
124.9.2003 Copyright Teemu Kerola 2003

Memory Hierarchy and Cache
Ch 4-5

Memory Hierarchy
Main Memory

Cache
Implementation

224.9.2003 Copyright Teemu Kerola 2003

Teemu’s Cheesecake
Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you
are baking...

tabletable

1 sec1 sec
(cache)(cache)

refridgerefridge--
ratorrator

10 sec10 sec
(memory)(memory)

handhand

0.5 sec0.5 sec
(register)(register) 4 years4 years

(tape)(tape)

Europa Europa
(Jupiter)(Jupiter)

12 days12 days
(disk)(disk)

moonmoon

Fig. 4.1

324.9.2003 Copyright Teemu Kerola 2003

Goal (4)

• I want my memory lightning fast
• I want my memory to be gigantic in size

• Register access viewpoint:
– data access as fast as HW register
– data size as large as memory

• Memory access viewpoint
– data access as fast as memory
– data size as large as disk

cache

HW solution

HW help for
SW solution

virtual
memory

424.9.2003 Copyright Teemu Kerola 2003

Memory Hierarchy (5)

• Most often needed data is kept close
• Access to small data sets can be made fast

– simpler circuits
• Faster is more expensive
• Large can be bigger and cheaper (per byte)

Memory Hierarchy
up: smaller, faster, more expensive,

more frequent access
down: bigger, slower, less expensive,

less frequent access

Fig. 4.1

524.9.2003 Copyright Teemu Kerola 2003

Principle of locality (8)

• In any given time period, memory references
occur only to a small subset of the whole address
space

• The reason why memory hierarchies work
Prob (small data set) = 99%
Prob (the rest) = 1%

Cost (small data set) = 2 µs
Cost (the rest) = 20 µs

(paikallisuus)

Aver cost 99% * 2 µs + 1% * 20 µs = 2.2 µs

• Average cost is close to the cost of small data set
• How to determine data for that small set?
• How to keep track of it?

Fig. 4.2

624.9.2003 Copyright Teemu Kerola 2003

Principle of locality (5)

• In any given time period, memory references
occur only to a small subset of the whole address
space

• Temporal locality: it is likely that a data item
referenced a short time ago will be referenced
again soon

• Spatial locality: it is likely that a data items
close to the one referenced a short time ago will be
referenced soon

(paikallisuus)

(alueellinen paikallisuus)

345 23 71 8 305 63 91 2

(ajallinen paikallisuus)

memory 2511:

724.9.2003 Copyright Teemu Kerola 2003

(Table 4.2 [Stall99])

Memory

• Random access semiconductor memory
– give address & control, read/write data

• ROM, PROMS, FLASH
– system startup memory,

BIOS (Basic Input/Output System)
• load and execute OS at boot

– also random access
• RAM

– “normal” memory accessible by CPU

Table 5.1

824.9.2003 Copyright Teemu Kerola 2003

RAM
• Dynamic RAM, DRAM

– simpler, slower, denser, bigger (bytes per chip)
– main memory?
– periodic refreshing required
– refresh required after read

• Static RAM, SRAM
– more complex (more chip area/byte), faster,

smaller (bytes per chip)
– cache?
– no periodic refreshing needed
– data remains until power is lost

E.g., $0.12 / MB
(year 2001)

E.g., $0.70 / MB (year 2001)

E.g., 60 ns access

E.g., 5 ns access?

924.9.2003 Copyright Teemu Kerola 2003

DRAM Access
• 16 Mb DRAM

– 4 bit data items
– 4M data elements, 2K * 2K square
– Address 22 bits

• row access select (RAS)
• column access select (CAS)
• interleaved on 11 address pins

• Simultaneous access to many 16Mb
memory chips to access larger data items
– Access 8 bit words in parallel? Need 8 chips.

Fig. 5.3

Fig. 5.4 (b)

(Fig. 4.4 [Stal99])

(Fig. 4.5 (b) [Stal99])

Fig. 5.5 (Fig. 4.6 [Stal99])

1024.9.2003 Copyright Teemu Kerola 2003

SDRAM (Synchronous DRAM)
• 16 bits in parallel

– access 4 DRAMs (4 bits each) in parallel
• CPU clock synchronizes also the bus

– not by separate clock for the bus
– CPU knows how longs it takes make a

reference – it can do other work while
waiting

• Faster than plain DRAM
• Current main memory technology

(year 2001)
E.g., $0.11 / MB (year 2001)

1124.9.2003 Copyright Teemu Kerola 2003

RDRAM (RambusDRAM)
• New technology, works with fast memory bus

– expensive

• Faster transfer rate than with SDRAM

• Faster access than SDRAM
• Fast internal Rambus channel (800 MHz)
• Rambus memory controller connects to bus
• Speed slows down with many memory modules

– serially connected on Rambus channel
– not good for servers with 1 GB memory (for now!)

• 5% of memory chips (year 2000), 12% (2005)?

E.g., 1.6 GB/sec vs. 200 MB/sec (?)

E.g., 38 ns vs. 44 ns

E.g., $0.40 / MB (year 2001)?

1224.9.2003 Copyright Teemu Kerola 2003

Flash memory
• Original invention

– Fujio Masuoka, Toshiba Corp., 1984
– non-volatile, data remains with power off
– slow to write (”program”)

• Nand-Flash, 1987
– Fujio Masuoka
– lowers the wiring per bit to one-eighth that of the Flash

Memory's

1324.9.2003 Copyright Teemu Kerola 2003

Intel ETOX Flash
• Intel, 1997
• A single transistor with the addition of an electrically

isolated polysilicon floating gate capable of storing charge
(electrons)

• Negatively charged electrons
act as a barrier between the
control gate and the
floating gate.

• Depending on the flow
through the floating gate
(more or less than 50%)
it has value 1 or 0.

• Read/Write data
in small blocks

http://developer.intel.com/technology/
itj/q41997/articles/art_1.htm

use high voltage to write,
and ”Fowler-Nordheim
Tunneling” to clear

1424.9.2003 Copyright Teemu Kerola 2003

Intel StrataFlash

• Flash cell is analog, not
digital storage

• Use different charge
levels to store 2 bits (or
more!) of data in each
flash cell

http://developer.intel.com/technology/
itj/q41997/articles/art_1.htm

1524.9.2003 Copyright Teemu Kerola 2003

Flash
Implementations

• BIOS (PC’s, phones,
other hand-held devices....)

• Toshiba SmartMedia, 2-256 MB
• Sony Memory Stick, 2-1024 MB
• CompactFlash, 8-512 MB
• PlayStation II Memory Card, 8 MB
• MMC - MultiMedia Card, 32-128 MB
• Fuji XD Picture Card 32-256 MB
• Hand-held phone memories

1624.9.2003 Copyright Teemu Kerola 2003

1724.9.2003 Copyright Teemu Kerola 2003

(Fig. 4.13 & 4.16 [Stal99])

Cache Memory
• Problem: how can I make my (main)

memory as fast as my registers?
• Answer: (processor) cache

– keep most probably referenced data in fast
cache close to processor, and rest of it in
memory

• much smaller than main memory
• (much) more expensive (per byte) than memory
• most of data accesses only to cache

(välimuisti)

Fig. 4.3 & 4.6
90% 99%?

1824.9.2003 Copyright Teemu Kerola 2003

(Fig. 4.15 [Stall99])

(Fig. 4.14 [Stall99])

Memory references with cache (5)

• Data is in cache?

Fig. 4.5

Hit

MissData is only in memory?
Read it to cache
CPU waits until data available

Fig. 4.4

Many blocks (cache lines) help for temporal locality
many different data items in cache

Large blocks help for spatial locality
lots of “nearby” data available

Fixed cache size?
Select “many” or “large”? (can not have both!)

1924.9.2003 Copyright Teemu Kerola 2003

Cache Features (6)

• Size
• Mapping function

– how to find data in cache?
• Replacement algorithm

– which block to remove to make
room for a new block?

• Write policy
– how to handle writes?

• Line size (block size)?
• Number of caches? Types of caches?

(poistoalgoritmi)

(kirjoituspolitiikka)

(kuvausfunktio)

(rivin tai lohkon koko)

2024.9.2003 Copyright Teemu Kerola 2003

Cache Size

• Bigger is better in general
• Bigger may be slower

– lots of gates, cumulative gate delay?
• Too big might be too slow!

– Help: 2- or 3-level caches 1KW (4 KB),
128MW (512 MB)?

L1 L2 L3regs

cpu chip

mem

2124.9.2003 Copyright Teemu Kerola 2003

Mapping: Memory Address (3)

• Alpha AXP issues 34 bit memory addresses
– Use block address to locate block in cache
– With cache hit, block offset is controlling a multiplexer

to select right word

block address
block
offset

29 bits 5

34 bit address
(byte address)

Cache line size
= block size
= 25 = 32 bytes
= 4 words

Number of possible blocks
in physical address space
= 229 = 512M blocks

max physical
address space
= 234 = 16GB

2224.9.2003 Copyright Teemu Kerola 2003

Mapping (2)

• Given a memory block address,
– is that block in cache?
– where is it there?

• Three solution methods
– direct mappings
– fully associative mapping
– set associative mapping

2324.9.2003 Copyright Teemu Kerola 2003

Direct Mapping (6)

• Every block has only one possible location
(cache line number) in cache
– determined by index field bits

tag index
block
offset

21 5

34 bit address
(byte address)

Cache line size
= block size
= 25 = 32 bytes

Fixed addr in cache, cache size
= 28 = 256 blocks = 8 KB

Unique bits that
are different for
each block, stored
in each cache line (Fig. 4.17 [Stall99])

Fig. 4.7 (s = 29, r = 8, w = 5)

Block address
(in memory)

(suora kuvaus)

Fig. 7.10 [PaHe98]

8

2424.9.2003 Copyright Teemu Kerola 2003

Direct Mapping
Example (5)

tag index
2 3 3

offset
8 bit address
(byte address)

Cache line size
= block size = 23

= 8 bytes = 64 bits
tag data
2 64

000:
001:
010:
011:
100:
101:
110:
111:

ReadW I2, 0xA4

01 54 A7 00 91 23 66 32 11
11 77 55 55 66 66 22 44 22
01 65 43 21 98 76 65 43 32

0xA4 = 1010 0100

10 100 100

?
=

No match

Read new memory block from memory
address 0xA0=1010 0000 to cache location 100,
update tag, and then continue with data access

Word =
4 bytes
(here)

2524.9.2003 Copyright Teemu Kerola 2003

Direct Mapping Example 2 (5)

tag index
2 3 3

offset

tag data
2 64

000:
001:
010:
011:
100:
101:
110:
111:

ReadW I2, 0xB4

01 54 A7 00 91 23 66 32 11
11 77 55 55 66 66 22 44 22
01 65 43 21 98 76 65 43 32

0xB4 = 1011 0100

10 110 100

?
= Match

10 00 11 22 33 44 55 66 77

Start
with
4th
byte

2624.9.2003 Copyright Teemu Kerola 2003

Fully Associative
Mapping (5)

• Every block can be in any cache line
– tag must be complete block address

(täysin assosia-
tiivinen kuvaus)

tag
block
offset

29 5

34 bit address
(byte address)

Cache line size
= block size
= 25 = 32 bytes

Cache line can be anywhere
Cache size can be any number
of blocksUnique bits that

are different for
each block

(Fig. 4.19 [Stal99])
Fig. 4.9 (s = 29, w = 5)

Block address
(in memory)

2724.9.2003 Copyright Teemu Kerola 2003

Fully Associative Example (5)

tag
5 3

offset

tag data
5 64

000:
001:
010:
011:
100:
101:
110:
111:

ReadW I2, 0xB4

54 A7 00 91 23 66 32 11
77 55 55 66 66 22 44 22
65 43 21 98 76 65 43 32

0xA4 = 1011 0100

10110 100

12 34 56 78 9A 01 23 45

00 11 22 33 44 55 66 77
87 54 32 89 65 A1 B2 00

87 54 00 89 65 A1 B2 00
87 00 32 89 65 A1 B2 0010111

00011
10100
00111
10100
10110
10011

11011

=? =? =? =?
=? =? =? =?

cache

or

Match

2824.9.2003 Copyright Teemu Kerola 2003

Fully Associative Mapping
• Lots of circuits

– tag fields are long - wasted space!
– each cache line tag must be compared

simultaneously with the memory address tag
• lots of wires
• lots of comparison circuits

• Final comparison “or” has large gate delay
– did any of these 64 comparisons match?

– how about 262144 comparisons?
• ⇒ Can use it only for small caches

Large surface
area on chip

2 log(64) = 8 levels of binary or-gates

18 levels?

2924.9.2003 Copyright Teemu Kerola 2003

Set Associative Mapping (6)

• With set size k=2, every block has 2 possible
locations in cache
– Possible location of block is

determined by set (index) field bits

tag set (index)
block
offset

22 7 5

34 bit address
(byte address)

Cache line size
= block size
= 25 = 32 bytes

Nr of sets v=27=128 blocks = 4 KBUnique bits that are
different for each block,
stored in each cache line

(Fig. 4.21 [Stall99])

Fig. 4.11 (confusing, complex?)
(E.g., k=2, s = 29, d = 7, w = 5)

(joukkoassosiatiivinen kuvaus)

Fig. 5.8 [HePa96]

Total cache size vk=2*4 KB= 8 KB

Fig. 7.19 [PaHe98]

3024.9.2003 Copyright Teemu Kerola 2003

Two definitions for ”Set” in
”Set Associative Mapping”

• Term ”set” is the set of all possible locations where
referenced memory block can be
– Field ”set” of memory address determines this set
– [Stal03], [Stal99]

• Cache memory is split into multiple ”sets”, and the
referenced memory block can be in only one location in
each ”set”
– Field ”index” of memory address determines possible location of

referenced block in each ”set”
– [HePa96], [PaHe98]

3124.9.2003 Copyright Teemu Kerola 2003

Two definitions for ”Set” in
”Set Associative Mapping”

Memory
block i
can be in
any of
these
locations

16 blocks set 3

set 0

…

set 0

set 15 4 blocks

set 1

set i

index i:

Stallings ”set” Hennessy-Patterson ”set”

3224.9.2003 Copyright Teemu Kerola 2003

Stallings’
”sets”
(Hennessy’s
line order)

2-way Set Associative Cache
tag data
3 64

00:
01:
10:
11:
00:
01:
10:
11:

54 A7 00 91 23 66 32 11
77 55 55 66 66 22 44 22
65 43 21 98 76 65 43 32
00 11 22 33 44 55 66 77

12 34 56 78 9A 01 23 45

87 54 00 89 65 A1 B2 00
87 00 32 89 65 A1 B2 00

87 54 32 89 65 A1 B2 00

101
011
101
101

100
110
110

111

1st lines
in each set

2nd lines
in each set

Set 0
Set 1
Set 2
Set 3

• 3 bit tag
• set size 2 ⇒
2 cache lines per set

• 4 sets ⇒ 2 bits for
set index

• 8 byte cache lines
⇒ 3 bits for byte address in cache line

3324.9.2003 Copyright Teemu Kerola 2003

Set Associative Example (6)

tag set
3 2 3

offset

tag data
3 64

00:
01:
10:
11:
00:
01:
10:
11:

ReadW I2, 0xB4

54 A7 00 91 23 66 32 11
77 55 55 66 66 22 44 22
65 43 21 98 76 65 43 32

0xB4 = 1011 0100

101 10 100

00 11 22 33 44 55 66 77

12 34 56 78 9A 01 23 45

87 54 00 89 65 A1 B2 00
87 00 32 89 65 A1 B2 00

87 54 32 89 65 A1 B2 00

101
011
101
101

100
110
110

111

1st lines
in each set

=?
=?or

Match

cache

2nd lines
in each set

3424.9.2003 Copyright Teemu Kerola 2003

Set Associative Mapping
• Set associative cache with set size 2

= 2-way cache
• Degree of associativity v?

– v large?
• More data items (v) in one set
• less “collisions” within set
• final comparison (matching tags?) gate delay?

– v maximum (nr of cache lines)
⇒ fully associative mapping

– v minimum (1) ⇒ direct mapping

Usually 2

Fig. 7.16 [PaHe98]

3524.9.2003 Copyright Teemu Kerola 2003

Replacement Algorithm
• Which cache block (line) to remove to make

room for new block from memory?
• Direct mapping case trivial
• First-In-First-Out (FIFO)
• Least-Frequently-Used (LFU)
• Random
• Which one is best?

– Chip area?
– Fast? Easy to implement?

3624.9.2003 Copyright Teemu Kerola 2003

Write Policy
• How to handle writes to memory?
• Write through

– each write goes always to memory
– each write is a cache miss!

• Write back
– write cache block to memory only when it is

replaced in cache
– memory may have stale (old) data
– cache coherence problem (välimuistin

yhteneväisyysongelma)

(läpikirjoittava)

(lopuksi kirjoittava
takaisin kirjoittava?)

3724.9.2003 Copyright Teemu Kerola 2003

Line size
• How big cache line?
• Optimise for temporal or spatial locality?

– bigger cache line is better for spatial locality
– More cache lines is better for temporal locality

• Data references and code references behave in a
different way

• Best size varies with program or
program phase

• 2-8 words?
– word = 1 float??

3824.9.2003 Copyright Teemu Kerola 2003

(Fig. 4.23 [Stal99])

Number/types of Caches (3)

• One cache too large for best results
• Unified vs. split cache

– same cache for data and code, or not?
– split cache: can optimise structure separately

for data and code
• Multiple levels of caches

– L1 - same chip as CPU
– L2 - same package or chip as CPU

• older systems: same board

– L3 - same board as CPU

(yhdistetty, erilliset)

Fig. 4.13

3924.9.2003 Copyright Teemu Kerola 2003

“The Pentium® Pro processor's unique multi-cavity
chip package brings L2 cache memory closer to the CPU,
delivering higher performance for business-critical
computing needs.“

http://www.intel.com/procs/servers/feature/cache/unique.htm

-- End of Ch. 4-5: Cache Memory --

