
Lesson 2

Concurrency at Programming y g g
Language Level

hCh 2 [BenA 06]

Ab iAbstraction
Pseudo-language

BACI
Ada, Java, etc.Ada, Java, etc.
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Levels of AbstractionLevels of Abstraction
• Granularity of operations

– Invoke a library module
– Statement in high level programming language
– Instruction in machine language

• Atomic statementto c state e t
– Anything that we can guarantee to be atomic

• Executed completely “at once”p y
• Always the same correct atomic result
• Result does not depend on anybody else

– Can be at any granularity
– Can trust on that atomicity
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Atomic Statement
• Atomicity guaranteed somehow

– Machine instruction: HW Load R1, YMachine instruction: HW
• Memory bus transaction 

– Programming language statement, set of statements, or 
Read mem(0x35FA8300)

g g g g , ,
set of machine instructions

• SW -- start atomic
Load R1 Y– Manually coded

– Disable interrupts
– OS synchronization primitives

Load R1, Y
Sub R1, =1
Jpos R1, Here

end atomic

?

OS synchronization primitives

– Library module
• SW

-- end atomic

Monitors
– Manually coded inside
– Provided automatically to the user  

by programming environment

Monitors 
Ch 7 [BenA 06]

by programming environment
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Concurrent 3 processes 
(P, R, Q) 

Program
• Sequential process

( , , )
interleaved 
execution

Sequential process
– Successive atomic

statements

– Control pointer
P:  p1 → p2 → p3 → p4 …

(= program counter)
• Concurrent program

Fi i f i l
P:  p1 → p2

– Finite set of sequential 
processes working for 
same goal

Q:  q1 → q2
?g

– Arbitrary interleaving
of atomic statements in 
diffdifferent processes
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Program State, Pseudo-languageg , g g
• Sequential program pseudo-kieli

• State
cp state

• State
– next statement to execute (cp, i.e., PC)

i bl l– variable values

atomicinitial state state stateatomic
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a o c
statement

atomic
statement



(Global) Program State
• Concurrent program

• Local state for each 
process: execute p1 execute q1

– cp
– Variable values

• Local & global

p1:
q1:

• Local & global
• Global state

for program
execute q1 execute p1

– All cp’s
– All local variables

All global variables– All global variables
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Possible Program Statesg
• List of processes in program

Li f l f h– List of values for each process
• cp
• value of each local/global/shared variablevalue of each local/global/shared variable

{ { p1: n ← k1    – process p
k1 = 1 }

{ q1: n ← k2 process q

state:

{ q1: n ← k2   – process q
k2 = 2 }
n = 0 – shared variable

}

• Nr of possible states
b ( ) l

}

{ { p1: n ← k1
k1 = 2 }

unreachable 
state:can be (very) large

– Not all states are reachable states!

k1 = 2 }
{ q1: n ← k2
k2 = 1 }

n = 3(saavutettavissa saavutettava tila)

state:
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n  3
}

(saavutettavissa, saavutettava tila)



State 
Di

State diagram

Diagram 
and transition: exec p1 exec q1

Scenarios
transition:   exec. p1 exec. q1

transition:   exec. q1 exec. p1

Scenario 1 (left side)

• Transitions from one possible state to another
– Executed statement must be one of those in the 1st state

( )

• State diagram for concurrent program
– Contains all reachable states and transitions

All possible executions are included they are all correct!– All possible executions are included, they are all correct!
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AtomicAtomic 
Statements

• Two scenarios
– Both correct

iff l !– Different result!

NO need to have the 
same result!same result!
Statements do the 
same, but overall result 
may be different.

• Atomic?

may be different.
(see p. 19 [BenA 06])

– Assignment?
– Boolean evaluation?

Increment?– Increment? 
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• Two scenarios for execution
B h• Both correct

• Both have the same result

P first, and then Q Q first, and then P
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Same statements with smaller atomic granularity:
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Too Small Atomic Granularity

• Scenario 1• Scenario 1 
– OK

• Scenario 2 
– Bad result

• From now on
Assignments– Assignments 
and Boolean 
evaluations 
are atomic!
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Correctness
• What is the correct answer?

U ll l f ti l• Usually clear for sequential programs
• Can be fuzzy for concurrent programs

M ?– Many correct answers?
– What is intended semantics of the program?

R 100 ti h ti t diff t– Run programs 100 times, each time get different 
answer?

• Each answer is correct, if program is correct!, p g
• Does not make debugging easier!
• Usually can not test all possible scenarios (too many!)

H t d fi t f t ?– How to define correctness for concurrent programs?
• Safety properties = properties that are always true
• Liveness properties = properties that eventually become true

“turvallisuus”

“elävyys” ve ess p ope es p ope es eve u y beco e ue
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elävyys



Safety and Liveness
• Safety property

– property must be true all the time
• “Identity”

safety-ominaisuus, turvallisuus

• Identity
– memFree + memAllocated = memTotal

• Mouse cursor is displayed
• System responds to new commands

identiteetti,
invariantti

• System responds to new commands

• Liveness property
– Property must eventually become true

elävyys, liveness-ominaisuus
p y y

• Variable n value = 2
• System prompt for next command is shown
• Control will resume to calling programControl will resume to calling program
• Philosopher will get his turn to eat
• Eventually the mouse cursor is not displayed
• Program will terminate• Program will terminate

• Duality of safety and liveness properties
– { Pi will get his turn to eat } ≡  not { Pi will never get his turn to eat }
– { n value will become 2 } ≡  not { n value is always ≠ 2 }
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Linear Temporal Logic (LTL)
• Define safety and liveness properties for 

t i t t i ( bit ) i

(lineaarinen) temporaalilogiikka

certain state in some (arbitrary) scenario
– Example of Modal Temporal Logic (MDL), logic on 

t lik ibilit i ibilit d itconcepts like possibility, impossibility, and necessity

• Alternative: Branching Temporal Logic (BTL)
– Properties true in some or all states starting from the 

given state
• More complex because all future states must be covered• More complex, because all future states must be covered

– Common Temporal Logic (CTL)
• Can be checked automaticallyy

– Every time computation reaches given state
• SMV model checker

N SMV d l h k• NuSMV model checker
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Fairness reiluus
• (Weakly) fair scenario

– Wanted condition eventually occursWanted condition eventually occurs
• Nobody is locked out forever
• Will a philosopher ever get his turn to eat? p p g
• Will an algorithm eventually stop?

• All scenarios should be fair
– One requirement in correct solution
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Machine Language CodeMachine Language Code
• What is atomic and what is not?

– Assignment?  
– Increment?

X = Y;

X = X+1;Increment? X  X 1;
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Critical Reference kriittinen viite

• Reference to variable v is critical reference, if …
– Assigned value in P and read in Q

vP Q
• Read directly or in a statement

• Program satisfies limited-critical-reference (LCR)

vP

– Each statement has at most one critical reference
– Easier to analyze than without this property
– Each program is easy to transform into similar program with LCR

rajoitettu
kriittinen viite

– Each program is easy to transform into similar program with LCR

n = n+1; n = n+1Not LCR:

P Q

Bad; Bad

n = m+1; m = n+1Not LCR: Bad

tempP = n+1;
n = tempP;

tempQ = n+1;
n = tempQ;

LCR: Good

LCR s atomicit ?
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LCR vs. atomicity?
(ouch)



Volatile and non-atomic variables
• Volatile variable

– Can be modified by many processes (must be in shared memory)
– Advice for compiler (pragma)

riskialtis

– Advice for compiler (pragma)
• Keep something in memory, not in register
• Pseudocode – does not generate code

• Non-atomic variables
– Multiword data structures: long ints, arrays, records, …

Force access to be indivisible in given order– Force access to be indivisible in given order

What if compiler/hw 
decides to keep

store n?

decides to keep 
value of n in a 
register/cache?
When is it stored

which n?

exec. 
order?

When is it stored 
back to memory?
What if local1 & 
l l2 l til ?
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local2 were volatile?



Example Program 
with Volatile Variables

• Can implement it in any concurrent programming languagep y p g g g g
– (Extended) Pascal and (Extended) C
– BACI (Ben-Ari Concurrency Interpreter)

• Code automatically compiled (from Extended Pascal or C)
– Ada
– JavaJava
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possibly volatile
(Ben-Ari Concurrent Pascal)

{ main program }

n is volatile, because… it is
assigned in one thread, and 
read in the other
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read in the other



ibl l til f ll

(Ben-Ari Concurrent C, C--)

possibly volatile, use carefully
(volatile, if critically referenced) 

What if compiler optimized and
k t i i t ?kept n in a register?
Lets hope not!
(in ExtPascal or C--
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global (volatile) variables are seemingly kept in memory by default)



advice compiler to keep N in memory
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How many threads 
really in parallel?
• how to control it?how to control it?

Thread.yield();  // force?

> javac Adder8.java Execute on 8-processor vera.cs.helsinki.fi?
http://www cs helsinki fi/u/kerola/rio/Java/examples/Adder8 java
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> java Adder8 http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8.java
http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Adder8b.java



BACI http://www.mines.edu/fs_home/tcamp/baci/

• Ben-Ari Concurrency Interpreter
– Write concurrent programs with 

• C-- or Ben-Ari Concurrent Pascal (.cm and .pm suffixes)
• Compile and run in BACI

GUI f U i /Li– GUI for Unix/Linux
• jBACI

J t lik BACI
http://stwww.weizmann.ac.il/g-cs/benari/jbaci/

– Just like BACI
– GUI for Windows

Installation• Installation
– load version 1.4.5 jBACI executable files and example 

programs unzip edit config cfg to have correct paths to

http://stwww.weizmann.ac.il/g-cs/benari/jbaci/jbaci1-4-5.zip

programs, unzip, edit config.cfg to have correct paths to 
bin/bacc.exe and bin/bapas.exe translators, click run.bat

• Use in class homeworks and in project• Use in class, homeworks and in project
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BACI Overall 
…

add.cm C- -
(Concurrent C)

Structure
C PCODE

bacc.exe
void main() {
cobegin { add10(); 

add10(); }

add pcoadd.lst 

C-- to PCODE
Compiler

….

add.pco 
…
17   24  void main() {
18 25 cobegin {add10(); add10(); }

(many tables)

18   25  cobegin {add10(); add10(); }
….

PCODE
Interpreter

b i tbainterp.exe
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jBACIj
• Just like 

BACI butBACI, but 
with Java
– requiresrequires 

Java v. 1.4  
(SDK or 
JRE)JRE) 

– Built-in 
compilercompiler 
and 
interpreter

– edit state
– run state
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http://www.cs.helsinki.fi/u/kerola/rio/BACI/jbaci.pdf



jBACI IDE (integrated development environment) 
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jBACI IDE (integrated development environment) 

Add a breakpoint
to selected 
(PCode) line(PCode) line
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SummarySummary

Ab i i i• Abstraction, atomicity
• Concurrent program, program statep g , p g
• Pseudo-language algorithms
• High level language algorithms
• BACIBACI
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