
Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 1

125.9.2003 Copyright Teemu Kerola 2003

Instruction Sets
Ch 10-11

Characteristics
Operands

Operations
Addressing

Instruction Formats

225.9.2003 Copyright Teemu Kerola 2003

(Fig. 9.1 [Stal99])

Instruction Set

• Collection of instructions that CPU
understands

• Only interface to CPU from outside
• CPU executes a program ⇔ CPU executes

given instructions “one at a time”
– fetch-execute cycle

(käskykanta)

Fig. 10.1

325.9.2003 Copyright Teemu Kerola 2003

Machine Instruction

• Opcode
– What should I do? Math? Move? Jump?

• Source operand references
– Where is the data to work on? Reg? Memory?

• Result operand reference
– Where should I put the result? Reg? Memory?

• Next instruction reference
– Where is the next instruction? Default? Jump?

(Fig. 9.1 [Stal99])Fig. 10.1

425.9.2003 Copyright Teemu Kerola 2003

Instruction Representation

• Bit presentation:
– binary program

• Assembly language
– symbolic program

• Symbolic assembly language

0x2465A080

LOAD R1, 0x6678

LOAD R1,TotalSum

Virtual or
physical
address?

Fig. 10.11
Symbolic value?

Symbolic opcode

Opcode, operands

(Fig. 9.11 [Stal99])

525.9.2003 Copyright Teemu Kerola 2003

Instruction Set Design (5)

• Operation types
– How many? What type? Simple? Complex?

• Data types
– Just a few? Many?

• Instruction format
– Fixed length? Varying length? Nr of operands?

• Number of addressable registers
– Too many ⇒ too long instructions?
– Too few ⇒ too hard to optimise code?

• Addressing
– What modes to use to address data and when?

(operaatiotyyppi)

(tietotyyppi)

(käskyn muoto)

(tiedon osoitus)

625.9.2003 Copyright Teemu Kerola 2003

Good Instruction Set (2)

• Good target for compiler
– Easy to compile?
– Possible to compile code that runs fast?
– Easy to compile code that runs fast?

• Allows fast execution of programs
– How many meaningless instructions per

second? MIPS? GFLOPS?
– How fast does my program run?

• Solve linear system of 1000 variables?
• Set of data base queries?
• Connect a phone call in reasonable time?

Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 2

725.9.2003 Copyright Teemu Kerola 2003

Good Instruction Set (contd) (5)

• Beautiful & Aesthetic
– Orthogonal

• Simple, no special registers, no special cases, any
data type or addressing mode can be used with any
instruction

– Complete
• Lots of operations, good for all applications

– Regular
• Specific instruction field has always same meaning

– Streamlined
• Easy to define what resources are used

(ortogonaalinen)

(täydellinen)

(säännöllinen)

(virtaviivainen)

825.9.2003 Copyright Teemu Kerola 2003

Good Instruction Set (contd) (2)

• Easy to implement
– 18 months vs. 36 months?
– Who will be 1st in market? Who will get

development monies back and who will not?
• Scalability

– Speed up clock speed 10X, does it work?
– Double the address length, does design extend?

• E.g., 32 bits ⇒ 64 bits ⇒ 128 bits?

(skaalautuva)

925.9.2003 Copyright Teemu Kerola 2003

Number of Operands? (4)

• 3?
– Normal case now

• 2?
– 1 operand and result the same

• 1?
– 1 operand and result in implicit accumulator

(register)
• 0?

– All operands and
result in implicit stack

ADD A,B,C

ADD R1, R2, R3 r1 ← r2+r3

mem(A) ← mem(B) + mem(C)

ADD R1, R2 r1 ← r1+r2

ADD A acc ← acc+mem(A)

ADD 54
33
22
...

87
22
...

1025.9.2003 Copyright Teemu Kerola 2003

Instruction Set Architecture (ISA)
Basic Classes

• Accumulator architecture
• Stack architecture
• General Purpose Register (GPR) architecture

– only one type of registers, good for all
– 2 or 3 operands

• Load/Store architecture
– only load/store instructions

access memory
– 3 operand ALU instructions

LOAD R3, C
LOAD R2,B
ADD R1,R2,R3
STORE R1,A

1125.9.2003 Copyright Teemu Kerola 2003

Big vs. Little Endian (3)

• How are multi-byte values stored

0x1200:

0x1200 0x1201 0x1202 0x1203
Word address

Byte addressesStore 0x11223344 ??

0x1200 0x1201 0x1202 0x1203

0x11 0x22 0x33 0x44Big-Endian: most sign.
byte has smallest address

0x44 0x33 0x22 0x11Little-Endian: least sign.
byte has smallest address

1225.9.2003 Copyright Teemu Kerola 2003

Big vs. Little Endian
• Address of multi-byte data items is the same

in both representations
• Only internal byte order varies
• Must decide one way or the other

– Math circuits must know which presentation
used

• Little-Endian may be faster ….
– Must consider when moving data via network

• Power-PC: bi-endian - both modes at use
– can change it per process basis
– kernel mode selected separately

Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 3

1325.9.2003 Copyright Teemu Kerola 2003

Data (Operands, Result) Location
• Register

– close, fast
– limited number of them
– need to load/store values

from/to memory
sometimes (often)

• register allocation problem
• big problem! 50% of compiler time to decide

• Memory
– far away
– only possibility for large data sets

• vectors, arrays, sets, tables, objects, ...

acc r2, r8

f4, f15

0x345670

register stack

memory stack
(hw regs have
mem addresses)

memory

cache?

1425.9.2003 Copyright Teemu Kerola 2003

Aligned Data (4)

• Aligned data
– faster memory access

• 32-bit data loaded as one memory load

• Non-aligned data
– saves mem, more bus traffic!

• 32-bit non-aligned data requires 2 memory loads
(each 4 bytes) and combining data into one 32-bit
data item

2 byte (16-bit) half-word has byte address: 0010…10010
4 byte (32-bit) word has byte address: 0010…10100
8 byte (64-bit) doubleword has byte address: 0010…11000

11 22 33 44

11 22

33 44

1525.9.2003 Copyright Teemu Kerola 2003

Data Types (8)

• Address
• Integer
• Floating point
• Decimal
• Character
• String
• Logical data
• Vector, array, record, ….

16b, 32b, 64b, 128b?

16b, 32b, 64b?

32b, 64b, 82b?

18 digits (9 bytes) packed decimal?

1 byte = 8b IRA = ASCII, EBCDIC?

finite, arbitrary length? Length denotation?

1 bit (Boolean value, bit field)?

1625.9.2003 Copyright Teemu Kerola 2003

Size of Operand
• 1 word, 32 bits
• 2 words, 64 bits
• 4 words, 128 bits
• 1 byte (8 bits)
• 2 bytes
• 1 bit

int, float, addr

double float, addr

addr

char

short int

logical values

1725.9.2003 Copyright Teemu Kerola 2003

Example: Pentium II Data Types
• General data types

– 8-bit byte
– 16-bit word
– 32-bit doubleword
– 64-bit quadword

• Not aligned
• Little Endian
• Specific data types
• Numerical data types

Table 10.2

Figure 10.4

(Tbl. 9.2 [Stal99])

(Fig. 9.4 [Stal99])
(for Pentium II)

1825.9.2003 Copyright Teemu Kerola 2003

Operation Types
• Data transfer

– CPU ↔ memory
• ALU operations

– INT, FLOAT, BOOLEAN, SHIFT, CONVERSION

• I/O
– read from device, start I/O operation

• Transfer of control
– jump, branch, call, return, IRET, NOP

• System control
– HALT, SYSENTER, SYSEXIT, …
– CPUID returns current HW configuration

• size of L1 & L2 caches, etc

Table 10.3

Table 10.4

(Tbl 9.3 [Stal99])

(Tbl 9.4 [Stal99])

Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 4

1925.9.2003 Copyright Teemu Kerola 2003

Data References (2)

• Where is data?
– in memory

• global data, stack, heap, in code area?
– in registers
– in instruction itself

• How to refer to data?
– various addressing modes
– multi-phase data access

• how is data location determined (addressing mode)
• compute data address (register? effective address?)
• access data

in stack? no considered

2025.9.2003 Copyright Teemu Kerola 2003

2125.9.2003 Copyright Teemu Kerola 2003

Addressing Modes (Ch 11)

• Immediate
• Direct
• Indirect
• Register
• Register Indirect

• Displacement
• Stack

Fig. 11.1

Data in instruction
Memory address of data in instruction

Address of memory address of data
in instruction (pointer)

Register has memory
address (pointer)

Addr = reg value + constant

Data in register (best case?)

Data in stack pointed by some register

Table. 11.1

(Fig 10.1 [Stal99])

(Tbl 10.1 [Stal99])

2225.9.2003 Copyright Teemu Kerola 2003

Displacement Address
• Effective address = (R1) + A

• Constant is often small (8 bits, 16 bits?)
• Many uses

– PC relative
– Base register address
– Array index
– Record field
– Stack references

Contents of R1 Constant from instruction

JUMP -40(PC)
CALL Summation(BX)

ADDF F2, F2, Table(R5)
MUL F4, F6, Salary(R8)

STORE F2, -4(FP)

2325.9.2003 Copyright Teemu Kerola 2003

More Addressing Modes
• Autoincrement

• Autodecrement

• Autoincrement deferred

• Scaled

EA = (R), R ← (R) + S

EA = Mem(R), R ← (R) + S

R ← (R) - S, EA = (R)

size of
operand

EA = A + (Rj) + (Ri) * S

E.g., CurrIndex = i++;

E.g., Sum = Sum + (*ptrX++);

E.g., CurrIndex = --i;

E.g., double X;
X = Tbl[i][j];

register value

2425.9.2003 Copyright Teemu Kerola 2003

Pentium II Addressing Modes
• Immediate

– 1, 2, 4 bytes
• Register operand

– 1, 2, 4, 8 byte registers
– not all registers with every instruction

• Operands in Memory
– compute effective address and combine with

segment register to get linear address (virtual
address)

Fig. 11.2

Table 11.2

(Fig 10.2 [Stal99])

(Tbl 10.2 [Stal99])

Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 5

2525.9.2003 Copyright Teemu Kerola 2003

Instruction Format (4)

• How to represent instructions in memory?
• How long instruction

– Descriptive or dense? Code size?
• Fast to load?

– In many parts?
– One operand description at a time?

• Fast to parse (I.e., split into logical
components)?
– All instruction same size & same format?
– Very few formats?

2625.9.2003 Copyright Teemu Kerola 2003

Instruction Format (contd) (3)

• How many addressing modes?
– Fewer is better, but harder to compile to

• How many operands?
– 3 gives you more flexibility, but takes more

space
• How many registers?

– 16 regs → need 4 bits to name it
– 256 regs → need 8 bits to name it
– Need at least 16-32 for easy register allocation
– How many registers, that can be referenced in

one instruction vs. referenced overall?

2725.9.2003 Copyright Teemu Kerola 2003

Instruction Format (contd) (3)

• How many register sets?
– A way to use more registers without forcing

long instructions for naming them
– One register set for each subroutine call?
– One for indexing, one for data?

• Address range, number of bits in
displacement
– more is better, but it takes space

• Address granularity
– byte is better, but word address is shorter

2825.9.2003 Copyright Teemu Kerola 2003

Pentium Instruction Set (5)

• CISC - Complex Instruction Set Computer
• At most one memory address
• “Everything” is optional
• “Nothing” is fixed
• Difficult to parse

– all latter fields and their interpretation depend
on earlier fields

Fig. 11.8 (Fig 10.8 [Stal99])

2925.9.2003 Copyright Teemu Kerola 2003

Pentium Instruction
Prefix Bytes (4)

• Instruction prefix (optional)
– LOCK - exclusive use of shared memory
– REP - repeat instruction for string characters

• Segment override (optional)
– override default segment register
– default is implicit, no need to store it every instruction

• Address size (optional)
– use the other (16 or 32 bit) address size

• Operand size (optional)
– use the other (16 or 32 bit) operand size

(Fig 10.8 (a)[Stal99])

Fig. 11.8

3025.9.2003 Copyright Teemu Kerola 2003

Pentium Instruction Fields (3)

• Opcode
– specific bit for byte size data

• Mod r/m (optional)
– data in reg (8) or in mem?
– which addressing mode of 24?
– can also specify opcode further for some opcodes

• SIB (optional) – Scale/Index/Base
– extra field needed for some addressing modes
– scale for scaled indexing
– index register
– base register

(Fig 10.8 (a)[Stal99])

Fig. 11.8

Computer Organization II 25.9.2003

Chapters 10-11, Instruction Sets 6

3125.9.2003 Copyright Teemu Kerola 2003

Pentium Instruction Fields
(contd) (2)

• Displacement (optional)
– for certain addressing modes
– 1, 2, or 4 bytes

• Immediate (optional)
– for certain addressing modes
– 1, 2, or 4 bytes

(Fig 10.8 (a)[Stal99])

Fig. 11.8

3225.9.2003 Copyright Teemu Kerola 2003

PowerPC Instruction Format (7)

• RISC - Reduced Instruction Set Computer
• Fixed length, just a few formats
• Only 2 addressing modes for data
• Only load/store instructions access memory
• 32 general purpose registers can be used

everywhere
• Fixed data size

– no string ops
• Simple branches

– CR-field determines which compare result to use
– L-bit determines whether a subroutine call
– A-bit determines if branch is absolute or PC-relative

Fig. 11.9
(Fig 10.9 [Stal99])

3325.9.2003 Copyright Teemu Kerola 2003

-- End of Chapters 10-11: Instruction Sets --

(Hennnessy-Patterson, Computer Architecture, 2nd Ed, 1996)

