
Practical Examples
(Ch 5-9 [BenA 06])

Example Problem
Problem Features
System Features

Various Concurrency Solutions

17.12.2009 Copyright Teemu Kerola 2009

Lesson 11

A Bear, Honey Pot and Bees
• Friendly bees are feeding a trapped bear by collecting

honey for it. The life of the trapped bear is just eating and
sleeping.

• There are N bees and one bear. The size of the pot is H
portions.

• The bees carry honey to a pot, one portion each bee each
time until the pot is full. Or maybe more?

• When the pot is full, the bee that brought the last portion
wakes up the bear.

• The bear starts eating and the bees pause filling the pot
until the bear has eaten all the honey and the pot is empty
again. Then the bear starts sleeping and bees start
depositing honey again.

27.12.2009 Copyright Teemu Kerola 2009

[Andrews 2000, Problem 4.36]

Problem Features
• Thousands or millions of bees (N bees), one bear

– Collecting honey (1 portion) may take very long time
– Eating a pot of honey (H portions) may take some time
– Filling up the pot with one portion of honey is fast
– Same solution ok with N=1000 or N=100 000 000 ?
– Same solution ok with H=100 or H=1 000 000 ?
– Same solution ok for wide range of N & H values?

• Unspecified/not well defined feature
– Could (should) one separate permission to fill the pot, actually

filling the pot, and possibly signalling the bear
– If (one bee) filling the pot is real fast, this may not matter
– If (one bee) filling the pot takes time, then this may be crucial for

performance
– Can pot be filled from far away?

• What if more than one bears?

37.12.2009 Copyright Teemu Kerola 2009

Maximize Parallelism
• All bees concurrently active, no unnecessary

blocking
• Bees compete only when filling up the pot

– Must wake up bear when H portions of honey in
pot

– Must fill up the pot one bee at a time
• Is this important or could we modify specs?
• How big is the mouth of the pot?

– Competing just to update the counter
would be more efficient?

• Is waking up the bear part of critical section?
– What is the real critical section?

47.12.2009 Copyright Teemu Kerola 2009

Why?

Maximize Parallelism (contd)

• Bear wakes up only to eat and only when
pot is full

• Bees blocked (to fill the pot) only
– When bear is eating
– When waiting for their turn to fill the pot

• Or to synchronize with other bees

57.12.2009 Copyright Teemu Kerola 2009

Concurrency Needs
• When is mutex (critical section) needed?

– A bee is filling the pot or the bear is eating

• When is synchronization needed?
– Bees wait for earlier bee to fill the pot

• Each bee may wait before filling the pot
– Bees wake up the bear to eat

• Last (Hth) bee wakes up bear after filling the pot
– Bear lets all bees to resume filling the pot

• Bear allows it after emptying the pot

• When is communication needed?
– Must know when pot is full? Nr portions in pot now?
– What if “honey” would be information in buffer?

67.12.2009 Copyright Teemu Kerola 2009

Environment
• Computational object level

– Bees and bear are threads in one application?
• Threads managed by programming language?
• Threads managed by operating system?

– Bees and bear are processes?
• Communication with progr. language utilities?
• Communication with oper. system utilities?

• System structure
– Shared memory uniprocessor/multiprocessor?
– Distributed system?
– Networked system?

77.12.2009 Copyright Teemu Kerola 2009

Busy Wait or Suspended Wait
• Bear waits a long time for full pot?

– Suspended wait would be better
(unless lots of processors)

• Bees wait for their turn to fill the pot?
– Waiting for turn takes relatively long time

• Earlier bees fill the pot
• Bear eats the honey

– Suspended wait ok
• Bees wait for their turn only to update counters?

– Relatively long time to wait for turn
– Suspended wait ok
– If mutex is only for updating counters (not for honey

fill-up turn, or bear eating), busy wait might be ok

87.12.2009 Copyright Teemu Kerola 2009

Evaluate Solutions
• Does it work correctly?

– Mutex ok, no deadlock, no starvation

• Does it allow for maximum parallelism?
– Minimally small critical sections
– Could bees fill up the jar in parallel?

• Is this optimal solution?
– Overall processing time? Overall communication time?
– Processor utilization? Memory usage?
– Response time? Investments/return ratio?

• Is this solution good for current problem/environment?
– Bees and bear are threads in Java application in

4-processor system running Linux?
– There are 20000 bees, collecting honey takes 15 min, depositing

one portion in pot takes 10 sec, 5000 portions fill the pot, and bear
eats the honey in pot in 10 minutes?

97.12.2009 Copyright Teemu Kerola 2009

107.12.2009 Copyright Teemu Kerola 2009

Solution with Locks

• Can use locks both for mutex and for
synchronization
– Problem: busy wait for bear

• Bear waits a long time for full honey pot
(some bears do not like waiting!)

117.12.2009 Copyright Teemu Kerola 2009

Int portions = 0; # portions in the pot
Lock_var D = 0 = ”open”; # mutex to deposit honey in pot

E = 1 = ”closed”; # permission to eat honey

implem. dependent:
Lock_var D = 1; #open

E = 0; #locked

Solution with Locks (contd)

127.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] () {
while (true) {

collect_honey();
lock (D); # only one bee advances at a time
portions++;
fill_pot();
if (portions == H) unlock (E); # wakeup bear, keep lock

else unlock (D) # let next bee deposit honey
}

}

Int portions = 0; # portions in the pot
Lock_var D = 0; # mutex to deposit honey in pot

E = 1; # permission to eat honey

process bear () {
while (true) {

lock (E); # busy-wait, hopefully OK?
eat_honey();
portions = 0;
unlock (D); # let next bee deposit honey

} }

Discussion A

Semaphore Solution

137.12.2009 Copyright Teemu Kerola 2009

process bee[i=1 to N] {
while (true) {

collect_honey();
into_pot(); # deposit one honey portion into the honey pot
}

}

process bear {
while (true) {

sleep(); # wait until the pot is full
empty_pot(); # eat all the honey
}

}

[Liisa Marttinen]

Semaphore Solution (contd)

147.12.2009 Copyright Teemu Kerola 2009

sem mutex = 1, # mutual exlusion
pot_full = 0; # is the pot full of honey?

int portions; # portions in the pot

procedure into_pot() { # bee deposits one honey portion
P (mutex);
fill_pot(); portions++;
if (portions == H) V (pot_full); # let bear eat honey, pass baton
else V (mutex); # let other bees fill the pot

}

procedure empty_pot() { # bear eats all honey from the pot
eat_all_honey ();
portions=0;
V (mutex); # let bees fill the pot again

}

procedure sleep () {
P (pot_full);

}

Semaphore Solution (combined)

157.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] {
while (true) {

collect_honey();
P (mutex);

fill_pot();
portions++;
if (portions == H)

V (pot_full); # let the bear eat honey, pass mutex baton
else

V (mutex); # let other bees to fill the pot
}

} process bear {
while (true) {

P (pot_full); # wait until the pot is full -- sleep
eat_all_honey(); # -- eat
portions=0;

V (mutex); # let bees start filling the pot again
} }

sem mutex = 1, # mutual exlusion
pot_full = 0; # synchr bear/bees

int portions; # portions in the pot

Discussion B

Monitor Solution
• Use monitor only for mutex and synchronization

– Automatic mutex
– Use of monitor condition variables for synchronization

solution for bees and bear
• What type of signalling semantics is in use?

– E < S < W, i.e., IRR? Assume now no-IRR.

167.12.2009 Copyright Teemu Kerola 2009 [Auvo Häkkinen]

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.into_pot();

}
}

process bear() {
while (true) {
pot.wait_full();
eat_honey();
pot.empty_pot();

}
}

Monitor Solution (contd)

177.12.2009 Copyright Teemu Kerola 2009

monitor pot {
int portions=0; cond pot_full, pot_empty;

procedure into_pot () {
while (portions == H) waitC (pot_empty);
portions++; fill_pot(); # deposit honey in pot
if (portions == H) signalC (pot_full);
}

procedure wait_full () {
if (portions < H) waitC (pot_full);
}

procedure empty_pot () {
portions = 0;
signal_allC (pot_empty) # wake up all waiting bees
}

}

Why “while” and not “if”?
Would “if” work?

What if some other
type (not IRR) of
signalling semantics?

Why “if” and not “while”?
Would “while” work?

All Work Included in Monitor

187.12.2009 Copyright Teemu Kerola 2009

monitor pot {
int portions=0;
cond pot_full, pot_empty;

procedure collect_into_pot() {
collect_honey();
while (portions==H) waitC(pot_empty);
portions=portions+1; fill_pot();
if (portions==H) signalC(pot_full);
}

procedure sleep_and_eat() {
if (portions < H) waitC(pot_full);
eat_honey();
portions=0;
signal_allC(pot_empty)
}

}

What is the problem?

process bear() {
while (true)

pot.sleep_and_eat();
}

process bee [i=1 to N] {
while (true)

pot.collect_into_pot();
}

Which is better?

Better Monitor Solution ?
• Use monitor only for mutex and synchronization

– Do fill_pot and all other real work outside monitor?

197.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.fill_perm();
fill_pot();
pot.fill_done();

}
}

process bear() {
while (true) {
pot.wait_full();
eat_honey();
pot.empty_pot();

}
}

Another Monitor Solution
(only synchronization,
many bees can fill at a time)

207.12.2009 Copyright Teemu Kerola 2009

monitor pot { # no IRR
int fill=0, portions=0; cond pot_full, pot_empty;

procedure fill_perm () {
while (fill+portions == H) waitC (pot_empty);
fill++; # nr of bees with fill permission
}

procedure fill_done () {
fill--; portions++;
if (portions == H) signalC (pot_full);
}

procedure wait_full () {
if (portions < H) waitC (pot_full);
}

procedure empty_pot () {
portions = 0;
signal_allC (pot_empty) # wake up all

} }

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.fill_perm();

fill_pot();
pot.fill_done();

} }

process bear() {
while (true) {

pot.wait_full();
eat_honey();

pot.empty_pot();
} }

Discussion C

Monitor Solution
(only sync,

one bee fills at a time)

217.12.2009 Copyright Teemu Kerola 2009

monitor pot { # no IRR
int fill=0, portions=0; cond pot_full, pot_empty;
boolean bee_filling=false; cond fill_turn;

procedure fill_perm () {
while (fill+portions == H) wait (pot_empty);
fill++;
if (bee_filling) wait (fill_turn);
bee_filling = true;
}

procedure fill_done () {
fill--; portions++; bee_filling = false;
if (portions == H) signal (pot_full);
else signal (fill_turn);
}

procedure wait_full () {
if (portions < H) wait (pot_full);
}

procedure empty_pot () {
portions = 0;
signal_all (pot_empty); # wake up all

} }

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.fill_perm();
fill_pot();
pot.fill_done();

}
}

process bear() {
while (true) {
pot.wait_full();
eat_honey();
pot.empty_pot();

}
}

Simpler monitor
solution

only sync, one bee fills
at a time

227.12.2009 Copyright Teemu Kerola 2009

monitor pot { # no IRR
int portions=0; cond pot_full, fill_turn;
boolean bee_filling=false;

procedure fill_perm () {
while (portions == H or bee_filling)

wait (fill_turn);
portions++;
bee_filling = true;
}

procedure fill_done () {
bee_filling = false;
if (portions == H) signal (pot_full);
else signal (fill_turn);
}

procedure wait_full () {
if (portions < H) wait (pot_full);
}

procedure empty_pot () {
portions = 0;
signal (fill_turn); # wake up one
}

}

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.fill_perm();
fill_pot();
pot.fill_done();

}
}

process bear() {
while (true) {
pot.wait_full();
eat_honey();
pot.empty_pot();

}
}

ADA Protected Object Solution

237.12.2009 Copyright Teemu Kerola 2009

..
private portions := 0
…
protected body pot is

entry into_pot when portions < H is
begin

portions=portions+1; fill_pot()
end deposit_into_pot;

entry wait_full when portions == H is
begin # empty body
end wait_full;

procedure empty_pot is
begin

portions = 0;
end empty_pot;

end pot;

process bee [i=1 to N] {
while (true) {

collect_honey();
pot.into_pot;

}
} # not Ada syntax

process bear() {
while (true) {
pot.wait_full;
eat_honey();
pot.empty_pot;

}
} # not Ada syntax

What if lots of bees (>> H) waiting in into_pot?

How to modify to do fill_pot() in parallel??

Channel Solution
• Processes communicate via messages to/from channels

– Difficult to do in distributed environment
– OK in shared memory systems

• Automatic mutex in message primitives
• Synchronization occurs at message send/receive

– Messages act as tokens
– Messages used for synchronization and communication

• Number of portions in pot is transmitted in messages

247.12.2009 Copyright Teemu Kerola 2009

chan deposit(); # bees receive from this channel
a permission to deposit
and nr of current portions in pot

chan wakeup(); # the bear receives from here
a permission to eat

Channel Solution

257.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] () {
while (true) {

collect_honey ();
receive (deposit_perm, portions); # only one bee advances at a time
portions++; fill_pot (); # deposit one portion
if (portions == H) send (wakeup, dummy); # pot is full, wakeup bear

else send (deposit_perm, portions); # let next bee deposit honey
}

} process bear () {
send (deposit_perm, 0); # let first bee deposit honey

while (true) {
receive (wakeup, dummy);
eat_honey ();
send (deposit_perm, 0); # let next bee deposit honey
}

}

Is it ok to do fill_pot() in distributed fashion?

Message Solution
• Processes communicate via messages to/from

processes
• Bear wakes up with wake-up message to it

– Easy, just one bear
• Messages used only for synchronization or also

for communication?
• How to keep track of honey portions

– Must use messages
• How to send messages to other bees?

– Too many receivers, not practical
– Need msg server

267.12.2009 Copyright Teemu Kerola 2009

Server Solution
• All synchronization problems solved by server
• Server process pot gives turns to bees and bear
• Correct bee must get permission to fill up pot
• Centralized solution, like monitor…

277.12.2009 Copyright Teemu Kerola 2009

chan pot_req (int id), # request from a bee
pot_perm [i =1 to n] (), # permission for each bee
bear_wakeup (), # permission to eat for the bear
bear_done (); # bear finished eating

Server Solution

287.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] () {
while (true) {

collect_honey();
send pot_req(i); # request to deposit
receive pot_perm[i](); # deposit done
fill_pot(); bee needs to do it!

}
}

process bear () {
while(true) {

receive bear_wakeup();
empty_honeypot();
send bear_done();
}

}

process pot () { # server
int id, # bee id
portions=0; # portions in the pot
while (true) {

receive pot_req(id);
portions++;
send pot_perm[id]();
if (portions == H) { # pot is full

send bear_wakeup();
receive bear_done();
portions=0;
}

} }

Who actually deposits
honey in pot?
When?

chan pot_req (int id),
pot_perm [i =1 to n] (),
bear_wakeup (), bear_done ();

Error - ”will be”
Honey might not
be there yet!

Server Solution Comments
• Who actually deposits honey in pot and when?
• How to separate permission to deposit honey before honey

is deposited and waking up the bear after honey is
deposited?

• What if just one request channel and multiple reply
channels?
– Request for turn to deposit, turn to collect, turn to eat,

turn to sleep?
– Replies to bees and bear

297.12.2009 Copyright Teemu Kerola 2009

chan pot_req (int id), # request from a bee
pot_perm [i =1 to n] (), # permission to deposit
bee_honey_in_pot (), # deposit done
bee_can_proceed [i =1 to n] (), # bee can start

collecting again
bear_wakeup (), # permission to eat for bear
bear_done (); # bear finished eating

Correct Server Solution

• ????

307.12.2009 Copyright Teemu Kerola 2009

Rendezvous Solution
• Solution with Rendezvous-server Control_pot

– Accepts all synchronization requests

317.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] {
while (true) {

collect_honey();
call Control_pot.into_pot(); # blocks until accepted
deposit_pot();
call Control_pot.deposit_done();

}
} process bear() {

while (true) {
call Control_pot.sleep();
eat_honey();
call Control_pot.empty_pot()

}
}

Rendezvous Solution (contd)

• Solution with Ada similarly
327.12.2009 Copyright Teemu Kerola 2009

module Control_Pot
op into_pot(), deposit_pot(), sleep(), empty_pot(); # services

body
process Pot {
int portions = 0, deposits=0;
while (true)
in into_pot () and portions+deposits < MAXSIZE deposits++;
[] deposit_done() deposits--; portions++ ;
[] sleep () and portions == MAXSIZE ;
[] empty_pot () and portions == MAXSIZE portions=0;
ni

}
end Control_pot

Is this part needed?

Discussion D

RPC Server Solution (2)

• Distributed system over LAN?

337.12.2009 Copyright Teemu Kerola 2009

process bee [i=1 to N] {
while (true) {

collect_honey();
call Remote_pot.into_pot();

deposit_honey();
call Remote_pot.deposit_done();
}

} process bear {
while (true) {

call Remote_pot.sleep();
eat_honey();

call Remote_pot.empty_pot();
}

}

RPC Server Solution (contd)

347.12.2009 Copyright Teemu Kerola 2009

module Remote_pot
op into_pot(),

sleep(),
empty_pot();

body
int portions;
sem mutex=1

pot_full=0
pot = M;

proc into_pot() {
P(pot);

}

proc sleep () {
P(pot_full);

}

proc empty_pot() {
portions=0;
V(mutex);
for (i=1 to M) V(pot)

}

proc deposit_done() {
P(mutex);
portions++;
if (portions==M)

V(pot_full) # bear can eat
else

V(mutex);
}

Evaluate Your Solution
• Same problem – many solutions – all correct?
• Does it work correctly?
• Does it allow for maximum parallelism?
• Is this optimal solution?
• Is this solution good for current problem/environment?

– 25 000 - 250 000 000 bees,
collecting honey takes 30-60 min,
depositing one portion in pot takes 1-3 mins,
10000-100000 portions fill the pot,
and bear eats the honey in pot in 5-50 minutes?

– You might get another bear next year? What if much more bees?
– What if the pot allows for 100-1000 simultaneous fill-ups?
– Bees and bear are threads in Java application in 4-processor system

running Linux?
– “Honey” is an 80-byte msg to be used by “bear”?

357.12.2009 Copyright Teemu Kerola 2009

Summary
• Specify first your requirements
• What concurrency tools do you have at your

disposal?
• Does your solution match your environment?
• Will some known solution pattern apply here?

– Readers-writers, producers-consumers, bakery?
• Does it work?
• Is it optimal in time/space?
• Does it allow for maximum parallelism?
• Does it minimize waiting?

367.12.2009 Copyright Teemu Kerola 2009

