Micro-programmed Control
Ch 17

Micro-instructions

Micro-programmed
Control Unit

Sequencing
Execution Characteristics

Course Summary

16.10.2003 Copyright Teemu Kerola 2003 1

Hardwired Control «

Complex

Fast

Difficult to design
Difficult to modify

— lots of optimization work done at
implementation phase (after design)

— all optimization work (I.e., most of the work?)
must be redone after any changes to design

16.10.2003 Copyright Teemu Kerola 2003 2

Micro-programmed Control)

* Implement “execution engine” inside CPU
— execute one micro-instruction at a time
* What to do now?
— micro-instruction
* control signals
— stored in micro-instruction control memory
* micro-program, firmware

 What to do next?

— micro-instruction program counter
* default (?): next micro-instruction
* jumps or branches?

16.10.2003 Copyright Teemu Kerola 2003 3

Machine Instructions
vs. Micro-instructions

Machine
Memory LOAD / instructions
ADD define
MULT a program

execution
unit :
..... Micro-
CPU | | [[- instructions
/ / define
.| Memop R2,A1 machine
control ﬁlﬁmlt?gtgﬂ e instructions
memory
(processor

architecture!)
16.10.2003 Copyright Teemu Kerola 2003 4

Machine Instructions
vs. Micro-instructions o

« Machine instruction fetch-execute cycle
produces machine instructions to be
executed at CPU

» Micro-instruction fetch-execute cycle
produces control signals for data path

16.10.2003 Copyright Teemu Kerola 2003 5

Micro-program

Stored in control memory Fig. 172
ROM, PROM, EPROM, Flash |ig 152 [swioo)) |

Firmware

One “subroutine” for each machine
nstruction

— one or more micro-instructions

Defines architecture

— change instruction set?
= reload control memory

16.10.2003 Copyright Teemu Kerola 2003 6

Hardwired vs. Micro-program

Control
Pure hardwired Pure micro-programmed
Initial Micro-
represent.: program
Micro-
Sequencing next state program
control: counter
Logic
represent.:
Implem.:
16.10.2003 Copyright Teemu Kerola 2003 7

Microcode)

| (Fig. 15.1 (a) [Stal99]) |
Fig. 17.1 (a)

* Horizontal micro-code

— control signals directly in micro-code
— all control signals always there

— lots of signals = many bits in micro-instruction
(Fig. 15.1 (b) [Stal99]) |

Fig. 17.1 (b)

* Vertical micro-code
— each action encoded densely

— actions need to be decoded to signals at execution time
— takes less space but may be slower

* Each micro-instruction is also a conditional
branch?

16.10.2003 Copyright Teemu Kerola 2003 8

Micro-programmed

CODtI‘Ol UIlit (4)
« Control Address Register Fohi
— “micro-program PC” (Fig. 15.4 [Stal99])
 Control Memory

Control Buffer Register

— current micro-instruction
* control signals
» next address control

Sequencing logic
— select next value for Control Address Reg

16.10.2003 Copyright Teemu Kerola 2003 9

Micro-programming ¢

 Simple design
* Flexible

—adapt to changes in organization, timing,
technology

—make changes late in design cycle, or even in
the field

* Very powerful instruction sets
—use bigger control memory if needed
—easy to have complex instruction sets

* 1is this good?

16.10.2003 Copyright Teemu Kerola 2003 10

Micro-programming

* Generality
— multiple instruction sets on same machine
— tailor instruction set to application?
» Compatibility
— easy to be backward compatible in one family

— many organizations, same instruction set

16.10.2003 Copyright Teemu Kerola 2003 11

Micro-programming ¢

 Costly to implement
— need tools:
* micro-program development environment
* micro-program compiler
« Slow
— micro-instruction interpreted at execution time
— interpretation is internal to CPU
— interpret one instruction at a time

e Interpretation control with hardwired logic?

16.10.2003 Copyright Teemu Kerola 2003 12

RISC vs. Micro-programming

+ Simple instructions can execute at very high clock rate
» Compilers can produce micro-instructions
— machine dependent optimization
» Use only simple instructions and addressing mode
» Keep “micro-code” in RAM instead of ROM
* no micro-instruction interpretation logic needed
+ Fast access to “micro-code” in RAM via caching
+ Skip instruction interpretation of a micro-program and
simply compile directly into lowest language of machine?

« = Compile to “micro-code” and use hardwired control
for RISC (e.g., Pentium II)

16.10.2003 Copyright Teemu Kerola 2003 13

Micro-program Sequencing o)

* Two address format Fig. 17.6 | (Fig. 15.6 [Sta199]) |
— most often use the subsequent address

* waste of space to store it most of the time?
— conditional branch address

e One address format | (Fig. 15.7 [Stalo9) |

— (Conditional) branch address Fig. 17.7
* Variable format

— only branch micro-instructions have addresses
* branch instruction do not contain control signals

— waste of time many times?

16.10.2003 Copyright Teemu Kerola 2003 14

Micro-instruction Explicit
Address Generation

» Addresses explicitly present
— Two-field
* select one of them
— Unconditional branch
* jump to this one

— Conditional branch
« select this one or default

16.10.2003 Copyright Teemu Kerola 2003 15

Micro-instruction Implicit

Address Generation
» Addresses not explicitly present

— Mapping
* map opcode in machine instruction into micro-
instruction address (Fig. 15.9 [Stal99]) |
— Addition Fig. 17.9

* higher order bits directly from opcode

* lower order bits based on current status and tag bits,
or fields in current microinstruction

— Residual Control

* return from micro-program subroutine

16.10.2003 Copyright Teemu Kerola 2003 16

Micro-instruction Encoding

» Usually a compromise between pure
horizontal and vertical formats

Fig. 17.11 | (Fig. 15.11 [Stal99)) |

— optimize on space with encoding multiple
signals into a set of fields

» each field defines control signals for certain separate
actions

» mutually exclusive actions are encoded into the
same field

— make design simpler by not using maximum
encoding

16.10.2003 Copyright Teemu Kerola 2003 17

Micro-instruction Encoding)

 Functional encoding

— each field controls some function

* load accumulator
* load ALU operands
* compute next PC

* Resource encoding

— each field controls some resource
« ALU

* memory

16.10.2003 Copyright Teemu Kerola 2003 18

Different Micro-instruction Sets
for a specific ’Simple Machine”

| (Fig. 15.12 [Stal99)) |

* Micro-instruction types Fig. 17.12
— 3 register transfers, 2 mem ops, 5 ALU ops, 3 seq. ops
« Vertical format | type |operation |reg |

— 3 bits for type, 3 bits for operation |_(Fig. 15.12(a) [Sta199m
— 2 bits for reg select (max 4 regs) Fig. 17.12 (a)

* Horizontal format [~ 117 |
— 2 bits for reg transfers (3 ops + “none”

— 2 bits for mem ops (2 ops + “none” Fig. 17.12 (b)
— 2 bits for seq. ops (3 ops + “none”) | (rig. 15.12(b) [Stal99])
— 3 bits for ALU ops (5 ops + “none”)

— 2 bits for reg select + 8 bits for constant

16.10.2003 Copyright Teemu Kerola 2003 19

LSI-11 Single Board Processor

16.10.2003 Copyright Teemu Kerola 2003 20

LSI-11 (PDP-11)

 Three-chip single board processor
— data chip WS 2
* 26 8-bit regs E
— 8 16-bit general
purpose regs, ‘ i
—PWS, MAR, MBR, ... Sl

» 8-bit ALU

— (at least) 2 passes needed for 16-bit reg ops

_ control chip | (Fig. 15.14 [Stal99)) |

— control store chip (2 of them?) Fig. 17.14
* 22 bit wide control mem for micro-instructions

— connected by micro-instruction bus | Fig. 17.13
(Fig. 15.13 [Stal99]) |

16.10.2003 Copyright Teemu Kerola 2003

L.SI-11 Micro-instruction Set

e Implements PDP-11 instruction set
architecture for LSI-11 hardware

—e.g., PDP-11 16 bit ALU vs. LSI-11 8-bit ALU

« 22 bit wide, extremely vertical set
— 4 bits for special functions
— 1 bit for testing interrupts
— 1 bit for “micro-subroutine return”

— 16 bits for variable format micro-ops
* jump, cond. branch, literal ops, reg ops
» ALU, logical, general, I/O ops Table 17.5

Fig. 17.15
| (Fig. 15.15 [Stal99))

| (Tbl 15.5 [Stal99])
16.10.2003 Copyright Teemu Kerola 2003 22

-- End of Chapter 17 --

-- Micro-programmed Control --

BRANCH
PREDICTION
LOGIC

INSTRUCTION
DECQDE

COMPLEX
BUS INTERFACE INSTRUCTION
LOGIC SUPPORT

SUPERSCALER
INTEGER
EXECUTION

UNITS —
t PIPELINED

FLOATING
POINT

' 16.10)

http://infopad. EECS.Berkeley. EDU/CIC/die_photos/pentium.gif
16.10.2003 Copyright Teemu Kerola 2003 23

16.10.2003 Copyright Teemu Kerola 2003 24

Summary a

* How clock signals cause instruction executions?

* Low level stuff
— gates, basic circuits, registers, memory

* Cache

* Virtual memory & TLB

 ALU, Int & FP arithmetic's

* Instruction sets

* CPU structure & pipelining

» Branch prediction, limitations, hazards, issue

» RISC & superscalar processor, name dependencies
* [A-64 & Crusoe

» Hardwired & micro-controlled control

16.10.2003 Copyright Teemu Kerola 2003 25

Want to Know More?

» Read the text book completely
» 58070-8 Computer Architecture (4 cr)
Conc. Systems (Rio)

Data Struct. (TiRa)

Compilers (OKK)
Co.mp. Org. I Oper. Systems (KJx)
(TiKRa) Data Comm. (TiLix)

Computer Architecture
(Tietokonearkkitehtuurit)

16.10.2003 Copyright Teemu Kerola 2003 26

16.10.2003

-- The End of Comp Org II --

Processor
2-1

Processor
LA 4 1-m

Processor
1-1

Main
Memory 1

Interconnect
Network

Processor
L N-m
L1 Cache|

Processor
N-1

L1 Cache|

Directory

Main
Memory N

Copyright Teemu Kerola 2003

Processor
. 2-mi

Main
Memory 2

Cache-coherent
non-uniform
memory access
(CC-NUMA)
machine

(Fig. 18.11)
27

