CPU Structure and Function
Ch 12

General Organisation
Registers
Instruction Cycle
Pipelining
Branch Prediction
Interrupts

25.9.2003 Copyright Teemu Kerola 2003 1

General CPU Organization
- ALU

— does all real work

Fig. 12.1 | (Fig. 11.1 [Stal99)) |

* Registers Fig. 12.2 | (Fig. 11.2 [Stal99)) |
— data stored here

* Internal CPU Bus

e Control More in Chapters 16-17 | (Ch 14-15 [Stal99])

— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit is doing at any given clock cycle

25.9.2003 Copyright Teemu Kerola 2003 2

25.9.2003

Register Organisation

Registers make up CPU work space

User visible registers ADD RI1,R2,R3
— accessible directly via instructions

Control and status registers BNeq Loop

— may be accessible indirectly via instructions

— may be accessible only internally 'HW exception

Internal latches for temporary storage
during instruction execution

— E.g., ALU operand either from constant in
instruction or from machine register

Copyright Teemu Kerola 2003 3

25.9.2003

User Visible Registers «

Varies from one architecture to another
General purpose registers (GPR)

— Data, address, index, PC, condition,
Data registers

— Int, FP, Double, Index
Address registers

Segment and stack pointers

— only privileged instruction can write?

Condition codes
— result of some previous ALU operation

Copyright Teemu Kerola 2003 4

Control and Status Registers
. PC

— next instruction (not current!)
— part of process state
IR, Instruction (Decoding) Register | Fig. 12.7
— current instruction | (Fig. 11.7[Stal99]) |
* MAR, Memory Address Register
— current memory address
 MBR, Memory Buffer Register
— current data to/from memory
* PSW, Program Status Word
— what is allowed? What is going on?
— part of process state

25.9.2003 Copyright Teemu Kerola 2003 5

PSW - Program Status Word ¢

« State info from latest ALU-op
— Sign, zero?
— Carry (for multiword ALU ops)?
— Overflow?

Interrupts that are enabled/disabled?

* Pending interrupts?

» CPU execution mode (supervisor, user)?
« Stack pointer, page table pointer?

* I/O registers?

25.9.2003 Copyright Teemu Kerola 2003 6

Instruction Cycle « (i L33

 Basic cycle with interrupt handling

* Indirect cycle Figs 12.4-5 | (Fig. 1156 [st199]) |

e Data Flow Figs 12.6-8 | (Fig. 11.7-9 [St199]) |
— CPU, Bus, Memory

e Data Path Fig 16.5 | (Fig. 14.5 [Stal99]) |

— CPU’s “internal data bus” or
“data mesh”

— All computation is data transformations
occurring on the data path

— Control signals determine data flow & action for
each clock cycle

Fig 3.1 [HePa96]

25.9.2003 Copyright Teemu Kerola 2003 7

Pipeline Example (Tiukuhihina)

* Laundry Example (David A. Patterson)

* Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

* Washer takes 30 minutes &=

* Dryer takes 40 minutes

* “Folder” takes 20 minutes .

25.9.2003 Copyright Teemu Kerola 2003 8

Sequential Laundry

Mid-
6PM 7 8 9 10 11 night
|
| Time
—t
— 30 40 20 30 40 20 30 40 20 30 40 20
T = a Time for one load T
z OUAF Latency (viive?)
k . | 1.5 hours per load |
SPAf
(o) — . | 0.67 loads per hour |
Q ? o 7. Throughput
e = -
P S5k,
+ Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take?
25.9.2003 Copyright Teemu Kerola 2003 9

Pipelined Laundry o

6 PM 7 8 9 10
|
| Time
e
—] 30 ﬂ'o 40 40 40 20 Time for one load
T a Latency
2 e 7 X | 90 minutes per load |
k ? () 7’ | 1.15 loads per hour |
o = . Throughput
g ? OAF Average speed
e = »
H =Lt Max speed?
1.5 load per hour
* Pipelined laundry takes 3.5 hours for 4 loads }

» At best case, laundry is completed every 40 minutes
25.9.2003 Copyright Teemu Kerola 2003 10

Pipelining Lessons «

* Pipelining doesn’t help 6PM 7 8 9

Time

latency of single task, but
it helps throughput of
the entire workload

* Pipeline rate limited by
slowest pipeline stage

» Multiple tasks operating
simultaneously

« Potential speedup
= maximum possible speedup (nopeutus)
= Number pipe stages

25.9.2003 Copyright Teemu Kerola 2003 11

Pipelining Lessons o)

» Unbalanced lengths of pipe | 6PM 7 8 9

Time

stages reduces speedup
* May need more resources

— Enough electrical current
to run both washer and
dryer simultaneously?

— Need to have at least
2 people present all
the time?

* Time to “fill” pipeline and fill
time to “drain” it reduces drain
speedup

25.9.2003 Copyright Teemu Kerola 2003 12

2-stage Instruction Execution

Pipeline Fig. 12.9

(Fig. 11.10 [Stal99]) |

Good: instruction pre-fetch at the same time
as execution of previous instruction

Bad: execution phase is o

longer, L.e., fetch stage | | |
1s sometimes idle

Bad: Sometimes (jump, branch) wrong
instruction is fetched

— every 6™ instruction?
Not enough parallelism = more stages?

25.9.2003 Copyright Teemu Kerola 2003 13

Another Possible
Instruction Execution Pipeline

FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

EI - Execute Instruction

WO - Write operand (result) to memory

Fig. 12.10 | (Fig. 1111 [Stal99]) |

25.9.2003 Copyright Teemu Kerola 2003 14

Pipeline Speedup)

T . . 9%6 . .
No pipeline, 9 instructions » 54 time units

(Fig. 11.11 [Stal99]) |

[
Fig. 12.10
6 stage pipeline, 9 instructions ——— 14 time units

Speedup = LM€ald = 54/14=3.86 <6!
Time, oy, (nopeutus)
» Not every instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
— unused stage = CPU idle (execution “bubble”)

25.9.2003 Copyright Teemu Kerola 2003 15

Pipeline Execution Time ¢

» Time to execute one instruction , I.e., latency may
be longer than for non-pipelined machine
— extra latches to store intermediate results

» Time to execute 1000 instructions (seconds) is
shorter (better) than that for non-pipelined
machine, I.e., throughput (instructions per second)
for pipelined machine is better (bigger) than that
for non-pipelined machine

— parallel actions speed-up overall work load

* Is this good or bad? Why?

25.9.2003 Copyright Teemu Kerola 2003 16

Pipeline Speedup Problems

» Some stages are shorter than the others
» Dependencies between instructions

— control dependency
* E.g., conditional branch decision know only after EI

stage
Fig. 12.11 | (Fig. 1112 [stal99]) |
Fig. 12.12-13 | (Fig. 11.13 [Stal99)) |
25.9.2003 Copyright Teemu Kerola 2003 17

Pipeline Speedup Problems ¢,

Fig. 12.11 | Fig. 1112 [S@l99) | value known

» Dependencies between fafter El stage
instructions i
— data dependency MUL R1,R2,R3
* One instruction depends LOAD R6,ArrB(R1)
on data produced by 1
some earlier instruction value needed ¥
— structural dependency in CO stage
* Many instructions STORE R1,VarX o

need the same resource

at the same time ADD R2,R3,VarY

MUL R3,R4,R5 ™.
T FO

I
memory bus use
25.9.2003 Copyright Teemu Kerola 2003 18

* memory bus, ALU, ...

CYCle Tlme 3) overhead?

r=max[r,|[+d =7, +d >>d

1max gate delay in stage
(min) cycle time
delay in latches between stages
(= clock pulse, or clock cycle time)
gate delay in stage i

» Cycle time is the same for all stages
— time (in clock pulses) to execute the stage

» Each stage takes one cycle time to execute

» Longest stage determines min cycle time
— max MHz rate for system clock

25.9.2003 Copyright Teemu Kerola 2003 19

Pipeline Speedup o

n instructions, k stages
n instructions, k stages / T = stage delay = cycle time
Time essimistic because of
T, = nkr (DSSimiste

not pipelined: assuming that each stage
would still have t cycle time)

tme o To=lk+(n-Df

pipelined:
k cycles until 1 cycle for
Ist instruction each of the rest
completes (n-1) instructions

25.9.2003 Copyright Teemu Kerola 2003 20

Pipeline Speedup o

n instructions, k stages
n instructions, k stages / 1 = stage delay = cycle time
Time essimistic because of
T =nkr

not pipelined: assuming that each stage
would still have t cycle time)

gii}r)relfined: T;C = [k + (n - 1)]2-

Speedup Tl nkt nk
with

k stages: e Tk - [k+(n—1)]z' - [k+(n_1)]

Fig. 12.14 | (Fig. 11.14 [stal99]) |

25.9.2003 Copyright Teemu Kerola 2003 21

Branch Problem Solutions
* Delayed Branch

— compiler places some useful instructions
(1 or more!) after branch (or jump) instructions

— these instructions are almost completely
executed when branch decision is known

* execute them always! Fig. 13.7
* hopefully useful work (Fig. 12.7 [Stal99]) |
* o/w NO-OP

— less actual work lost
— can be difficult to do

25.9.2003 Copyright Teemu Kerola 2003 22

Branch Probl. Solutions (contd) «

» Multiple instruction streams

— execute speculatively in both directions

* Problem: we do not know the branch target
address early!

— if one direction splits, continue each way again
— lots of hardware

* speculative results (registers!), control
— speculative instructions may delay real work

* bus & register contention?

* Need multiple ALUs?

— need to be able to cancel not-taken instruction
streams in pipeline

25.9.2003 Copyright Teemu Kerola 2003 23

Branch Probl. Solutions (contd) ¢

* Prefetch Branch Target IBM 360/91 (1967)

— prefetch just branch target instruction
— do not execute it, I.e., do only FI stage
— if branch take, no need to wait for memory

» Loop Buffer

— keep n most recently fetched instructions in
high speed buffer inside CPU

— works for small loops (at most # instructions)

25.9.2003 Copyright Teemu Kerola 2003 24

Branch Probl. Solutions (contd) «

» Static Branch Prediction
— guess (intelligently) which way branch will go
— static prediction: all taken or all not taken

— static prediction based on opcode

* E.g., because BLE instruction is usually at the end
of loop, guess “taken” for all BLE instructions

25.9.2003 Copyright Teemu Kerola 2003 25

Branch Probl. Solutions (contd) ¢

« Dynamic branch prediction

— based on previous time this instruction was
executed

—need a CPU “cache” of addresses of branch
instructions, and taken/not taken information
* 1 bit
— end of loop always wrong twice!
— extension: prediction based on two previous
time executions of that branch instruction
* need more space (2 bits) Fig. 12.17

(Fig. 11.16 [Stal99])

25.9.2003 Copyright Teemu Kerola 2003 26

Branch Address Prediction g

* It is not enough to know whether branch is
taken or not

* Must know also branch address to fetch
target instruction

* Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU “cache” for each branch

25.9.2003 Copyright Teemu Kerola 2003 27

Branch History Table

e Cached PowerPC 620

— entries only for most recent branches
* Branch instruction address, or tag bits for it
* Branch taken prediction bits (2?)

» Target address (from previous time) or complete
target instruction?

 Why cached

— expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction
+ Index/tag bits of branch instruction address

25.9.2003 Copyright Teemu Kerola 2003 28

CPU Example: PowerPC

» User Visible Registers | Fig. 12.23 [Fig.

1122 [Stal99]) |

— 32 general purpose regs, each 64 bits

» Exception reg (XER), 32 bits

— 32 FP regs, each 64 bits

* FP status & control (FPSCR), 32 bits
— branch processing unit registers

» Condition, 32 bits
— 8 fields, each 4 bits

— identity given in instructions

* Link reg, 64 bits
— E.g., return address
» Count regs, 64 bits
—E.g., loop counter

25.9.2003 Copyright Teemu Kerola 2003

Fig. 12.24a |(Fig. 11.23a) |

Table 12.3

(Tbl. 11.3)

Fig. 12.24b | (Fig. 11.23b)

Table 12.4

(Tbl. 11.4)

29

CPU Example: PowerPC

* Interrupts

— cause
* system condition or event
* instruction

25.9.2003 Copyright Teemu Kerola 2003

Table 12.5

(Fig. 11.5 [Stal99]) |

30

CPU Example: PowerPC

(TbL. 11.6 [Stal99]) |
» Machine State Register, 64 bits Table 12.6

— bit 48: external (I/O) interrupts enabled?
— bit 49: privileged state or not
— bits 52&55: which FP interrupts enabled?
— bit 59: data address translation on/off
— bit 63: big/little endian mode

» Save/Restore Regs SRRO and SRR1

— temporary data needed for interrupt handling

25.9.2003 Copyright Teemu Kerola 2003 31

Power PC Interrupt Invocation

(TbL. 11.6 [Stal99]) |
e Save return PC to SRRO Table 12.6

— current or next instruction at the time of interrupt
Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR 1

Copy fixed new value into MSR
— different for each interrupt
— address translation off, disable interrupts
» Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

25.9.2003 Copyright Teemu Kerola 2003 32

Power PC Interrupt Return

(TbL. 11.6 [Stal99)]) |
Table 12.6

* Return From Interrupt (rf1) instruction
— privileged

* Rebuild original MSR from SRR1

» Copy return address from SRRO to PC

25.9.2003 Copyright Teemu Kerola 2003 33

-- End of Chapter 12: CPU Structure --

ﬁFl Edit Document View

M & olm aaF S stage pipelined version of datapath (Fig. 6. 12)

j
o
M
u
x
1

EX/MEM MEMAWE

el Hb L] (patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

25.9.2003 Copyright Teemu Kerola 2003 34

