RISC Architecture
Ch 13

Some History
Instruction Usage
Characteristics
Large Register Files
Register Allocation
Optimization
RISC vs. CISC

6.10.2003 Copyright Teemu Kerola 2003 19

Original Ideas Behind CISC

(CISC = Complex Instruction Set Computer)

* Make it easy target for compiler

— small semantic gap between HLL source code
and machine language representation

— good at the time when compiler technology big
problem

— make it easier to design new, more complex
languages

* Do things in HW, not in SW

— addressing mode for 2D array reference?

6.10.2003 Copyright Teemu Kerola 2003 20

Occamvs Razor @ (Occamin partaveitsi)

"Entia non sunt multiplicanda praeter necessitatem"
("Entities should not be multiplied more than necessary")
William Of Occam (1300-1349), English monk, philosopher

|

"It is vain to do with more that which can be done with less."

s

"I find that this really applies to ExtremeProgramming.’
JosephPelrine

« The simple case is usually the most frequent and
the easiest to optimise!

* Do simple, fast things in hardware and be sure the
rest can be handled correctly in software

6.10.2003 Copyright Teemu Kerola 2003

0

RISC Approach
(RISC = Reduced Instruction Set Computer)

» Optimize for execution speed, instead of ease of
compilation
— compilers are good, let them do the hard work
— compilers can be made even better (easily?)
— do most important things very well in HW
(e.g., 1-dim array reference or record reference) and
the rest in SW (e.g., 3-dim. array references)
« What are most important things?

— those that consume most of the time
(in current systems?)

— is this a moving target?

6.10.2003 Copyright Teemu Kerola 2003 22

Amdahl’s Law ¢

Speedup due to an enhancement is proportional to the
fraction of the time (in the original system) that the
enhancement can be used

Floating point instructions improved to run 2X; but only

10% of actual instructions are FP?
No speedup

ExTime,, = ExTime,yx (0.9*1.0 + .1*0.5)
= 0.95 x ExTime, 4
ExTime
Speedup, o = od -1 - 4053
ExTime,,, 0.95 w2 m

6.10.2003 Copyright Teemu Kerola 2003 23

Where is Time Spent? )

* Dynamic behaviour Table 13.2 | (Tbl 12.2 [Stal99])

— execution time behaviour

* Which operations are most common?
* Which types of operands are most

common? Table 13.3 | (Tbl 12.3 [Stal99])
* Which addressing modes are most
common?

¢ Which cases are most common? jitabloptRs
(Tbl 12.4 [Stal99])

— E.g., number of subroutine parameters?

¢ What is the case with current machines?

6.10.2003 Copyright Teemu Kerola 2003 24




Original Ideas Behind RISC ¢

* Very large set of registers

— more registers than can be addressed in any single
machine instruction?

— compilers can do good job in register allocation

* Very simple and small instruction set is faster
— instruction pipeline is easy to optimise

» Economics

— Simple to implement
= quickly to market = beat competition
= recover development costs = stay in business

— Smaller chips are cheaper!

6.10.2003 Copyright Teemu Kerola 2003 25

CISC Architecture «

» Large and complex instruction sets
— direct implementation of HLL statements
* case statement?
« array or record reference?
* May be targeted to specific high level
language E.g., 432 and Ada
— may not be so good for others | microJava, JEM?

* Many addressing modes
* Many - - - -
char string, float, int, leading separate string,

data numeric string, packed decimal string, string,
types trailing numeric string, variable length bit field

Vax11/780

6.10.2003 Copyright Teemu Kerola 2003 26

Large Register File

* Overlapping register windows

— fixed max nr (6?) of subroutine parameters
— fixed max nr of local variables
— function return values are directly accessible to
calling routine in temporary registers
* no copying needed
* Le., when possible, use registers instead of
stack for subroutine implementation
— o/w use stack in memory in normal fashion

6.10.2003 Copyright Teemu Kerola 2003 27

Problems with
Large Register Files

Fig. 13.2
* What if run out of register sets? (Fig. 12.2 [Stal99))

— save & restore values from memory (stack)

— hopefully not very common
« call stacks are usually not very deep!
« find out from studies what is enough usually

* Global variables
— store them always in memory?
— use another, separate register file?

6.10.2003 Copyright Teemu Kerola 2003 28

Register Files vs. Cache o

¢ Would it be better to use the same real
estate (chip area) as cache?

— register files have better locality | Table 13.5
— caches are there anyway (Tbl. 12.5 [Stal99])

— caches solve global variable problem (which
globals to keep in registers) naturally

* no compiler help needed Fig. 13.3

— accessing register files is faster [(Fig 12.3 [Swl99])
 Third way to use the space for register

files: register renaming

— see next lecture on superscalar architecture

6.10.2003 Copyright Teemu Kerola 2003 29

Register Allocation ¢

* Goal: Prob(operand in register) = high

» Symbolic register: any quantity that could
be in register

* Allocate symbolic regs to real regs

— if some symbolic regs are not used in same time
intervals, then they can be assigned to the same
real regs

— use graph colouring problem to solve reg
allocation problem

6.10.2003 Copyright Teemu Kerola 2003 30




Graph Colouring Problem
 Given a graph with connected nodes, assign
n colours so that no neighbouring node has

the same colour

— topology

— NP complete problem (see course on Design
and Analysis of Algorithms) (OhLaPe)

« Application to register allocation |Fig. 13.4
— node = symbolic register (Fig. 12.4 [Stal99])

— connecting line: simultaneous usage

— no connecting line: can allocate symbolic
registers to same physical register

— n colors = n registers
6.10.2003 Copyright Teemu Kerola 2003 31

How Many Registers Needed?

» Usually 32 enough (per register window!)
— more = longer register address in instruction
— more = no real gain in performance

* Less than 16?
— Register allocation becomes difficult

— not enough registers
= store more symbolic registers in memory
= slower execution

6.10.2003 Copyright Teemu Kerola 2003 32

RISC Architecture

» Complete one or more instructions each
cycle (each instr. is still many cycles!)
— read reg operands, do ALU, store reg result
— all instructions are simple instructions

» Register to register operations
— load-store architecture

* Simple addressing modes
— easy to compute effective address

» Simple instruction formats
— easy to load and parse instructions
— fixed length

6.10.2003 Copyright Teemu Kerola 2003 33

RISC vs. CISC

+ Fixed instruction length (32 bits)
* Very few addressing modes
* No indirect addressing
* Load-store architecture
— only load/store instructions access memory
* At most one operand in memory (load or store)
* Aligned data

+ At least 32 addressable registers Table 13.8
. (Tbl. 12.8 [Stal99])
» Atleast 16 FP registers

6.10.2003 Copyright Teemu Kerola 2003 34

RISC & CISC United?

Pentium II, CISC architecture
+ Each complex CISC instruction translated during
execution (in CPU) into multiple fixed length 118
bit micro-operations (uop)
— 1-4 uops/IA-32 (32 bit Intel Architecture) instruction
* Lower level implementation is RISC, working
with RISC micro-ops
Best of both worlds?
* Could CPU area/time be better spent without this
translation?
— Who wants to try? Transmeta Corporation?
— Why? Why not?

6.10.2003 Copyright Teemu Kerola 2003 35

RISC & CISC United? o)

Crusoe (by Transmeta) — emulate CISC

— CISC architecture (IA-32, IA-64, Java?) visible to
outside

+ Each complex CISC instruction translated just
before execution (in separate JIT translation with
possibly optimized code generation) into multiple
fixed length simple micro-operations

— translation in SW, not in HW like with Pentium

* Lower level implementation is RISC, working

with RISC micro-ops
— VLIW (very long instruction word, 128 bits)
* 4 uops/instruction (lL.e., 4 atoms/molecule)

6.10.2003 Copyright Teemu Kerola 2003 36




6.10.2003

-- End of Chapter 13: History and RISC --

50 years

Copyright Teemu Kerola 2003




