Virtual Memory (VM)
Ch 8.3

Memory Management
Address Translation

Teemu’s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you
are baking...

] Europa
refridge- (Jupiter)
hand rator moon

T

Paging N\ | ' |
Hardware Support \/ \/
VM and Cache 0.5 sec 1sec 10 sec =~ —ir=
e (cache) 12days | 4 years
(register (memo) sk | (ape)
irtuaalimuisti
Virtual Memory (msalimiist) Other Problems Often Solved

* Problem: How can [make my (main)
memory as big as my disk drive?
* Answer: Virtual memory
— keep only most probably referenced data in
memory, and rest of it in disk

« disk is much bigger and slower than memory

« address in machine instruction may be different
than memory address

« need to have efficient address mapping
» most of references are for data in memory

— joint solution with HW & SW

18.9.2003 Copyright Teemu Kerola 2003 3

Wlth VM 3)

+ If you must want to have many processes in
memory at the same time, how do you keep
track of memory usage?

* How do you prevent one process from
touching another process’ memory areas?

» What if a process needs more memory than
we have?

18.9.2003 Copyright Teemu Kerola 2003 4

Memory Management Problem @

* How much memory for each process?

— is it fixed amount during the process run time
or can it vary during the run time?

* Where should that memory be?
— in a continuous or discontinuous area?

— is the location the same during the run time
or can it vary dynamically during the run time?

* How is that memory managed?
» How is that memory referenced?

18.9.2003 Copyright Teemu Kerola 2003 5

Partitioning ¢
» How much physical memory for each

process? —
(staattiset tai

Static (fixed) partitioning | kiinteét partitiot)
— amount of physical memory determined at
process creation time

— continuous memory allocation for partition
* Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
varies in time

* due to process requirements (of this process)

« due to system (I.e., other processes) requirements
18.9.2003 Copyright Teemu Kerola 2003 6

Static Partitioning
Equal size - give everybody th
same amount

— fixed size - big enough for everybody

* too much for most

— need more? Can not run!

Unequal size

— sizes predetermined (Fig 7.14 () [Stl59])

Variable size Fig. 8.14 (Fig. 7.15 [Stal99])

— Size determined at process creation

time
18.9.2003 Copyright Teemu Kerola 2003 7

Fragmentation

* Internal fragmentation |(siséinen pirstoutuminen)
— unused memory inside allocated block

— e.g., equal size fixed memory

partitions (Fig. 7.14 (a) [Stal99])
» External fragmentation | (ulkoinen pirstoutuminen)
— enough free memory, but it is splintered as

many un-allocatable blocks

— e.g., unequal size partitions | (Fig 7.14 (b) [Stal99])
or dynamic fixed size (variable
size) memory partitions

18.9.2003 Copyright Teemu Kerola 2003 8

Dynamic Partitioning ¢,

* Process must be able to run with varying
amounts of main memory
— all of memory space is not in physical memory
— need some minimum amount of memory

* New process?

— reduce amount of memory for some (lower
priority) processes

Not enough memory for some process?

— reduce amount of memory for some (lower
priority) processes

— kick (swap) out some (lower priority) process

18.9.2003 Copyright Teemu Kerola 2003 9

Address Mappmg o) (osoitteen muunnos)

Pascal, Java:

= Symbolic Assembler:

while () / loop: LOAD RI,Y

X=Y+Z; ADD RI,Z

Textual machine language: STORE R1, X
1312: LOAD R1, 2510 || Execution time:

ADD R1, 2514
STORE R1,2600| 101312: LOAD R1,102510
ADD R1,102514
ADD R1,102600

> (real, actual!)

18.9.2003 Copyright Teemu Kerola 2003 10

(addresses relative to 0)

Address Mapping o

logical address
Textual machine language:
1312: LOAD R1, 2510 +100000?
Execution time:
101312: LOAD R1,102510 or
101312: LOAD R1,2510\ 27?
physical address (constant?) logical addr

- Want: RI «— Mem[102510] or Mem|[2510]?
- Who makes the mapping? When?

18.9.2003 Copyright Teemu Kerola 2003 11

Address Mapping o

» At program load time
— loader (lataaja)

— static address binding (staattinen
. . osoitteiden sidonta)
* At program execution time

—cpu
— with every instruction

— dynamic address binding (dynaaminen

: osoitteiden sidonta)
— swapping

— virtual memory

18.9.2003 Copyright Teemu Kerola 2003 12

Swapplng @) (heittovaihto)
» Keep all memory areas for all running and
ready-to-run processes in memory

* New process

— find continuous memory partition and swap the
process in

* Not enough memory?
— Swap some (lower priority) process out

* Some times can swap in only (runnable)
portions of one process

* Address map: add base address

18.9.2003 Copyright Teemu Kerola 2003 13

VM Implementation
* Methods

— base and limit registers

— segmentation

— paging

— segmented paging, multilevel paging
» Hardware support

— MMU - Memory Management Unit

* part of processor
« varies with different methods
— Sets limits on what types of virtual memory
(methods) can be implemented using this HW

18.9.2003 Copyright Teemu Kerola 2003 14

Base and Limit Registers o

» Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
 code, data, shared data, etc
* by default, or given explicitly in each mem. ref.
* BASE and LIMIT registers in MMU
— all addresses logical in machine instructions
— address mapping for address (x):
« check: x <LIMIT
* physical address: BASE+x

18.9.2003 Copyright Teemu Kerola 2003 15

Segmentation w)

* Process address space divided into
(relatively large) logical segments
— code, data, shared data, large table, etc
— object, module, etc

» Each logical segment is allocated its own
continuous physical memory segment

* Memory address has two fields

011001 1010110000
segment byte offset (lisdys)

18.9.2003 Copyright Teemu Kerola 2003 16

Segment. Address Mapping

* Segment table
— maps segment id to physical segment base
address and to segment size
* Physical address
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset
* Problem: variable size segments

— External fragmentation, lots of memory

management
18.9.2003 Copyright Teemu Kerola 2003 17

Paging
* Process address space divided into
(relatively small) equal size pages
— address space division is not based on logical

entities, only on fixed size chunks designed for
efficient implementation

» Each page is allocated its own physical
page frame in memory
— any page frame will do!

* Internal fragmentation

* Memory addresses have two fields

01100110 10110000
page byte offset | (lisdys)

18.9.2003 Copyright Teemu Kerola 2003 18

Paged Address Mapping

 Page table
— maps page nr to physical page frame
* Physical address

— find entry in page table (large array in memory)
— get page frame, l.e., page address
— physical address: page address + byte offset

18.9.2003 Copyright Teemu Kerola 2003 19

Paged Address Translation «

Virtual address Access type

1 (30

Page table
re gister Page table (;heck access
rights
0: |0 _rwx 65, re {rw}
rl‘drw)’@) (virt. mem.
Check for 2: P 55 used to
valid entry o]]

/ memory

Valid entry 14 30| Protection

Access rights / problem)

Physical address
Page frame

18.9.2003 Copyright Teemu Kerola 2003 20

Stop execution

Page Fault (12)

Tnitiate reading Virtual address Access type

page 1 from disk 1 (30 1'

Page table et Check
Schedule next register Page table ' Etc access
process to run rights

0: [0 1wx re {rw}

WO interrup (oA
Page 1 read, Check for | 2 1 rw 55
update page table | yalid entry:
Make orig. not valid! 14 30
process -
ready-to-run Schedule orig. process again, Physical address

at the same instruction

18.9.2003 Copyright Teemu Kerola 2003

0

Paging ¢

* Physical memory partitioning

— discontinuos areas Ly Gl

(Fig. 7.16 [Stal99])
 Page tables

— located in memory

— can be very big, and each process has its own
« entry for each page in address space
* Inverted page table

— entry for each page in memory | (Fig. 7.18 [Stal99])
— less space, more complex hashed lod Fig: 8.17

18.9.2003 Copyright Teemu Kerola 2003 22

Address Translation

* MMU does it for every memory access
— code, data
— more than once per machine instruction!
» Can not access page tables in memory every
time - it would be too slow!
— too high cost to pay for virtual memory?
* MMU has a “cache” of most T
recent address translations o
— TLB - Translation Lookaside Buffer [taulukko)
—99.9% hit ratio?

18.9.2003 Copyright Teemu Kerola 2003 23

Translation Lookaside Buffer ¢

Fig. 8.18 |(Fig. 7.19 [Stal99])
e “Hit” on TLB?

— address translation is in TLB - real fast
* “Miss” on TLB?

— must read page table entry from memory
— takes time

— cpu waits idle until it is done
« Just like normal cache, but for address mapping
— implemented just like cache
— instead of cache line data have physical address
— split TLB? 1 or 2 levels?

18.9.2003 Copyright Teemu Kerola 2003 24

Memory Organisation ¢

Memory
CPU

memy

18.9.2003 Copyright Teemu Kerola 2003 25

Physical address Example N
0x00B6CSEG 046 16-entry TLB
page offset
ReadW 12, OXABOOC7DA tag page frame
28 32
. 0000:
tag index
28 4
AB00C7D
Correct 0111:
address
mapping
found r 1l r 1
? - 1010: | AB00C7D || [00B6CSES |
18.9.2003 Copyright Teemu Kerola 2003 26

TLB and Cache ?3)

* Usually address translation ﬁr
and then cache lookup

¢ Cache can be based on virtual addresses

— can do TLB and cache lookup
simultaneously

— faster
» Implementations are very similar
— TLB often fully associative

« optimised for temporal locality (of course!)

18.9.2003 Copyright Teemu Kerola 2003 27

TLB vs. Cache

TLB Miss Cache Miss

* CPU waits idling * CPU waits idling

* HW implementation | |« HW implementation
* Invisible to process * Invisible to process

 Data is copied from * Data is copied from
memory to TLB memory to cache
— from page table data » from page data
— from cache?
* Delay 4 (or 2 or 8?)
clock cycles

Delay 4 (or 2 or 8?)
clock cycles

18.9.2003 Copyright Teemu Kerola 2003 28

TLB Misses vs. Page Faults

TLB Miss Page Fault
» CPU waits idling * Process is suspended
and cpu executes

some other process
* HW implementation | |+ SW implementation
 Data is copied from Data is copied from

memory to TLB disk to memory
(or from cache) ||+ Delay

* Delay 1-4 (?) 30 ms (?)

clock cycles [T

18.9.2003 Copyright Teemu Kerola 2003 29

Virtual Memory Policies ¢

* Fetch policy (noutopolitiikka)
— demand paging: fetch page only when needed st time
— working set: keep all needed pages in memory

— prefetch: guess and start fetch early

* Placement policy (sijoituspolitiikka)
— any frame for paged VM
* Replacement policy (poistopolitiikka)
— local, consider pages just for this process for
replacement
— global, consider also pages for all other processes
— dirty pages must be written to disk (likaiset,
muutetut)

18.9.2003 Copyright Teemu Kerola 2003 30

Page Replacement Policy o
* Implemented in SW

Page Replacement Policies

imal (sivunpoisto-
* OPT - optima algoritmit)
* HW support * NRU - not recently used
— extra bits in each page frame ¢ FIFO - first in first out
_ . [ON]
— M =Modified — 2nd chance Virtual Memory
— R = Referenced — clock Management
* set (to 1) with each reference to frame « Random
« reset (to 0) every now and then
— special (privileged) instruction from OS * LRU - least recently used
— automatically (E.g., every 10 ms) — complex counter needed
— Other counters? * NFU - not frequently used
18.9.2003 Copyright Teemu Kerola 2003 31 18.9.2003 Copyright Teemu Kerola 2003 32
Thrashing Trashing (ruuhkautuminen)
* Too high mpl
& P CPU 1.0 ¢
* Too few page frames per process utilization K
— E.g., only 1000? 2000? (kiyttosuhde) CPU 100% busy
. . swapping processes!
— Less than its working set Higher mpl No real work is done!
* Once a process is scheduled, it will = less physical
very soon reference a page not in memory (moniajoaste)
! 1 . 1 :
memory per process! " 5 s
— page fault

— process switch

18.9.2003 Copyright Teemu Kerola 2003 33

mpl (multiprogramming level)
- How much memory per process?
- How much memory is needed?

18.9.2003 Copyright Teemu Kerola 2003 34

Page Fault Frequency (PFF)
Dynamic Memory Allocation

* Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages
» At every page fault
— T=Time since previous page fault
—if T<L then give process more memory
« 1 page frame? 4 page frames?
—if U<T then take some memory away
« 1 page frame?
—if L<T<U then keep current allocation

18.9.2003 Copyright Teemu Kerola 2003 35

Multi-level paging/segmentation

« Segmented paging 01101 01100110 10110000
. . segm page byte offset
— address logically split
into segments and then physically into pages
— protection may be at segment level
* Multiple level paging
— large address space may result in very large page tables
— solution: multiple levels of page tables

Fig. 5.43 [HePa96]

— VM implementation may not utilize them all
— VM implementation may seem to use more levels than
there are (e.g., Linux 3 levels on 2-level Intel arch.)
« nr of actual levels in mem. management macros

18.9.2003 Copyright Teemu Kerola 2003 36

18.9.2003

VM Summary

How to partition memory?

— Static or dynamic size (amount)

How to allocate memory

— Static or dynamic location

Address mapping

HW help (TLB) for address translation
— before or concurrently with cache access?
VM policies

— fetch, placement, replacement

Copyright Teemu Kerola 2003

-- End of Chapter 8.3:Virtual Memory --

Fig. 5.47 from
Hennessy-Patterson,

Computer Architecture : 32 entry
Alpha AXP 21064 | / i IS
memory hierarchy 8 KB,
LA direct
Fully assoc, 12 entry mapped,
instruction TLB : 256 line
8 KB, direct mappe (each 32B)
256 line (each 32B) data cache
instruction cache :
! 1|5 g main memo
2 MB, 64K line (each 32B) . 5= | e i
direct mapped, unifieds ? -
write-back L2 cache F]

paging disk (dma)

18.9.2003 Copyright Teemu Kerola 2003

