
Control plane benchmark technical documentation

Heikki Lindholm, Taneli Vähäkangas

Helsinki May 4, 2007

Final

University of Helsinki

Department of Computer science

i

Contents

1 Introduction 1

2 Implementation 2

2.1 Overview . 2

2.2 Build tools . 2

2.2.1 Known problems . 4

2.3 OpenSER . 4

2.3.1 Instrumentation . 4

2.3.2 Configuration . 5

2.3.3 Known problems . 5

2.4 Load generator . 5

2.4.1 Known problems . 5

2.5 Load monitor . 6

2.5.1 Known problems . 6

2.6 SIPp . 6

2.6.1 Known problems . 6

2.7 Benchmark scripts and tools . 7

2.7.1 Known problems . 7

2.8 Log analysis tools . 7

2.8.1 Server log analyser . 8

2.8.2 Server load log analyser . 8

2.8.3 Graph and statistics output 8

2.8.4 Known problems . 9

3 Usage instructions 10

3.1 Setting up . 10

3.1.1 Setting up the SUT . 10

3.1.2 Setting up the user agents . 11

ii

3.2 Running the benchmark . 12

3.3 Result analysis . 12

References 16

1 INTRODUCTION

1 Introduction

Following our earlier crafted control plane benchmark specification [1], we cre-
ated an implementation of the benchmark based on readily available compo-
nents. This document has the details of the implementation, including its usage
instructions.

The rest of this document is divided to the following chapters. Chapter 2 con-
tains the implementation notes. Chapter 3 contains the user documentation.

NOKIA / University of Helsinki 1

2 IMPLEMENTATION

2 Implementation

This section documents the implementation of the benchmark.

2.1 Overview

The benchmark implementation uses two major software packages: OpenSER1

and SIPp2. The implementation has scripts for building, configuring, and running
the software from the packages suitably to form a benchmark. The implementa-
tion also includes tools for generating and monitoring server load, registering
users to OpenSER, analysing the benchmark results, and producing graphs from
the results.

OpenSER is used as the telephony server and SIPp as the user-agent clients
(callers) and user-agent servers (recipients.) OpenSER is instrumented to output
time stamped events to system log from where the benchmark results are derived
from. A load generator and load monitor are also run alongside the telephony
server on the SUT.

Table 1 lists the files comprising the benchmark package and their roles. The
scripts are implemented in bash, Python, and GNU Octave. Log analysis and
load generation are implemented in C.

2.2 Build tools

Building the benchmark is automated by two bash scripts: build.sh and build-sut.sh.
The scripts are used to build everything required for the benchmark. Building
the benchmark could be done by hand as well, but the scripts make building the
benchmark more convenient.

The build.sh script fetches the required software packages from the Internet
using wget and Subversion. It then builds the registration tool, SIPp, and alog.
After a successful build, the resulting binaries, that is sip reg, sipp, and alog,
are placed in the directory where the scripts was invoked. The script requires
bash, wget, Subversion, GNU tar, C compiler, and GNU make.

1http://www.openser.org/
2http://sipp.sourceforge.net/

NOKIA / University of Helsinki 2

2 IMPLEMENTATION

File Description

README instructions

alog.c server log analysis

benchmark.sh benchmarking script

build-sut.sh SUT build script

build.sh tools build script

calibrate.sh benchmarking first stage

demo.cfg OpenSER configuration

duac.xml SIPp scenario

gencallgraph.octave results formatting

gencallstats.octave results formatting

iters.c load generator

loadan.sh server log analysis

loadmon.sh log monitor script

ml.c load generator

openser-1.1.0-notls combined ts-v3.patch OpenSER patch

options.xml SIPp ECHO scenario

register.sh user registration

run-sut.sh SUT run script

sip reg.c user registration

sippan.py SIPp log analysis

vman.py server log analysis

Table 1: Benchmark package contents.

NOKIA / University of Helsinki 3

2 IMPLEMENTATION

The build-sut.sh script first fetches OpenSER sources from the Internet us-
ing wget. It then patches the sources with the patch included with the bench-
mark and builds OpenSER and installs it under sut directory to where the script
was invoked from. The benchmark configuration (demo.cfg) for OpenSER is
installed under the same directory hierarchy where OpenSER is installed to. The
script patches (using sed) absolute paths into the OpenSER configuration file and
thus the OpenSER install directory is not movable. The script also builds the load
generator executables, iters and ml, and places them to the directory where
the script was invoked from. The script requires bash, sed, wget, GNU tar, C
compiler, and GNU make.

Both scripts have variables that can be configured by the user at the start of the
script. There are C compiler and make variables in both scripts, and build.sh

also includes the SIPp subversion revision to use.

2.2.1 Known problems

The various packages’ build systems do not seem to tolerate paths with directo-
ries that have spaces in their names. The build scripts have some preparation for
the problem, but are not well-tested in the case.

2.3 OpenSER

OpenSER is used as the main SUT software. The benchmark implementation
instruments OpenSER to output time stamps of events that are needed for per-
formance analysis. OpenSER is configured to output events to syslog so that its
performance can be later analysed from the log. The version of OpenSER used by
the benchmark is 1.1.0-notls.

2.3.1 Instrumentation

The OpenSER instrumentation is in the OpenSER patch file (see Tab. 1.) The patch
inserts time stamps in log events from the accounting module. It also makes
the registrar module log timing information (time stamp and lookup time) of all
lookups. Time stamps are derived using the standard gettimeofday() library
function and expressed in microseconds.

NOKIA / University of Helsinki 4

2 IMPLEMENTATION

2.3.2 Configuration

The benchmark’s default configuration uses the standard OpenSER configura-
tion, but adds accounting and options modules. The thread and memory usage
of OpenSER are made configurable by the benchmark scripts. The default is to
use in-memory database for the user register.

The accounting module is needed for accounting the call events to the system
log. By default the accounting module logs the INVITE answered, ACK received,
and BYE answered events. For proper call length analysis, the configuration has
logging added at the reception of INVITE in the routing script.

The options module is used for the ECHO test required by the benchmark spec-
ification. The SIP options request is basically answered statelessly, and as such it
fits well as a transport test.

2.3.3 Known problems

Under some circumstances OpenSER log events are not correctly ordered in time.
This is probably a bug in the accounting module and might be fixed by a later
OpenSER version.

2.4 Load generator

The load generator consists of two C language programs, iters and ml. The
main load generating algorithm has an unrolled loop that does summation and
writing over a memory area. The iters program runs the loop for 1000000
rounds, times the execution, and finally calculates how many rounds the underly-
ing hardware can execute the loop in 10 ms. The ml program then uses the results
of iters and creates a user-specifiable load to the system by creating a new pro-
cess every second that executes the loop for as many rounds as the specified load
requires.

2.4.1 Known problems

The programs are not aware of nor tuned for SMP environments.

NOKIA / University of Helsinki 5

2 IMPLEMENTATION

2.5 Load monitor

The load monitor is implemented as a simple bash script in loadmon.sh. It
repeatedly runs date and vmstat and sleeps for one second. The idea is to
create a log with the SUT’s CPU and memory usage information with dates. The
script is started by the run-sut.sh script along with OpenSER.

2.5.1 Known problems

The load monitor along with the load analysis script is tied to the Linux system,
because it uses the vmstat program.

2.6 SIPp

SIPp is used as the user agents in the benchmark implementation. Two call sce-
nario files are provided for SIPp by the benchmark implementation: duac.xml
and options.xml. The user agent server uses the SIPp default UAS scenario.
The used SIPp version is subversion revision 57, but it can be configured in the
build.sh script.

The duac.xml scenario is a standard SIP user agent scenario. It send INVITE
with user information from a database of users (created by the register.sh

script), waits for the response, sends ACK, pauses for the call length, sends BYE,
and waits for the response.

The options.xml scenario is for the client side of the ECHO test. It sends a
SIP OPTIONS request and waits for the answer. SIPp’s response time view can
be used to see the ECHO latencies. The scenario has a response time partition
tuned for modern hardware and low latency network. Under special high latency
circumstances the partition should probably be changed.

2.6.1 Known problems

In duac.xml, a call always has the same caller and recipient, which might not
reflect a real situation very well.

NOKIA / University of Helsinki 6

2 IMPLEMENTATION

2.7 Benchmark scripts and tools

The benchmark implementation uses several scripts to run the benchmark. The
bash script register.sh registers a number (default is 1000) of users to OpenSER
using the sip reg program and creates a user database csv file for SIPp. The
calibrate.sh and benchmark.sh bash scripts are used to run the benchmark
and the run-sut.sh script is used to start the SUT.

The user registration uses the sip reg program, which is written in C. The
program uses GNU libosip and libeXosip libraries for a SIP protocol implemen-
tation. The program sends SIP REGISTER messages to a server and waits for the
responses. The user names have user specified name formatting.

The calibrate.sh script runs SIPp for a given number of seconds using the
benchmark call scenario. Starting at a given calls per second rate, the script uses
sippan.py to analyse the SIPp log after the run has ended. If the realised call
rate corresponds to the one requested, the call rate is increased and the call sce-
nario re-run. The cycle is repeated until a call rate that the server can barely
sustain is found.

The benchmark.sh script performs the benchmark by running SIPp for a given
number of seconds using the benchmark call scenario and a given call rate. Af-
ter the benchmark the script prints the realised call rate, using sippan.py to
analyse the SIPp results log.

2.7.1 Known problems

The register.sh script uses GNU seq command, which is not portable to all
unix systems.

The calibrate.sh and benchmark.sh scripts are not SMP aware. SMP sup-
port would require running the load generator on every processor.

2.8 Log analysis tools

The benchmark implementation includes two tools for server log analysis and
two octave scripts to produce graphs and statistics from the log analysis results.
There is also one tool for analysing SIPp logs.

NOKIA / University of Helsinki 7

2 IMPLEMENTATION

2.8.1 Server log analyser

The alog program is the primary server log analysis tool. It is written in C. The
function of alog is to read and analyse the log that OpenSER writes to the system
log, that is, the statements output by the accounting and registrar modules.

The program reads standard input line by line, optionally ignoring lines that do
not fall inside a given span of dates. All log lines that are output by the ”openser”
process are further analysed, rest lines are skipped.

Log lines from openser are parsed and events with their timestamp are formed
into singly linked lists. Separate lists are kept for lookups, incomplete calls, and
complete calls.

Lookup events are added to a list in increasing time stamp order. Call events
are first added to the incomplete calls list, and then, when all call events (INVITE,
INVITE answered, ACK, BYE) are encountered, the call is moved to the complete
calls list. Call events are not kept in timestamp order. A call may have multi-
ple events of the same kind; for INVITE the latest INVITE before the answer to
INVITE is kept, for other events, the first encountered event is kept.

After EOF, the lookup and call structures are analysed and optionally output to
Octave or CSV files.

2.8.2 Server load log analyser

The server load log can be analysed using the loadan.sh bash script. The script
uses sed to filter out log lines that do not fall into a given date interval. It then
feeds the results to the vman.py Python script, which calculates and outputs
CPU and memory usage statistics.

2.8.3 Graph and statistics output

The octave scripts gencallgraph.octave and gencallstats.octave can
be used to output graphs and statistics from alog output. They are implemented
using GNU Octave and also require gnuplot. The former script outputs a graph
of calls per second, including completed calls, deadlined calls, and failed calls
as separate curves. The latter script outputs statistics from call data that is more
detailed than the statistics output by alog.

NOKIA / University of Helsinki 8

2 IMPLEMENTATION

The gencallgraph.octave script reads a file (-cpu.octave) output by alog

into a matrix and uses Octave’s interface to gnuplot to plot the complete, dead-
lined, and failed calls to a single graph.

The gencallstats.octave reads a file (-calls.octave) output by alog into a
matrix and prints timing values for all call events. Printed valued include min-
imum, maximum, mean, median, variance, and 10th, 25th, 50th, 75th, and 90th
percentiles of lengths between events. The measured events are the full call from
INITIATE to CLOSE, and all the intervals between two successive events. For
failed calls, different event types are counted and printed out.

2.8.4 Known problems

The alog program is not written according to good programming principles.

The server load log analysis tools are tied to the Linux system, because they
rely on the output format of vmstat.

NOKIA / University of Helsinki 9

3 USAGE INSTRUCTIONS

3 Usage instructions

This section documents the usage of the benchmark and related tools. Running
the benchmark can be outlined with the following steps:

1. Setting up the SUT.

2. Setting up the user agents.

3. Optionally, running the ECHO test.

4. Calibrating the call rate for the SUT.

5. Performing the benchmark.

3.1 Setting up

The benchmark is composed of one package that contains scripts for building
and running the benchmark and tools. The package includes a README file
with software dependencies that need to be met.

The network configuration should have 4 nodes. We label them, following the
specification, CLIENT, SERVER1, SERVER2, and SUT. The nodes’ IP addresses
are referred to as CLIENTIP, SERVER1IP, SERVER2IP, and SUTIP, correspond-
ingly.

3.1.1 Setting up the SUT

First, the SUT software needs to be built:

SUT> tar xzvf impl-yyyy-mm-dd.tar.gz

SUT> cd impl

SUT> ./build-sut.sh

Then, the load generator must be calibrated for the SUT machine:

SUT> ./iters

Finally, the SUT software can be started with:

NOKIA / University of Helsinki 10

3 USAGE INSTRUCTIONS

SUT> ./run-sut.sh SUTIP threads memory CPUload CPUiters auxlogfile

Where threads is the number of threads OpenSER shall use (8 or more recom-
mended), memory is the amount of memory needed for OpenSER (should be 32M
for every 1,000 users or more), CPUload is the desired amount of background CPU
load percentage (use 0 for no load), CPUiters is the number reported by iters in
the previous step, or 0 if not needed, and auxlogfile is the file where memory and
CPU load statistics are collected.

3.1.2 Setting up the user agents

First, the user agent servers need to be built:

SERVERn> tar xzvf impl-yyyy-mm-dd.tar.gz

SERVERn> cd impl

SERVERn> ./build.sh SUTIP

After building the SERVER nodes, the SIPp servers should be started:

SERVERn> ./sipp -sn uas

The same steps should be done on all of the SERVER nodes (SERVER1, SERVER2.)

After setting up the SERVER nodes, The CLIENT node software needs to be
built:

CLIENT> tar xzvf impl-yyyy-mm-dd.tar.gz

CLIENT> cd impl

CLIENT> ./build.sh SUTIP

After building, the ECHO test can optionally be run:

CLIENT> ./sipp -sf options.xml SUTIP

The ECHO test latencies can be monitored using the SIPp latency view, which
can be entered by pressing ’3’ in the SIPp terminal.

NOKIA / University of Helsinki 11

3 USAGE INSTRUCTIONS

3.2 Running the benchmark

First, find out the CPS (Calls Per Second) rate the SUT is capable of handling with
the supplied script calibrate.sh:

CLIENT> ./register.sh 2 SUTIP SERVER1IP SERVER2IP

CLIENT> ./calibrate.sh 900 start step SUTIP CLIENTIP

Replace start with a CPS rate the SUT can easily handle and step with approx. 2%
of start. Larger values of step will run faster, but are less accurate.

After calibrating, the benchmark can be run:

CLIENT> ./benchmark.sh 900 CPSrate SUTIP CLIENTIP

Where CPSrate is the rate reported by the previous calibration step. It is also
recommended to clear Syslog before benchmarking, so that the to be analyzed
data is absolutely correct.

3.3 Result analysis

The server log can be analysed using the alog program. The basic usage is:

SUT> ./alog -o basename -b begin -e end < /var/log/messages

[or /var/log/syslog or some another used syslogging facility]

Where begin and end are the beginning and ending dates of the benchmark and
basename is prefix for output filenames. Running alog will produce two files,
called ”basename-calls.octave” and ”basename-cpu.octave”. The ”-calls” file con-
tains the call length information and the ”-cpu” file contains calls per second
information in GNU Octave compatible table format.

The two files can then be processes by the Octave scripts to produce statistics
and graphs:

SUT> ./gencallstats.octave basename-calls.octave

SUT> ./gencallgraphs.octave basename-cpu.octave output_terminal

Where output terminal can be one of ”x11”, ”postscript” or ”aqua”. The ”aqua”
terminal is native to Mac OS X, the others should work on most unix systems.

NOKIA / University of Helsinki 12

3 USAGE INSTRUCTIONS

The SUT’s CPU and memory usage statistics can be produced from the load
monitor log by using:

SUT> ./loadan.sh auxlogfile begindate enddate

Where begindate and enddate should be in the form given by the SUT system’s date
command.

The alog program has more functionality than the previous example reveals.
Following is a description of the program’s command line switches:

-h Shows short usage instructions.

-q Suppresses runtime output of progress. Repeating the parameter suppresses
output even more.

-l List details for failed calls. The contents of the failed calls’ data structures
are listed. This option is mainly useful for debugging, either alog or the
benchmark.

-o basename Output lookups and calls to basename-calls, basename-cpu, and base-
name-lookups files. The format of the files is ”Octave” by default, but can
be changed to ”CSV”.

-u time Unit for calls-per-unit (-cpu) file in ms (default: 1000000 ms.)

-c Use CSV output format for the files.

-d Drop calls with time stamp order errors from output files. Sometimes OpenSER
logs events in the wrong order and causes calls to have, for example, earlier
closing time stamp than starting time stamp. These calls skew the statis-
tics and should most likely be dropped from output files. The calls are still
reported by alog terminal output.

-b date Begin date for log parsing (inclusive). All log entries that are earlier
than date are skipped. The date option should be given as ’-b ”2006 Nov
1 15:47:25”’.

-e date End date for log parsing (inclusive). All log entries that are later than date
are skipped.

NOKIA / University of Helsinki 13

3 USAGE INSTRUCTIONS

The Octave and CSV output files contain fields of the various logged events.
The general format for the Octave files is as follows:

<FIELD 1> <FIELD 2> <...> <FIELD n>

<FIELD 1> <FIELD 2> <...> <FIELD n>

...

The general format for the CSV files is as follows:

<FIELD 1>,<FIELD 2>,<...>,<FIELD n>

<FIELD 1>,<FIELD 2>,<...>,<FIELD n>

...

The Octave lookup files (”-lookups.octave”) contain the following fields:

FIELD 1 lookup time stamp

FIELD 2 lookup time

The Octave call files (”-calls.octave”) contain the following fields:

FIELD 1 starting time stamp of call

FIELD 2 a bitmask (as an integer) of received call events

FIELD 3 time stamp difference of ”bye replied” and ”invite received” events,
which is effectively the length of the call

FIELD 4 time stamp difference of ”invite replied” and ”invite received” events

FIELD 5 time stamp difference of ”ack received” and ”invite replied” events

FIELD 6 time stamp difference of ”bye replied” and ”ack received” events

The Octave calls-per-unit files (”-cpu.octave”) contain the following fields:

FIELD 1 current relative time

FIELD 2 completed calls in this time unit until the next time unit

FIELD 3 deadlined calls in this time unit until the next time unit

NOKIA / University of Helsinki 14

3 USAGE INSTRUCTIONS

FIELD 4 failed calls in this time unit until the next time unit

The CSV lookup files (”-lookups.csv”) contain the following fields:

FIELD 1 lookup time stamp

FIELD 2 looked up user’s name in double quotes

FIELD 3 lookup time

The CSV call files (”-calls.csv”) contain the following fields:

FIELD 1 starting time stamp of call

FIELD 2 call id in double quotes

FIELD 3 a bitmask (as a hexadecimal integer) of received call events

FIELD 4 time stamp difference of ”bye replied” and ”invite received” events,
which is effectively the length of the call

FIELD 5 time stamp difference of ”invite replied” and ”invite received” events

FIELD 6 time stamp difference of ”ack received” and ”invite replied” events

FIELD 7 time stamp difference of ”bye replied” and ”ack received” events

The CSV calls-per-unit files (”-cpu.csv”) contain the following fields:

FIELD 1 current relative time

FIELD 2 completed calls in this time unit until the next time unit

FIELD 3 deadlined calls in this time unit until the next time unit

FIELD 4 failed calls in this time unit until the next time unit

All of the time stamps and time intervals are in microseconds. The bitmasks of
call events contains the following bits, bit 0 being the least significant bit.

BIT 0 invite received

BIT 1 invite replied

BIT 2 ack received

BIT 3 bye replied

NOKIA / University of Helsinki 15

REFERENCES

References

1 H. Lindholm and T. Vähäkangas. Control plane benchmark specification.
Unpublished, 2006.

NOKIA / University of Helsinki 16

