Hardwired Control Unit
Ch 16

Micro-operations
Controlling Execution
Hardwired Control

16.10.2003 Copyright Teemu Kerola 2003 1

What is Control ¢

* So far, we have shown what happens inside
CPU
— execution of instructions
* opcodes, addressing modes, registers
* [/O & memory interface, interrupts
* Now, we show how CPU controls these
things that happen
— how to control what gate or circuit should do at
any given time
« control wires transmit control signals
« control unit decides values for those signals

16.10.2003 Copyright Teemu Kerola 2003 2

(mikro-operaatio)

Micro-operations ¢
 Basic operations on which more complex
instructions are built Fig. 16.1 [(Fig. 14.1 [Stal99])

— each execution phase (e.g., fetch) consists of one or
more sequential micro-ops

— each micro-op executed in one clock cycle in some
subsection of the processor circuitry

— each micro-op specifies what happens in some area
of cpu circuitry
— system cycle time determined by longest micro-op!
* Many micro-ops (for successive instructions)
can be executed simultaneously
— if non-conflicting, independent areas of circuitry

16.10.2003 Copyright Teemu Kerola 2003 3

Instruction Fetch Cycle qo

* 4 registers involved %
~ MAR, MBR, PC, IR (Fig. 117 [Suld9)

* What happens?

Address of next instruction is in PC micro-ops?
Address (MAR) is placed on address bus MAR <« (PC)
READ command given to memory READ

Result (from memory) appears on data bus

Data from data bus copied into MBR MBR < (mem)
PC incremented by 1 PC « (PC) +1
New instruction moved from MBR to IR~ /IR < (MBR)
MBR available for new work

16.10.2003 Copyright Teemu Kerola 2003 4

Instruction Fetch Micro-ops e

sl: MAR « (PC), READ

— can not change order, 28 BALETEC < (et
s3: PC « (PC) +1

can do some ops atthe |4 jp (MBR)
same time

* 4 micro-ops

— s2 must be done after sl implicit
— 53 can be done simultaneously with s2 READ

— s4 can be done tl: MAR « (PC)
with s3, but must t2: MBR < (mem)

be done after s2 PC « (PC) +1
t3: IR < (MBR)

= Need 3 ticks: assume: mem read in one cycle
16.10.2003 Copyright Teemu Kerola 2003 5

Micro-op Grouping ¢
* Must maintain proper [ji VAR & ®C)
sequence (semantics) t2: MBR « (mem)
¢ No conflicts

— no write to/read from
with same register
(set?) at the same time

2: MBR < (mem)
t3: IR < (MBR)

— each circuitry can be e
used by only one ©: PC« (PC) + 1
micro-op at a time | ¢3: R1 < (R1) i+ (MBR)
* E.g., ALU or some bus i

16.10.2003 Copyright Teemu Kerola 2003 6

Micro-op Types @

* Transfer data from one reg to another
* Transfer data from reg to external area

— memory
-1/0

* Transfer data from external to register
» ALU or logical operation between registers

Indirect Cycle

* Instruction contains address of an operand,
instead of direct operand address

IR:’ opcode ‘ reg ‘ addr ‘

tl: MAR « (IRaddress)
2: MBR « (mem) (Replace indirect address

3 IRyygess & (MBR) by direct address)
16.10.2003 Copyright Teemu Kerola 2003 7 16.10.2003 Copyright Teemu Kerola 2003 8
tl: ALUI « (R2)
Interrupt Cycle Execute Cycle «) ALU2 « (R3)

» After execution cycle, test for interrupts
« If interrupt bits on, then

— save PC to memory

. . tl: MBR <« (PC)

—Jump fo mnterrupt t2: MAR < save-address
handler PC < routine-address

— or, find out first t3: mem < (MBR)
correct handler for
this type of interrupt
and then jump to that (need more micro-ops)

implicit - just wait?

— context saved by interrupt handler

16.10.2003 Copyright Teemu Kerola 2003 9

. t2: ALUout « “+”
* Different for each op-code 3: Rl « ALUout

ADD RI, X tl: MAR « (IR ggress)
2: MBR <« (memory)

$3: Rl <« (R1)+(MBR)
ADD RI,R2,R3 tl: Rl <« (R2)+(R3)

JMP LOOP tl: PC ¢ (IRyyress)

Was this updated in indirect cycle?
BZER R1, LOOP tl: if ((R1)=0) then

PC « (IRaddress)
Can this be done in one cycle? /

16.10.2003 Copyright Teemu Kerola 2003 10

Execute Cycle (contd) o)

Branch and Save Address (subroutine call instruction)

BSA MySub tl: MAR « (IR ygress)
MBR « (PC)
t2: PC « (IRaddress)
MySub: DC memory < (MBR)
LOAD ... t3: PC« (PC)+ 1
RET MySub

1%t instruction in MySub+1
Return address stored here

16.10.2003 Copyright Teemu Kerola 2003 11

Instruction Cycle ¢

* Decomposed to micro-ops

State machine for processor (Fig. 14.3 [Stal99])
— state: execution phase Fig. 16.3
— sub-state: current group of micro-ops executable in one

clock cycle (tick)
In each sub-state the control signals have specific

values dependent YT
— on that sub-state { Alg‘ SR
— on IR register fields and on flags L 104

« including control signals from the bus

« including values (flags) produced by previous sub-
state

16.10.2003 Copyright Teemu Kerola 2003 12

Control State Machine o

* Each state defines current control signal
values Control execution
— determines what happens in next clock cycle

* Current state and current register/flag values

determine next state -
Control sequencing

16.10.2003 Copyright Teemu Kerola 2003 13

Control Signal Types

 Control data flow from one register to
another

 Control signals to ALU
— ALU does also all logical ops
* Control signals to memory or I/O devices

— via control bus

16.10.2003 Copyright Teemu Kerola 2003 14

Control Signal Example ¢

¢ Accumulator architecture

(Fig. 14.5 [Stal99])
Fig. 16.5

» Control signals for given micro-ops cause

micro-ops to be executed Table 16.1
(Tbl 14.1 [Stal99])

— setting C, makes value stored in
PC to be copied to MAR in next clock cycle
* C, controls Input Data Strobe for MAR
(see Fig. A.30 for register circuit)
— setting Cy & C5 makes memory perform a
READ and value in data bus copied to MBR
in next clock cycle

— micro-op = collection of control signals?
16.10.2003 Copyright Teemu Kerola 2003 15

Example: Intel 8085 ¢
* Introduced 1976

. Fig. 16.7

3, 5, or 6 MHz, no cache e 107 S0
¢ & bit data bus, 16 bit address bus

— multiplexed

¢ One 8-bit accumulator

opcode addre
LDA MyNumber 0x10A5 | 3 bytes

OUT #2 2 bytes

opcode port

16.10.2003 Copyright Teemu Kerola 2003 16

Example: 18085

* Instead of complex data path all data | Fig 14.7 [Stl9])
transfers within CPU go via internal bus |Fig. 16.7

— may not be good approach for superscalar pipelined
processor - bus should not be bottleneck

Table 16.2 | (Tbl 14.2 [Stal99])

» Each instruction is 1-5 machine cycles

— one external bus access per machine cycle

» External signals

» Each machine cycle is 3-5 states
» Each state is one clock cycle (Fig. 14.9 [Stal99])
+ Example: OUT instruction Fig. 16.9

16.10.2003 Copyright Teemu Kerola 2003 17

Hardwired
Control Logic Implementation ¢

Finite state

Initial representation: diagram

Explicit

Sequencing control: next state

Logic representation: Programmable
Logic
Array
Implementation:

16.10.2003 Copyright Teemu Kerola 2003 18

Finite State Diagram

pCsron ch bt

emtoR

BrComplete

ALUOp=Sud
ALUSelB=01

x; lorD, Mem2Reg
RegDst, ExtOp

1: ALUSelA
ALUSelB=11

16.10.2003 Copyright Teemu Kerola 2003 19

Explicit Next State Function

Control Logic o ——
ltl—> Multicycle
[Datapath
| —
u————~
t
Inputs s

[P0 110

Opcode ‘ ‘ State Reg ‘

16.10.2003 Copyright Teemu Kerola 2003 20

Logic Equations o,

Next state from current state
— State 0 -> Statel
— State 1 -> S2, S6, S8, S10
—State 2 ->S5or ...
—State 3 ->S9or ...
— State 4 ->State 0
— State 5 -> State 0
— State 6 -> State 7
— State 7 -> State 0
— State 8 -> State 0
— State 9-> State 0
— State 10 -> State 11
— State 11 -> State 0

16.10.2003 Copyright Teemu Kerola 2003 21

State2 & op = SW -> State 5

State3 & op = JMP -> State 9

Alternatively,
prior state & condition

S4, S5, S7, S8, 89, S11 -> State0
-> State1
-> State 2
-> State 3
-> State 4

-> State 6
State 6 -> State 7
-> State 8

-> State 10
State 10 -> State 11

Hardwired Control Logic ¢

+ Circuitry becomes very big and complex very
soon
— may be unnecessarily slow
— simpler is smaller, and thus faster
* Many lines (states) exactly or almost similar
* Have methods to find similar lines (states) and
combine them
— not simple
— save space, may lose in speed
— must be redone after any modification

16.10.2003 Copyright Teemu Kerola 2003 22

-- End of Chapter 16: Hardwired Control --

HP 9100 Calculator (1968), 20 kg,
$5000, 16 regs (data or 14 instructions/reg),
32Kb ROM, 2208 bit RAM magnetic core memory

WP AYNTY YW X LT -
ATTL J‘I“E

|”

16.10.2003 Copyright Teemu Kerola 2003 23

Hardw1red Control Logic board http: y— hpmubeum 0rg/9100djpg

|

