
Lesson 2

Concurrency at Programming y g g
Language Level

hCh 2 [BenA 06]

Ab iAbstraction
Pseudo-language

BACI
Ada, Java, etc.Ada, Java, etc.

116.10.2009 Copyright Teemu Kerola 2009

Levels of AbstractionLevels of Abstraction
• Granularity of operations

– Invoke a library module
– Statement in high level programming language
– Instruction in machine language

• Atomic statementto c state e t
– Anything that we can guarantee to be atomic

• Executed completely “at once”p y
• Always the same correct atomic result
• Result does not depend on anybody else

– Can be at any granularity
– Can trust on that atomicity

216.10.2009 Copyright Teemu Kerola 2009

Atomic Statement
• Atomicity guaranteed somehow

– Machine instruction: HW Load R1, YMachine instruction: HW
• Memory bus transaction

– Programming language statement, set of statements, or
Read mem(0x35FA8300)

g g g g , ,
set of machine instructions

• SW -- start atomic
Load R1 Y– Manually coded

– Disable interrupts
– OS synchronization primitives

Load R1, Y
Sub R1, =1
Jpos R1, Here

end atomic

?

OS synchronization primitives

– Library module
• SW

-- end atomic

Monitors
– Manually coded inside
– Provided automatically to the user

by programming environment

Monitors
Ch 7 [BenA 06]

by programming environment

316.10.2009 Copyright Teemu Kerola 2009

Concurrent 3 processes
(P, R, Q)

Program
• Sequential process

(, ,)
interleaved
execution

Sequential process
– Successive atomic

statements

– Control pointer
P: p1 → p2 → p3 → p4 …

(= program counter)
• Concurrent program

Fi i f i l
P: p1 → p2

– Finite set of sequential
processes working for
same goal

Q: q1 → q2
?g

– Arbitrary interleaving
of atomic statements in
diffdifferent processes

416.10.2009 Copyright Teemu Kerola 2009
p1 → q2 → p2 → q1

Program State, Pseudo-languageg , g g
• Sequential program pseudo-kieli

• State
cp state

• State
– next statement to execute (cp, i.e., PC)

i bl l– variable values

atomicinitial state state stateatomic

516.10.2009 Copyright Teemu Kerola 2009

a o c
statement

atomic
statement

(Global) Program State
• Concurrent program

• Local state for each
process: execute p1 execute q1

– cp
– Variable values

• Local & global

p1:
q1:

• Local & global
• Global state

for program
execute q1 execute p1

– All cp’s
– All local variables

All global variables– All global variables

616.10.2009 Copyright Teemu Kerola 2009

Possible Program Statesg
• List of processes in program

Li f l f h– List of values for each process
• cp
• value of each local/global/shared variablevalue of each local/global/shared variable

{ { p1: n ← k1 – process p
k1 = 1 }

{ q1: n ← k2 process q

state:

{ q1: n ← k2 – process q
k2 = 2 }
n = 0 – shared variable

}

• Nr of possible states
b () l

}

{ { p1: n ← k1
k1 = 2 }

unreachable
state:can be (very) large

– Not all states are reachable states!

k1 = 2 }
{ q1: n ← k2
k2 = 1 }

n = 3(saavutettavissa saavutettava tila)

state:

716.10.2009 Copyright Teemu Kerola 2009

n 3
}

(saavutettavissa, saavutettava tila)

State
Di

State diagram

Diagram
and transition: exec p1 exec q1

Scenarios
transition: exec. p1 exec. q1

transition: exec. q1 exec. p1

Scenario 1 (left side)

• Transitions from one possible state to another
– Executed statement must be one of those in the 1st state

()

• State diagram for concurrent program
– Contains all reachable states and transitions

All possible executions are included they are all correct!– All possible executions are included, they are all correct!

816.10.2009 Copyright Teemu Kerola 2009

AtomicAtomic
Statements

• Two scenarios
– Both correct

iff l !– Different result!

NO need to have the
same result!same result!
Statements do the
same, but overall result
may be different.

• Atomic?

may be different.
(see p. 19 [BenA 06])

– Assignment?
– Boolean evaluation?

Increment?– Increment?

916.10.2009 Copyright Teemu Kerola 2009

• Two scenarios for execution
B h• Both correct

• Both have the same result

P first, and then Q Q first, and then P

1016.10.2009 Copyright Teemu Kerola 2009

Same statements with smaller atomic granularity:

1116.10.2009 Copyright Teemu Kerola 2009

Too Small Atomic Granularity

• Scenario 1• Scenario 1
– OK

• Scenario 2
– Bad result

• From now on
Assignments– Assignments
and Boolean
evaluations
are atomic!

1216.10.2009 Copyright Teemu Kerola 2009

Correctness
• What is the correct answer?

U ll l f ti l• Usually clear for sequential programs
• Can be fuzzy for concurrent programs

M ?– Many correct answers?
– What is intended semantics of the program?

R 100 ti h ti t diff t– Run programs 100 times, each time get different
answer?

• Each answer is correct, if program is correct!, p g
• Does not make debugging easier!
• Usually can not test all possible scenarios (too many!)

H t d fi t f t ?– How to define correctness for concurrent programs?
• Safety properties = properties that are always true
• Liveness properties = properties that eventually become true

“turvallisuus”

“elävyys” ve ess p ope es p ope es eve u y beco e ue

1316.10.2009 Copyright Teemu Kerola 2009

elävyys

Safety and Liveness
• Safety property

– property must be true all the time
• “Identity”

safety-ominaisuus, turvallisuus

• Identity
– memFree + memAllocated = memTotal

• Mouse cursor is displayed
• System responds to new commands

identiteetti,
invariantti

• System responds to new commands

• Liveness property
– Property must eventually become true

elävyys, liveness-ominaisuus
p y y

• Variable n value = 2
• System prompt for next command is shown
• Control will resume to calling programControl will resume to calling program
• Philosopher will get his turn to eat
• Eventually the mouse cursor is not displayed
• Program will terminate• Program will terminate

• Duality of safety and liveness properties
– { Pi will get his turn to eat } ≡ not { Pi will never get his turn to eat }
– { n value will become 2 } ≡ not { n value is always ≠ 2 }

1416.10.2009 Copyright Teemu Kerola 2009

Linear Temporal Logic (LTL)
• Define safety and liveness properties for

t i t t i (bit) i

(lineaarinen) temporaalilogiikka

certain state in some (arbitrary) scenario
– Example of Modal Temporal Logic (MDL), logic on

t lik ibilit i ibilit d itconcepts like possibility, impossibility, and necessity

• Alternative: Branching Temporal Logic (BTL)
– Properties true in some or all states starting from the

given state
• More complex because all future states must be covered• More complex, because all future states must be covered

– Common Temporal Logic (CTL)
• Can be checked automaticallyy

– Every time computation reaches given state
• SMV model checker

N SMV d l h k• NuSMV model checker
1516.10.2009 Copyright Teemu Kerola 2009

Fairness reiluus
• (Weakly) fair scenario

– Wanted condition eventually occursWanted condition eventually occurs
• Nobody is locked out forever
• Will a philosopher ever get his turn to eat? p p g
• Will an algorithm eventually stop?

• All scenarios should be fair
– One requirement in correct solution

1616.10.2009 Copyright Teemu Kerola 2009

Machine Language CodeMachine Language Code
• What is atomic and what is not?

– Assignment?
– Increment?

X = Y;

X = X+1;Increment? X X 1;

1716.10.2009 Copyright Teemu Kerola 2009

Critical Reference kriittinen viite

• Reference to variable v is critical reference, if …
– Assigned value in P and read in Q

vP Q
• Read directly or in a statement

• Program satisfies limited-critical-reference (LCR)

vP

– Each statement has at most one critical reference
– Easier to analyze than without this property
– Each program is easy to transform into similar program with LCR

rajoitettu
kriittinen viite

– Each program is easy to transform into similar program with LCR

n = n+1; n = n+1Not LCR:

P Q

Bad; Bad

n = m+1; m = n+1Not LCR: Bad

tempP = n+1;
n = tempP;

tempQ = n+1;
n = tempQ;

LCR: Good

LCR s atomicit ?
1816.10.2009 Copyright Teemu Kerola 2009

LCR vs. atomicity?
(ouch)

Volatile and non-atomic variables
• Volatile variable

– Can be modified by many processes (must be in shared memory)
– Advice for compiler (pragma)

riskialtis

– Advice for compiler (pragma)
• Keep something in memory, not in register
• Pseudocode – does not generate code

• Non-atomic variables
– Multiword data structures: long ints, arrays, records, …

Force access to be indivisible in given order– Force access to be indivisible in given order

What if compiler/hw
decides to keep

store n?

decides to keep
value of n in a
register/cache?
When is it stored

which n?

exec.
order?

When is it stored
back to memory?
What if local1 &
l l2 l til ?

1916.10.2009 Copyright Teemu Kerola 2009

local2 were volatile?

Example Program
with Volatile Variables

• Can implement it in any concurrent programming languagep y p g g g g
– (Extended) Pascal and (Extended) C
– BACI (Ben-Ari Concurrency Interpreter)

• Code automatically compiled (from Extended Pascal or C)
– Ada
– JavaJava

2016.10.2009 Copyright Teemu Kerola 2009

possibly volatile
(Ben-Ari Concurrent Pascal)

{ main program }

n is volatile, because… it is
assigned in one thread, and
read in the other

2116.10.2009 Copyright Teemu Kerola 2009

read in the other

ibl l til f ll

(Ben-Ari Concurrent C, C--)

possibly volatile, use carefully
(volatile, if critically referenced)

What if compiler optimized and
k t i i t ?kept n in a register?
Lets hope not!
(in ExtPascal or C--

2216.10.2009 Copyright Teemu Kerola 2009

global (volatile) variables are seemingly kept in memory by default)

advice compiler to keep N in memory

2316.10.2009 Copyright Teemu Kerola 2009

How many threads
really in parallel?
• how to control it?how to control it?

Thread.yield(); // force?

> javac Adder8.java Execute on 8-processor vera.cs.helsinki.fi?
http://www cs helsinki fi/u/kerola/rio/Java/examples/Adder8 java

2416.10.2009 Copyright Teemu Kerola 2009

> java Adder8 http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8.java
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8b.java

BACI http://www.mines.edu/fs_home/tcamp/baci/

• Ben-Ari Concurrency Interpreter
– Write concurrent programs with

• C-- or Ben-Ari Concurrent Pascal (.cm and .pm suffixes)
• Compile and run in BACI

GUI f U i /Li– GUI for Unix/Linux
• jBACI

J t lik BACI
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/

– Just like BACI
– GUI for Windows

Installation• Installation
– load version 1.4.5 jBACI executable files and example

programs unzip edit config cfg to have correct paths to

http://stwww.weizmann.ac.il/g-cs/benari/jbaci/jbaci1-4-5.zip

programs, unzip, edit config.cfg to have correct paths to
bin/bacc.exe and bin/bapas.exe translators, click run.bat

• Use in class homeworks and in project• Use in class, homeworks and in project
2516.10.2009 Copyright Teemu Kerola 2009

BACI Overall
…

add.cm C- -
(Concurrent C)

Structure
C PCODE

bacc.exe
void main() {
cobegin { add10();

add10(); }

add pcoadd.lst

C-- to PCODE
Compiler

….

add.pco
…
17 24 void main() {
18 25 cobegin {add10(); add10(); }

(many tables)

18 25 cobegin {add10(); add10(); }
….

PCODE
Interpreter

b i tbainterp.exe

2616.10.2009 Copyright Teemu Kerola 2009
http://www.cs.helsinki.fi/u/kerola/rio/BACI/baci-c.pdf

jBACIj
• Just like

BACI butBACI, but
with Java
– requiresrequires

Java v. 1.4
(SDK or
JRE)JRE)

– Built-in
compilercompiler
and
interpreter

– edit state
– run state

2716.10.2009 Copyright Teemu Kerola 2009

http://www.cs.helsinki.fi/u/kerola/rio/BACI/jbaci.pdf

jBACI IDE (integrated development environment)

2816.10.2009 Copyright Teemu Kerola 2009

jBACI IDE (integrated development environment)

Add a breakpoint
to selected
(PCode) line(PCode) line

2916.10.2009 Copyright Teemu Kerola 2009

SummarySummary

Ab i i i• Abstraction, atomicity
• Concurrent program, program statep g , p g
• Pseudo-language algorithms
• High level language algorithms
• BACIBACI

3016.10.2009 Copyright Teemu Kerola 2009

