
Computer Organization II 11.10.2002

Ch 16, Hardwired Control 1

111.10.2002 Copyright Teemu Kerola 2002

Hardwired Control Unit
Ch 16

Micro-operations
Controlling Execution

Hardwired Control

211.10.2002 Copyright Teemu Kerola 2002

What is Control (2)

• So far, we have shown what happens inside 
CPU
– execution of instructions

• opcodes, addressing modes, registers
• I/O & memory interface, interrupts

• Now, we show how CPU controls these 
things that happen
– how to control what gate or circuit should do at 

any given time
• control wires transmit control signals
• control unit decides values for those signals

311.10.2002 Copyright Teemu Kerola 2002

Micro-operations (2)

• Basic operations on which more complex 
instructions are built
– each execution phase (e.g., fetch) consists of one or 

more sequential micro-ops
– each micro-op executed in one clock cycle in some 

subsection of the processor circuitry
– each micro-op specifies what happens in some area 

of cpu circuitry
– system cycle time determined by longest micro-op!

• Many micro-ops (for successive instructions) 
can be executed simultaneously
– if non-conflicting, independent areas of circuitry

Fig. 16.1

(mikro-operaatio)

(Fig. 14.1 [Stal99])

411.10.2002 Copyright Teemu Kerola 2002

Instruction Fetch Cycle (10)

• 4 registers involved
– MAR, MBR, PC, IR

• What happens?

Fig. 12.6

Address of next instruction is in PC
Address (MAR) is placed on address bus
READ command given to memory
Result (from memory) appears on data bus
Data from data bus copied into MBR
PC incremented by 1
New instruction moved from MBR to IR
MBR available for new work

MAR ← (PC)
READ

MBR ← (mem)
PC ← (PC) +1
IR ← (MBR)

micro-ops?

(Fig. 11.7 [Stal99])

511.10.2002 Copyright Teemu Kerola 2002

Instruction Fetch Micro-ops (2)

• 4 micro-ops
– can not change order, 

can do some ops at the 
same time

– s2 must be done after s1
– s3 can be done simultaneously with s2
– s4 can be done 

with s3, but must 
be done after s2

s1: MAR ← (PC), READ
s2: MBR ← (mem)
s3: PC ← (PC) +1
s4: IR ← (MBR)

⇒ Need 3 ticks:

t1: MAR ← (PC)
t2: MBR ← (mem)

PC ← (PC) +1
t3: IR ← (MBR)

implicit
READ

assume: mem read in one cycle
611.10.2002 Copyright Teemu Kerola 2002

Micro-op Grouping (4)

• Must maintain proper 
sequence (semantics)

• No conflicts
– no write to/read from 

with same register 
(set?) at the same time

– each circuitry can be 
used by only one 
micro-op at a time

• E.g., ALU or some bus

t1: MAR ← (PC)
t2: MBR ← (mem)

t2: MBR ← (mem)
t3: IR ← (MBR)

t2: PC ← (PC)  +  1
t3: R1 ← (R1)   +  (MBR)



Computer Organization II 11.10.2002

Ch 16, Hardwired Control 2

711.10.2002 Copyright Teemu Kerola 2002

Micro-op Types (4)

• Transfer data from one reg to another
• Transfer data from reg to external area

– memory
– I/O

• Transfer data from external to register
• ALU or logical operation between registers

811.10.2002 Copyright Teemu Kerola 2002

Indirect Cycle

• Instruction contains address of an operand, 
instead of direct operand address

t1: MAR ← (IRaddress)
t2: MBR ← (mem)
t3: IRaddress ← (MBR)

IR: opcode reg addr

MARMBR

(Replace indirect address
by direct address)

911.10.2002 Copyright Teemu Kerola 2002

Interrupt Cycle
• After execution cycle, test for interrupts
• If interrupt bits on, then

– save PC to memory
– jump to interrupt 

handler
– or, find out first 

correct handler for 
this type of interrupt 
and then jump to that (need more micro-ops)

– context saved by interrupt handler

t1: MBR ← (PC)
t2: MAR ← save-address

PC ← routine-address
t3: mem ← (MBR)

implicit - just wait?

1011.10.2002 Copyright Teemu Kerola 2002

Execute Cycle (4)

• Different for each op-code
ADD R1, X t1: MAR ← (IRaddress)

t2: MBR ← (memory)
t3: R1 ← (R1) + (MBR)

ADD R1, R2, R3 t1: R1 ← (R2) + (R3)

BZER R1, LOOP t1: if ((R1)=0) then 
PC ← (IRaddress)

Can this be done in one cycle?

JMP LOOP t1: PC ← (IRaddress)

Was this updated in indirect cycle?

t1:   ALU1 ← (R2)
ALU2 ← (R3)

t2:   ALUout ← “+”
t3:   R1 ← ALUout

?

1111.10.2002 Copyright Teemu Kerola 2002

BSA MySub

Execute Cycle (contd) (1)

MySub: DC
LOAD …
…..
RET MySub

Return address stored here
1st instruction in MySub+1

t1: MAR ← (IRaddress)
MBR ← (PC)

t2: PC ← (IRaddress)
memory ← (MBR)

t3: PC ← (PC) + 1

1211.10.2002 Copyright Teemu Kerola 2002

Instruction Cycle (3)

• Decomposed to micro-ops
• State machine for processor

– state: execution phase
– sub-state: current group of micro-ops executable in one 

clock cycle (tick)
• In each sub-state the control signals have specific 

values dependent 
– on that sub-state 
– on IR register fields and on flags

• including control signals from the bus
• including values (flags) produced by previous sub-state

Fig. 16.3

Fig. 16.4

(Fig. 14.3 [Stal99])

(Fig. 14.4 [Stal99])



Computer Organization II 11.10.2002

Ch 16, Hardwired Control 3

1311.10.2002 Copyright Teemu Kerola 2002

Control State Machine (2)

• Each state defines current control signal 
values
– determines what happens in next clock cycle

• Current state and current register/flag values 
determine next state

Control execution

Control sequencing

1411.10.2002 Copyright Teemu Kerola 2002

Control Signal Types (3)

• Control data flow from one register to 
another

• Control signals to ALU
– ALU does also all logical ops

• Control signals to memory or I/O devices
– via control bus 

1511.10.2002 Copyright Teemu Kerola 2002

Control Signal Example (4)

• Accumulator architecture
• Control signals for given micro-ops cause

micro-ops to be executed
– setting C2 makes value stored in 

PC to be copied to MAR in next clock cycle
• C2 controls Input Data Strobe for MAR

(see Fig. A.30 for register circuit) 
– setting CR & C5 makes memory perform a 

READ and value in data bus copied to MBR 
in next clock cycle

Fig. 16.5

Table 16.1

(Fig. 14.5 [Stal99])

(Tbl 14.1 [Stal99])

1611.10.2002 Copyright Teemu Kerola 2002

Example: Intel 8085 (5)

• Introduced 1976
• 3, 5, or 6 MHz, no cache
• 8 bit data bus, 16 bit address bus

– multiplexed 
• One 8-bit accumulator

LDA  MyNumber 0x3A 0x10A5 3 bytes

OUT  #2 0x2B 0x02 2 bytes
opcode port

opcode address

Fig. 16.7
(Fig. 14.7 [Stal99])

1711.10.2002 Copyright Teemu Kerola 2002

Example: i8085 (6)

• Instead of complex data path all data 
transfers within CPU go via internal bus
– may not be good approach for superscalar pipelined 

processor - bus should not be bottleneck
• External signals
• Each instruction is 1-5 machine cycles

– one external bus access per machine cycle
• Each machine cycle is 3-5 states 
• Each state is one clock cycle
• Example: OUT instruction

Fig. 16.7

Table 16.2

Fig. 16.9

(Fig. 14.7 [Stal99])

(Tbl 14.2 [Stal99])

(Fig. 14.9 [Stal99])

1811.10.2002 Copyright Teemu Kerola 2002

Hardwired 
Control Logic Implementation (3)

Initial representation:
Finite state

diagram

Sequencing control:
Explicit 
next state
function

Logic representation:
Logic

equations

Implementation: PLA

Programmable 
Logic Array



Computer Organization II 11.10.2002

Ch 16, Hardwired Control 4

1911.10.2002 Copyright Teemu Kerola 2002

Finite State Diagram

1: PCWr, IRWr
ALUOp=Add

Others: 0s

x: PCWrCond
RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA
ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or
x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA
AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype

Ori

beq

0 1 8

10
653

2

4
7

11

2011.10.2002 Copyright Teemu Kerola 2002

Explicit Next State Function

Opcode State Reg

Inputs

O
u
t
p
u
t
s

Control Logic
Multicycle
Datapath

2111.10.2002 Copyright Teemu Kerola 2002

Logic Equations (2)

Next state from current state
– State 0 -> State1
– State 1 -> S2, S6, S8, S10
– State 2 ->__________
– State 3 ->__________
– State 4 ->State 0
– State 5 -> State 0
– State 6 -> State 7
– State 7 -> State 0
– State 8 -> State 0
– State 9-> State 0
– State 10 -> State 11
– State 11 -> State 0

Alternatively, 
prior state & condition
S4, S5, S7, S8, S9, S11 -> State0
_________________ -> State1
_________________ -> State 2
_________________ -> State 3 
_________________ -> State 4

State2 & op = SW  -> State 5
_________________ -> State 6

State 6 -> State 7
_________________ -> State 8

State3 & op = JMP -> State 9
_________________ -> State 10

State 10 -> State 11

2211.10.2002 Copyright Teemu Kerola 2002

Hardwired Control Logic (3)

• Circuitry becomes very big and complex very 
soon
– may be unnecessarily slow
– simpler is smaller, and thus faster

• Many lines (states) exactly or almost similar
• Have methods to find similar lines (states) and 

combine them
– not simple
– save space, may lose in speed
– must be redone after any modifications

2311.10.2002 Copyright Teemu Kerola 2002

http://www.hpmuseum.org/9100cl.jpg

HP 9100 Calculator (1968), 20 kg, 
$5000, 16 regs (data or 14 instructions/reg), 
32Kb ROM, 2208 bit RAM magnetic core memory

Hardwired Control Logic board

-- End of Chapter 16: Hardwired Control  --


