St

S

Micro-operations

Execution
d Control

ITC

Hardw

Controlling

s e

I

£

<5

Sl

o ¥

bk b
e
& i

Copyright Teemu Kerola 2003

16.10.2003

What 1s Control o

* So far, we have shown what happens inside
CPU

— execution of structions
» opcodes, addressing modes, registers
* [/O & memory interface, interrupts

 Now, we show how CPU controls these
things that happen

— how to control what gate or circuit should do at
any given time
 control wires transmit control signals
 control unit decides values for those signals

16.10.2003 Copyright Teemu Kerola 2003

Micro-operations , (KGGHeHEGI0):

 Basic operations on which more complex

instructions are built Fig. 16.1 _

— each execution phase (e.g., fetch) consists of one or
more sequential micro-ops

— each micro-op executed 1n one clock cycle in some
subsection of the processor circuitry

— each micro-op specifies what happens in some area
of cpu circuitry

— system cycle time determined by longest micro-op!

* Many micro-ops (for successive instructions)
can be executed simultaneously

— 1f non-conflicting, independent areas of circuitry

16.10.2003 Copyright Teemu Kerola 2003

Instruction Fetch Cycle o

* 4 registers involved Fig. 12.6
— MAR, MBR, PC, IR
* What happens?

Address of next instruction is in PC
Address (MAR) is placed on address bus
READ command given to memory

Result (from memory) appears on data bus
Data from data bus copied into MBR

PC incremented by 1

New instruction moved from MBR to IR

: MBR available for new work

micro-ops?

16.10.2003 Copyright Teemu Kerola 2003

Instruction Fetch Micro-ops

* 4 micro-ops

— can not change order,
can do some ops at the
same time

— s2 must be done after sl implicit
% READ

— s3 can be done simultaneously with

— s4 can be done
with s3, but must
be done after s2

= Need 3 ticks: assume: mem read in one cycle
16.10.2003 Copyright Teemu Kerola 2003

Micro-op Grouping
* Must maintain proper
sequence (semantics)

 No conflicts

— no write to/read from
with same register
(set?) at the same time

— each circuitry can be
used by only one
micro-op at a time

* E.g., ALU or some bus

16.10.2003 Copyright Teemu Kerola 2003

Micro-op Types

» Transfer data from one reg to another

* Transfer data from reg to external area

— memory
- 1/O

» Transfer data from external to register

 ALU or logical operation between registers

.@;“'ﬁ memnsy 16.10.2003 Copyright Teemu Kerola 2003

tl:

t2:
IRE

ST 16.10.2003

Indirect Cycle

 Instruction contains address of an operand,
instead of direct operand address

IR;

opcode | reg addr “

MBR | MAR |—
MAR <« (IRaddress)
MBR <« (mem) (Replace indirect address

IR ddress <= (MBR) by direct address)

Copyright Teemu Kerola 2003

Interrupt Cycle

» After execution cycle, test for interrupts

* If interrupt bits on, then

— save PC to memory
tl: MBR « (PC)

— Jump to interrupt t2: MAR <« save-address
handler PC « routine-address

— or, find out first t3: mem < (MBR)
correct handler for
this type of interrupt
and then jump to that (need more micro-ops)

implicit - just wait?

— context saved by interrupt handler

16.10.2003 Copyright Teemu Kerola 2003

tl: ALUI « (R2)
Execute Cycle (4) ALU2 « (R3)

: t2: ALUout « “+’
» Different for each op-code 3: R1 <« ALUout

\

ADD RI,X

JMP LOOP

Was this updated in indirect cycle? /
BZER R1, LOOP

Can this be done in one cycle?
16.10.2003 Copyright Teemu Kerola 2003 1

Execute Cycle (contd) o

Branch and Save Address (subroutine call instruction)

N\

BSA MYSU'b [tl: MAR « (IRaddress)
MBR <« (PC)
t2: PC « (IRaddress)
\ memory <— (MBR)
t3: PC « (PC) + 1

15t instruction in MySub+1

siii Return address stored here

i - St 16.10.2003 Copyright Teemu Kerola 2003

Instruction Cycle

* Decomposed to micro-ops
 State machine for processor

— state: execution phase Fig. 16.3
— sub-state: current group of micro-ops executable in one
clock cycle (tick)

 In each sub-state the control signals have specific
values dependent
— on that sub-state

— on IR register fields and on flags

* including control signals from the bus

* including values (flags) produced by previous sub-
state

Fig. 16.4

.@;“'ﬁ : *oy 16.10.2003 Copyright Teemu Kerola 2003 1

Control State Machine o

* Each state defines current control signal
values Control execution
— determines what happens 1n next clock cycle

* Current state and current register/flag value:
determine next state

Control sequencing

16.10.2003 Copyright Teemu Kerola 2003 1

Control Signal Types

* Control data flow from one register to
another

~+ Control signals to ALU
— ALU does also all logical ops

_ « Control signals to memory or I/O devices

— via control bus

.@;“'ﬁ : *oy 16.10.2003 Copyright Teemu Kerola 2003

Control Signal Example

 Accumulator architecture Fig. 16.5

* Control signals for given micro-ops cause
micro-ops to be executed Table 16.1

— setting C, makes value stored in
PC to be copied to MAR 1n next clock cycle

 C, controls Input Data Strobe for MAR
(see Fig. A.30 for register circuit)

— setting C, & C; makes memory perform a
READ and value 1n data bus copied to MBR
in next clock cycle

i
: — micro-op = collection of control signals?
' o 16.10.2003 Copyright Teemu Kerola 2003 1

Example: Intel 80835 ¢

e Introduced 1976
e 3,5, or 6 MHz, no cache
! ~« 8 bit data bus, 16 bit address bus

| ~ — multiplexed

Fig. 16.7

* One 8-bit accumulator
opcode address

LDA MyNumber 0x3A | 0x10A5 3 bytes
M. OUT #2 0x2B | 0x02 2 bytes
: % opcode port

.@;“'ﬁ : *oy 16.10.2003 Copyright Teemu Kerola 2003 1

Example: 18085 (6)

Instead of complex data path all data
transfers within CPU go via internal bus Fig. 16.7

— may not be good approach for superscalar pipelined
processor - bus should not be bottleneck

« External signals Table 16.2 [(To1 142 [S@99) |

Each 1nstruction 1s 1-5 machine cycles

— one external bus access per machine cycle

Each machine cycle 1s 3-5 states
- * Each state 1s one clock cycle
~« Example: OUT instruction Fig. 16.9

i 16.10.2003 Copyright Teemu Kerola 2003 1

Harawired
Control Logic Implementation

o . Finite state
Initial representation: diagram
Explicit
next state
function

Sequencing control:

Logic representation: Programmable

Logic
Array

Implementation:

16.10.2003 Copyright Teemu Kerola 2003

BrComplete

ALUOp=Sub
ALUSeIB=01

x: TorD, Mem2Re¢g
RegDst, ExtOp

1: PCWrCond

ALUOp=Ad
I: PCWr, IRW

1: ExtO
ALUSelA

ALUSelB=11
ALUOp=Add

: RegDst, PCSrc
orD, MemtoReg

LWmem 1: RegDs
e ALUSelA
. BX — 5
ALUSA A,I’Ior 5 12 Z0 ALUSelB=01 1: ALUSelA

ALUSelB=11 Memvr ALUSelB=11
ALUOp=Hct ALUSelB=11
x: MemtoReg ALUOp=Add

PCSrc

: PCSrc,RegD)st
emtoR e

LWwy/ RégWi- EX{O

wY RegWr, Ex :

i I\%emtoReg : I: RX %SstélRAeg x: [orD, PCSr
e ALUSelB=11 ALUSelB=1
b‘iﬂ ALUOp=Add,

x: PCSrc
JorD

AiEh

A

B
/

Fid 1
255

16.10.2003 Copyright Teemu Kerola 2003

HE

Explicit Next State Function

Control Logic & >
ltl - Multicycle
~ Datapath
P -
u -
t
Inputs S

AA A

Opcode State Reg

AAA

oy [

'ﬁ' £ i 16.10.2003 Copyright Teemu Kerola 2003

Logic Equations o

Next state from current state
— State 0 -> Statel
— State 1 -> S2, S6, S8, S10
— State 2 -> S5 or
—State 3->S9or ...
— State 4 ->State 0
— State 5 -> State 0
— State 6 -> State 7
— State 7 -> State 0
— State 8 -> State 0
— State 9-> State 0
HoE — State 10 -> State 11
_ State 11 -> State 0

i *oy 16.10.2003 Copyright Teemu Kerola 2003 2

Hardwired Control Logic ¢

e Circuitry becomes very big and complex very
SO0N
— may be unnecessarily slow
— simpler 1s smaller, and thus faster

 Many lines (states) exactly or almost similar

* Have methods to find similar lines (states) and
combine them
— not simple
— save space, may lose 1n speed
— must be redone after any modification

16.10.2003 Copyright Teemu Kerola 2003

-- End of Chapter 16: Hardwired Control --

HP 9100 Calculator (1968), 20 kg,
$5000, 16 regs (data or 14 instructions/reg),
32Kb ROM, 2208 bit RAM magnetic core memory

- - '-i- T T e s B g

N—— e — — i — = =
kbbbt +;=‘ ¢4 ll- f { k‘,‘ ¢ 5. J‘t_! .-.+ ‘&. : e
a‘»'ﬂ e — e - — —~ o :

'*ll'{'f:l---rh__rrrf'[r"l'*l!l!!lr r 1Ty L A Al (L

Hardwired Control Logic board http://www.hpmuseum.org/9100cLjj

S pebes
&

i
(3

LEE

£
Lol

16.10.2003 Copyright Teemu Kerola 2003 2

