== 1A-64 General Organizatior

.+ Predication, Speculatior
Software Pipelining

Example: Itaniun

Pentium 4 H'
Crusoe General Architecture
Emulated Precise Exception:

16.10.2003 Copyright Teemu Kerola 2003

General Organization

EPIC - Explicit Parallel Instruction Computing

— parallelism visible at instruction level, not ”’secrectly
implement 1n processor

* new 1nstruction stream semantics

29

— compiler prevents many ’hazards™ (dependency
problems), hardware can depend on it

VLIW (Very Long Instruction Word)

* Branch predication — many speculative execution
tracks

* Speculate on memory data loads Fig 15.1

16.10.2003 Copyright Teemu Kerola 2003

IA-64 General Organization

128 64-bit (+ Not a Thing bit) registers

— 1nteger, logical, general purpose

128 82-bit registers ?1)-
— floating point (IEEE double extended)

— graphics

64 1-bit predicate registers Fig 15.1

8 64-bit branch registers

Slide 9 [Lamb00]

.@;“'ﬁ : *oy 16.10.2003 Copyright Teemu Kerola 2003

Instruction Format

Slide 8 [Lamb00]

 Instruction (41 bits)

— operation & predicates
— up to 6 instruction executions in parallel

 Instruction bundle (128 bits)

— three instructions & template Tbl 15.3
— smallest unit to fetch instructions from memory

e Instruction group
— machine instructions that could be i1ssued 1n parallel

Fig 15.2

— end of group marked with ”’;;” in symbolic assembly
language code

16.10.2003 Copyright Teemu Kerola 2003

Predicated Execution

e Execute each branch Fig 15.3 (a)

— 1f-then-else gives two predicates, and each path will
advance with its own predicate

* Predicate values known only after branch
instruction completes

e Discard "wrong” path, commit “’right” path

— known always before

'a:r Tamgmray 16.10.2003 Copyright Teemu Kerola 2003

Speculative Loading, I.¢.,
Control Speculation

 Start loading from memory in advance so that data
1s available earlier

— load instruction ”hoisted” earlier in code, before some
branch instruction

— 1nterrupts are delayed (via NaT bit in register), and
handled only at the time when they would have been
handled normally

b

. 16.10.2003 Copyright Teemu Kerola 2003

Fig 15.3 (b)

Slides 27, 28
[LambO00]

Data Speculation [Slide 26 [Lambo0]

Start loading from memory in advance so that date
1s available earlier

— load instruction "hoisted” earlier in code, before a store
instruction that might alter just that memory location

— Advanced Load Address Table (ALAT, special
hardware) keeps track of data speculation addresses

— each store will clear target address in ALAT (if any)

— at original load instruction time, a new load is initiated
if ALAT entry was cleared Slide 31 [Lamb00]

.

16.10.2003 Copyright Teemu Kerola 2003

Slides 29-30
[LambO00]

[A-64 Register Set [Figls7

» 128 general purpose regs (stacked, rotated)

Tbl 15.5

» 128 floating point regs (rotated)
* 64 predicate regs

* 8 branch regs

* instruction pointer (bundle address)

Slides 15-17 [Lamb00]

16.10.2003 Copyright Teemu Kerola 2003

Software Pipelining

e Unwrap loops in hardware, so that multiple
iterations are done in parallel code p. 559

— code 1s not unrolled, but action is | code p. 560

— each 1teration done with different registers

(automatic register renaming) Slide 25 [Lamb00]
— beginning and end of loop handled as
special cases (with predicates)

— each 1teration execution 1s spread enough to make room
for ILP Fig 15.6

— loop branches are replaced with special loop
terminating instructions that control sw pipelining

rime
25

i

“Tﬁl
b
it

— why 1s this called software pipelining?

:l.-‘i 3

i

b <
EEN

16.10.2003 Copyright Teemu Kerola 2003

1

11'%:: 16.10.2003 Copyright Teemu Kerola 2003

Itanitum Slide 40 [Lamb00]

e Istimplementation of IA-64 architecture

* ”Simpler” than conventional superscalar
— no reservation stations, reorder buffers
— no large renamed register set for architecture registers
— no dependency issue logic
— dependencies solved by compiler, and
explicitly solved in code
* Very large memory address space

— explicit control over memory hierarchies

— explicit memory op fences

Slides 10-12 [Lamb00]

16.10.2003 Copyright Teemu Kerola 2003 1

[tanium

* Powerful cache hierarchy
— split L1: 16KB + 16KB, 4-way set assoc, 32B lines
— unified L2: 96KB, 6-way set assoc, 64B lines
— off-chip unified L3: 4MB, 4-way set assoc

 TLB hierarchy Slide 42 [Lamb00]
— 1nstruction TLB: 64 entry full assoc
— data L1 TLB: 32 entry direct assoc
— data L2 TLB: 96 entry full assoc

— Hardware Page Walker — use mem hierarchy to locate
address mapping

e 10-stage in-order pipeline [Slides 43-44 [LambO0]

16.10.2003 Copyright Teemu Kerola 2003 1

[tanitum 2

» Upgraded cache hierarchy
— split L1: 16KB + 16KB, 4-way set assoc, 64B lines
— unified L2: 256KB, 8-way set assoc, 128B lines
— on-chip unified L3: 3MB, 12-way set assoc

 TLB hierarchy
— 1nstruction L1 TLB: 32 entry full assoc
— 1nstruction L2 TLB: 128 entry full assoc
— data L1 TLB: 32 entry full assoc
— data L2 TLB: 128 entry full assoc

16.10.2003 Copyright Teemu Kerola 2003

[tanitum 2

e Max 6 issues per cycle

— 11 1ssue ports

e Many functional units, all fully pipelined
— 6 general purpose ALU’s
— 4 data cache memory ports
— 6 multimedia FU’s
— 4 FPU’s

— 3 branch units

» Perfect loop prediction

* Lots of branch prediction hints 1n code

16.10.2003 Copyright Teemu Kerola 2003

[A-64 Summary

 Parallel semantics for ISA (Instr Set Arch)
* Lots of explicit ILP (Instr Level Parallelism)
e Memory hierarchy (cache) controls in ISA

 Memory synchronization primitives in ISA

— normal access temporal locality hint (E.g., ifetch.tl)
suggests to keep data in L1D, L2, and L3

— less important hint (E.g., Fpload.ntl) suggests to keep
data only in L2 and L3.

16.10.2003 Copyright Teemu Kerola 2003

[A-64 Summary (contd)

* Lots of speculative work, that may be wasted

— predicated execution

— miss-prediction costs mostly avoided

— branch prediction hints in ISA

— load speculation: ”hoist” loads above branch or store

« Large visible register set — no hidden rename regs
— automatic stack frame save/restore

 HW-controlled software pipelining

16.10.2003 Copyright Teemu Kerola 2003

16.10.2003 Copyright Teemu Kerola 2003

Pentium 4 HT

 HT — Hyper-threading
» 2 logical processors in one physical prosessor
* OS sees 1t as symmetric 2-processor system

e Use wait cycles to run the other thread
— memory accesses (cache miss)
— dependencies, branch miss-predictions

« Utilize usually 1dle int-unit, when float unit in use
e 3.06 GHz + 24%(?)

— GHz numbers alone are not so important
« 20 stage pipeline
« Fall 2003: CS dept new PCs with P4 HT processo:

16.10.2003 Copyright Teemu Kerola 2003 1

Fetch top MRt er
Fetcl Rename :
' Queue He Queue i et

;'r- :éiu %,%m- 16.10.2003 Copyright Teemu Kerola 2003 |

16.10.2003 Copyright Teemu Kerola 2003

Major Ideas

eneral Architecture

Emulated Precise
Exceptions

hii What to do with It

16.10.2003 Copyright Teemu Kerola 2003 2

Background

e Transmeta Corporation
— Paul Allen (Microsoft), George Soros (Soros Funds)

— David R. Ditzel (Sun) Orig. CEO, now CTO

— Edmund J. Kelly, Malcolm John Wing,
Robert F. Cmelik

— Linus B. Torvalds, February 1997 — 2003

e Patent 5832205
— applied August 20, 1996
— granted November 3, 1998
— many (a few) other patents ...

 Crusoe Processor
— published January 19, 2000

16.10.2003 Copyright Teemu Kerola 2003

Basic Idea(s)

* Create a new processor which, when coupled with
“morph host” emulator, can run Intel/Windows
code faster than state-of-the-art Intel processor,
or with same speed but with less electric power

* New processor can be implemented with
significantly fewer gates than competitive
Processors

* Compete with Intel, friendly with Microsoft

— sell chip with emulator code to system manufacturers
(Dell, IBM, Sun, etc etc)

e X86 (IA-32) binary is new binary standard

i« Native OS not so important
— services from target OS: E.g., Windows or Linux

2% 16.10.2003 Copyright Teemu Kerola 2003 2

Major General Ideas

 Emulation can be faster than direct execution

 TLB used to solve new problems
— track memory accesses for memory mapped 1/0
— track memory accesses for self-modifying code

* Most of executed code generated “on-the fly”
— not compiled before execution begins

— extremely optimized dynamic code generation

* Optimized code allows for simpler machine

— smaller, faster, uses less power?

16.10.2003 Copyright Teemu Kerola 2003

Major General Ideas (contd)

e Self-modified code (dynamically created code)
can be generated so that it 1s extremely optimized
for execution

— 1ssue dependencies, reorder, reschedule problems
solved at code generation (not in HW)

— processor HW does not need to solve these

e Optimize for speed, but only when needed

— do not optimize for speed when exact state change is
required (this 1s the tricky part!)

~+ Alias detection to assist keeping global variables
1n registers

i 16.10.2003 Copyright Teemu Kerola 2003

Major General Ideas (contd)

 NOT: faster and with less power

Class action suit (5.7.2001) ... stating that ... a
revolutionary process that delivered longer battery
life 1n Mobile Internet Computers while delivering
high performance

Settled 13.3.2003 for 5.5 million dollars

http://www.lieffcabraser.com/transmeta.htm

16.10.2003 Copyright Teemu Kerola 2003

Major Emulation Ideas

* Target processor (I.e., Intel processor) state kept 1r
dedicated HW registers

— working state (“speculated” state?), committed state
 Memory store buffer keeps uncommitted
(“speculated”) emulated memory state
* Specific instructions support emulation
— commit, rollback (exact exceptions)
— prot (aliases)
 TLB (and VM) designed to support emulation
— A/N-bit (mem-mapped 1/O), T-bit (self-mod. code)

i 16.10.2003 Copyright Teemu Kerola 2003 2

General Architecture

 VLIW implementation
— VLIW = Very Long Instruction Word
— 4 simultaneous RISC instructions in molecule”
* one each of float, int, load/store, branch
— large L3 Translation Cache for VLIW “molecules”
« 8-16 MB
« similar to Pentium 4 Trace Cache?

— no circuitry for 1ssue dependencies, reorder, optimize,
reschedule

e compiler takes care of these

 data & structural dependencies under compiler
control?

16.10.2003 Copyright Teemu Kerola 2003

G Hpdet o gl s Sl
'??”‘; % “t’* 3
% ;

General Architecture (contd)

» Large register set

— native regs: 64 INT, 32 FP

e extra regs for renaming

— target architecture regs: complete CPU state

- 16.10.2003

« working regs for normal emulation
« committed regs for saving emulated processor state

Copyright Teemu Kerola 2003

General Architecture (contd)
- TLB

— new features to solve new problems

* before used to solve also memory protection
problems in addition to plain VM address mapping

— A/N-bit for memory-mapped I/O detection
e trap to emulator, which creates precise code

« memory-mapped I/O requires precise emulated
processor state changes

— T-bit for self-modifying code detection

e trap to emulator, which recreates emulating code in
instruction cache (“translation buffer”)

=i 16.10.2003 Copyright Teemu Kerola 2003

e

General Architecture (contd)

e Target memory store buffer

— 1mplemented with special register(s) to support
emulation

— keep track on which target processor memory
stores are committed and which are not

— uncommitted memory stores can be discarded

at rollback
» modify HW registers implementing it
e commit & rollback controlled from outside of the
processor, not internally as 1s usual with speculative

instructions
i 16.10.2003 Copyright Teemu Kerola 2003 3

General Architecture (contd)

e RISC instruction set

— explicitly parallel code (VLIW)

— commit 1nstruction supports emulation
e commits emulated processor and memory state
« use when coherent target processor (Intel) state!

— rollback struction (?) supports emulation
* some or all of it can be 1n emulator code

 recover latest committed emulated target register
state

 delete uncommitted writes from store buffer
e retranslate emulation code for precise state changes
— commit now after every emulated instruction?

— prot instruction for alias detection

e

BB

16.10.2003 Copyright Teemu Kerola 2003

et
‘vY‘ B phefa e B 7
ol o

Ordinary Program Execution

memory

T 2 it
u“i,;‘im sy

processor

L‘a it

el n 4;.;“ 16.10.2003 Copyright Teemu Kerola 2003

Execution of Ordinary Emulator

memory Program
emulator program x86 program (target)
mov %excl, >%ebp+0xc!
.| data datal add veax!, #4
X8§ machine structure 1| ..
registers

e processor
%;ﬁ' =y 16.10.2003 Copyright Teemu Kerola 2003

Ordinary Emulator

x86-emulator (program)

emulated x86
mach regs

as data
structures

static subroutine

for each x&86
mach instr

16.10.2003 Copyright Teemu Kerola 2003

Crusoe Emulator

(emulated x86 mach
regs in hardware)

Dynamically generated
(optimized) instruction
sequences for x86
instruction sequences

Add | ftSub
ftMul | brEqu
Add Jump

16.10.2003 Copyright Teemu Kerola 2003 3

Execution of Crusoe Emulator

Program
memory
emulator program S8
Add | ftSub mov %excl, >%ebp+0xc!
JIT | add %eax!, #4
fiMul | brEq [®tomz| ...
Add Jump || pile

x86 mach regs

3
5

2
Aa

i processor
'a:%a : % 16.10.2003 Copyright Teemu Kerola 2003

e

Crusoe Logical Structure

16.10.2003

ON
to emulate

|

Code
generator

Translation

buffer

Copyright Teemu Kerola 2003

application
to emulate

|

Event based
main
program

!

Crusoe Physical Structure

memory
processor

ON)
to emulate

native
OS

memory
buffer

application
to emulate

Emulated
x86 regs

Committed
x86 regs

instruction ALIAS-
exec. circuits regs
native, mem/transl.
own regs buffer cache

5400 diag.jpg 5400 die.jpg [sandpile.org]

code
genera-
tor

translation

i g tod 16.10.2003 Copyright Teemu Kerola 2003

Crusoe Summary

 Emulation can be done faster or with less energy
than the ’real thing”

VLIW (EPIC?) core architecture
* Special HW to speed up emulation

— x386 regs
— memory-mapped I/O detection
— alias and self-modifying code detection

* Special HW for precise interrupts

— 2nd set of x86 regs

— target memory store buffer

— commit and rollback instruction in ISA

16.10.2003 Copyright Teemu Kerola 2003

Crusoe Summary (contd)

* Complex overall structure

e ”Code Morphing Software”
— JIT optimized code generation
— compiler and interpreter resident in memory
— fast but imprecise, or slow and precise emulation

K Optimize for speed or size (power, electricity)?
— Small size = cheaper, less power

i g tod 16.10.2003 Copyright Teemu Kerola 2003

Efficeon processor

* Follow-up for Crusoe

— published 16.10.2003

— Same manufacturing technology (.13 micron)
e More parallelism

— 8 cells per molecule (Crusoe: 4 cells)

— 256 bit molecule (Crusoe: 128 bits)
« Wait - you get more on the same chip

— L1 data cache, L1 instr. cache
— 1 MB L2 unified cache
— DDR and AGP 4x graphics interface controllers

— HyperTransport Bus Interface Controller
* 12x speed as compared to PCI

16.10.2003 Copyright Teemu Kerola 2003

-- IA-64 and Crusoe End --

”Aqua 3400 Portable Wireless Internet
Access Device, Transmeta 400MHz,
8.4" TFT touch-screen”

"NEC Versa DayLite combines the
power-saving 600 Mhz Crusoe
TM5600 processor with dual battery
systems that NEC claims will extend
battery life to up to 7.5 hours on a
single charge”

16.10.2003 Copyright Teemu Kerola 2003

