/* Dataobject Dj receiving alock_request(Tj) */
if (Locked_by(Dj) == null)

send(granted);
ese
{
send not granted to Tj;
send Locked_by(Dj) to Tj
}

/* Transaction Tj makes alock request for data object Dj */
send lock_request(Tj) to Dj;
wait for granted/not granted;
if (granted)

{
Locked_by(Dj) = Tj;
Held_by(Tj) =f;
}
else /* suppose Dj is being used by transaction Tj */
{
Held_by(Tj) = Tj;
Enqueue(Tj, Request_Q(Tj));
if (Wait_for(Tj) == null)
Wait_for(Tj) =Tj ;
else
Wait_for(Tj) = Wait_for(Tj);
update(Wait_for(Tj), Request_Q(Tj));

/* Transaction Tj receiving an update message */

if (Wait_for(Tj) != Wait_for(Tj))

Wait_for(Tj) = Wait_for(Tj);

if (inter sect(Wait_for(Tj), Request_Q(Tj)) = null)

{

update(Wait_for(Ti), Request_Q(Tj);
ese

DECLARE DEADLOCK;
[* initiate deadlock resolution as follows */
1* Tj is chosen as the transaction to be aborted */

/* Tj releases all the data objects it holds */

send_clear(Tj, Held_by(Tj));

alocate each data object Dj held by Tj to the first
requester Tk in Request_Q(Tj);

for (every transaction Tp in Request_Q(Tj) requesting
data object Dj held by Tj)

Enqueue(Tn, Request_Q(Tk));

/* Transaction Tk receiving aclear(Tj, Tk) message */
purge the tuple having Tj as the requesting transaction from
Reguest_Q(TK);

Figure 14.14 A Distributed Deadlock Detection Algorithm



Transaction Wait_for Held by Request Q Transaction Wait_for Held by Request Q
To nil nil T To To T3 T,
T, To To T, T To To T,
T2 To T T3 Tz To T T3
T3 To T, Ty, Tg T3 To T, T4 T, T
Ty To T3 Ts Ty To T3 Ts
Tg To Ty nil Ts To Ty nil
Tg To T3 nil Ts To T3 nil

(a) State of system before request

(b) State of system after Top makesarequestto T3

Figure 14.15 Example of Distributed Deadlock Detection Algorithm of Figure 14.14




