIA / University of Helsinki 10

6 BENCHMARK IMPLEMENTATION

6 Benchmark implementation

6.1 Driver

The driver emulates the user-agents that connect to the SUT. The driver can be
implemented using whatever approach as long as the implementation adheres to
the requirements that are listed below.

6.1.0.1. The driver implementation must implement actions of user-agents in all
of the test profiles as specified in 3.1 and 3.2. It must be able to emulate a user-
specified amount of user-agents connecting to the SUT. It must also be able to
emulate the user-agents at the receiving end.

6.1.0.2. The driver implementation must use a separate connection for each call
attempt so that connection setup and tear-down will tax the SUT as they would
in a real system.

6.1.0.3. Throughput and latency measuring may be implemented in the driver or
using a separate network analyzer or by traffic capture and post-capture analysis
tools.

6.1.0.4. Latency measurements must have a precision of at least 10 ms.

6.1.0.5. Latency measuring must be implemented at the points specified by clauses
4.1.1.1 and 4.1.1.2.

6.2 Telephony server

The telephony server software is composed using the framework described sub-
sequently. The framework consists of the APIs for the components and two data
structures holding the call and connection state. The server implementation itself
is described below.

6.2.1 Component overview

The components that make up the telephony server are the signalling layer, the
user location register, and the server event processor. The signalling layer and
user location register should be implemented by the user, but the server event
processor implementation is defined below.

NOKIA / University of Helsinki 11

6 BENCHMARK IMPLEMENTATION

6.2.2 Messages and events

The abstract signalling layer uses the messages and events listed in this section.
Also listed are events to be used by the user location database.

6.2.2.1. The abstract signalling layer uses the messages listed below. Any un-
supported optional messages can be handled as null operations by the signalling
layer implementation. Later on, enum MESSAGE is used to refer to these mes-
sages.

ECHO Request immediate echo from the server (when sent by client) or server
reply to the echo request.

INITIATE Connection initiation request between parties.

TRYING Server is trying to contact to a party requested in a previous INITIATE
message. This message is optional.

RINGING The user-agent is contacted and ringing.

ANSWERED The user-agent has answered the incoming call.

ANSWERED ACK The user-agent acknowledged an ANSWERED message from
the other party. This message is optional.

CLOSE Connection close request.

CLOSE ACK The user-agent acknowledged a CLOSE message from the other
party. This message is optional.

ERROR There was an error and connection will be closed.

6.2.2.2. If the ANSWERED ACK and CLOSE ACK messages are not supported
by the signalling layer, it should however pass these messages as events to the
server event processor as soon as it gets ANSWERED or CLOSE message, respec-
tively.

6.2.2.3. Timeouts in signalling must be communicated using the following events.
These events are part of the enum EVENT enumeration.

INITIATE TIMEOUT Connection initiation request sent by the server has timed
out.

NOKIA / University of Helsinki 12

6 BENCHMARK IMPLEMENTATION

ANSWERED ACK TIMEOUT The user-agent acknowledgement to an ANSWERED
message timed out. This event is optional.

CLOSE ACK The user-agent acknowledgement to a CLOSE message timed out.
This event is optional.

6.2.2.4. The user location database component must use the following events to
communicate lookup results. These events are part of the enum EVENT enumer-
ation.

LOOKUP DONE Lookup was done succesfully.

LOOKUP FAILED Lookup failed for some reason other than timeout.

LOOKUP TIMEOUT Lookup timed out.

6.2.3 Data structures

The following two data structures are used to hold call and connection state in
the server. Additionally, a simple mutex structure is defined.

6.2.3.1. All of the following three structures should be implemented by the user.
The contents of the structures will depend on the signalling protocol and the user
location register implementations.

struct mutex A mutual exclusion device included by both of the structures below
for implementing a multithreaded server.

struct connection Contains the connection and dialog state between the server
and one of the call parties. This structure must contain a struct mutex

mutex field, a struct connection *next connection field, and a struct
call *call field, all of which will be needed by the server event proces-
sor.

struct call Contains the call state. A call is established when both parties are
contacted. This structure must contain a struct mutex mutex field, and
a struct connection *first connection field, both of which will
be needed by the server event processor. This structure is mainly intended
for the event processor’s use.

NOKIA / University of Helsinki 13

6 BENCHMARK IMPLEMENTATION

6.2.4 Mutual exclusion API

6.2.4.1. The following two functions are used for mutual exclusion to the data
structures. If implementation is fully single-threaded, mutual exclusion can be
provided by empty operations. Both of these functions should be implemented
by the user.

acquire mutex(struct mutex) Acquires mutex.

release mutex(struct mutex) Releases mutex.

6.2.5 Signalling API

6.2.5.1. The following two functions are relevant to the signalling layer.

post event(enum EVENT, struct connection *) Posts an event to the server. This
function should be used by the signalling layer component implementation
to post incoming messages and timeout events to the server. The connection
field is used to identify the dialog and store the dialog state.

send message(enum MESSAGE, struct connection *) Send a message using the
signalling layer. This function should be implemented by the signalling
layer and it is called by the server to send messages. The connection field
is used to identify the dialog and store the dialog state.

create connection(struct connection *) Create a new connection. This function
should be implemented by the signalling layer and it is called by the server
to create new connections. The connection field is used to identify the
dialog and store the dialog state.

6.2.6 User location register API

6.2.6.1. The following two functions are relevant to the user location register.

post event(enum EVENT, struct connection *) Posts an event to the server. This
function should be used by the user location register component imple-
mentation to post lookup results and timeout events to the server. The
connection field is used to identify the dialog and store the dialog state.

NOKIA / University of Helsinki 14

6 BENCHMARK IMPLEMENTATION

lookup(struct connection *) Lookup the receiver of caller based on infomation
in the connection structure and fill the connection information from the
database to the structure. This function should be implemented by the user
location register component. The connection field is also used to identify
the dialog and store the dialog state.

6.2.7 Logger API

6.2.7.1. The server logging mechanism is implemented using the following func-
tion call.

log action(time t timestamp, char *message) Logs an event using the server log-
ging mechanism. Timestamp is the time the event happened.

6.2.8 Event processor

State-machine for the server event processor is shown in Figure 5.

INITIATE

LOOKUP_READY

LOOKUP_TIMEOUT INITIATE_TIMEOUT

RINGING

ANSWEREDANSWERED_ACK_TIMEOUT ANSWERED_ACK

CLOSECLOSE_ACK_TIMEOUT

CLOSE_ACK

Figure 5: Telephony server state machine.

6.2.8.1. The event processing will be done as defined by the handle event func-
tion below. Although not explicit, allocations should be freed at any event that
tears down the connection. Also, mutexes needed solely by logging statements
are not explicitly marked.

NOKIA / University of Helsinki 15

6 BENCHMARK IMPLEMENTATION

void handle event (enum EVENT e , s t r u c t connect ion ∗c)
{

switch (enum EVENT e) {
ECHO:

send message (ECHO, c) ;
break ;

INITIATE :
l o g a c t i o n (ts , ”INITIATE rece ived from %s ” , c−>URI) ;
lookup (c) ;
l o g a c t i o n (ts , ”User lookup s t a r t e d f o r URI %s ” , c−>destURI) ;
break ;

LOOKUP DONE:
/∗ c r e a t e c a l l s t r u c t u r e t o which c o n n e c t i o n s t o A and B
∗ a r e a s s o c i a t e d ∗/

s t r u c t c a l l ∗cs ;
s t r u c t connect ion ∗b ;
cs = a l l o c (s t r u c t c a l l) ;
cs−>f i r s t c o n n e c t i o n = c ;
c−>c a l l = cs ;
send message (TRYING, c) ;
acquire mutex (c−>mutex) ;
l o g a c t i o n (ts , ”TRYING sent to %s ” , c−>URI) ;
b−>URI = c−>lookupresul t ;
re lease mutex (c−>mutex) ;
c r e a t e c o n n e c t i o n (b) ;
send message (INITIATE , b) ;
aqcuire mutex (b−>mutex) ;
acquire mutex (c−>mutex) ;
/∗ make a c i r c u l a r l i s t o f c o n n e c t i o n s ∗/
c−>next connect ion = b ;
b−>next connect ion = c ;
re lease mutex (c−>mutex) ;
b−>c a l l = cs ;
l o g a c t i o n (ts , ”INITIATE sent to %s ” , b−>URI) ;
re lease mutex (b−>mutex) ;
break ;

LOOKUP TIMEOUT:
LOOKUP FAILED :

l o g a c t i o n (ts , ”Lookup timed out f o r %s ” , c−>destURI) ;
send message (ERROR, c) ;
break ;

INITIATE TIMEOUT :
s t r u c t connect ion ∗a ;
acquire mutex (c−>mutex) ;
l o g a c t i o n (ts , ”INITIATE timed out f o r %s ” , c−>URI) ;
a = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (ERROR, a) ;
break ;

RINGING :
s t r u c t connect ion ∗a ;
acquire mutex (c−>mutex) ;
a = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (RINGING, a) ;
l o g a c t i o n (ts , ”RINGING sent to %s ” , a−>URI) ;
break ;

ANSWERED:
s t r u c t connect ion ∗a ;
acquire mutex (c−>mutex) ;
a = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (ANSWERED, a) ;
l o g a c t i o n (ts , ”ANSWERED sent to %s ” , a−>URI) ;
break ;

ANSWERED ACK TIMEOUT:
s t r u c t connect ion ∗b ;
acquire mutex (c−>mutex) ;
l o g a c t i o n (ts , ”ANSWERED ACK timed out f o r %s ” , c−>URI) ;
b = c−>next connect ion
re lease mutex (c−>mutex) ;
send message (ERROR, b) ;
break ;

ANSWERED ACK:

NOKIA / University of Helsinki 16

6 BENCHMARK IMPLEMENTATION

s t r u c t connect ion ∗b ;
acquire mutex (c−>mutex) ;
b = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (ANSWERED ACK, b) ;
l o g a c t i o n (ts , ”ANSWERED ACK sent to %s .

Connection e s t a b l i s h e d . ” , a−>URI) ;
break ;

CLOSE :
s t r u c t connect ion ∗o ;
acquire mutex (c−>mutex) ;
o = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (CLOSE, o) ;
break ;

CLOSE ACK TIMEOUT :
s t r u c t connect ion ∗o ;
acquire mutex (c−>mutex) ;
o = c−>next connect ion ;
re lease mutex (c−>mutex) ;
send message (ERROR, o) ;
break ;

CLOSE ACK :
s t r u c t connect ion ∗o ;
acquire mutex (c−>mutex) ;
o = c−>next connect ion ;
c−>next connect ion = NULL;
re lease mutex (c−>mutex) ;
send message (CLOSE ACK, o) ;
acquire mutex (o−>mutex) ;
l o g a c t i o n (ts , ”CLOSE ACK sent to %s .

Connection closed . ” , o−>URI) ;
o−>next connect ion = NULL;
acquire mutex (o−>c a l l−>mutex) ;
o−>c a l l−>f i r s t c o n n e c t i o n = NULL;
re lease mutex (o−>c a l l−>mutex) ;
f r e e (o−>c a l l) ;
re lease mutex (o−>mutex) ;
break ;

}
}

NOKIA / University of Helsinki 17

7 REPORTING

7 Reporting

7.1 Report Format

The report has an executive summary on the front page, followed by the report
details and, optionally, an appendix.

7.1.1 Executive summary

7.1.1.1. The report must start with an executive summary consisting of the Busy
Hour Call Attempts and Calls Serviced Late figures, as specified in clauses 4.2.1.5
and 4.2.1.4.

7.1.2 Report details

7.1.2.1. The network and node organization must be reported. For each node:
number and type of processor, memory, and disk must be reported. For each net-
work connection: endpoint interface devices, media type, and maximum band-
width must be reported.

7.1.2.2. All metrics calculated from the benchmark run as specified in 4 must be
reported.

7.1.2.3. The driver implementation must be disclosed in detail.

7.1.2.4. The driver measurement system implementation must be disclosed in de-
tail.

7.1.2.5. The implementation of the API functions as specified in clauses 6.2.4.1,
6.2.5.1, 6.2.6.1, and 6.2.7.1 must be disclosed.

7.1.2.6. Implementation specific parameters and settings, such as number of threads
and memory settings, must be disclosed.

7.1.2.7. Software components used in the system must be reported. This is limited
to software used in deployment (including compilation of the benchmark) and
execution of the test.

7.1.2.8. Additional information about the system configuration or benchmark de-
tails may be added in an appendix at the end of the report.

NOKIA / University of Helsinki 18

REFERENCES

References

1 K. Raatikainen, H. Lindholm, and T. Vähäkangas. State-of-the-art in
benchmarking. Department of Computer Science Series of Publications
B, B-2006-N, 2006.

2 H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle. SIPstone -
benchmarking SIP server performance, Apr 2002.

NOKIA / University of Helsinki 19

