

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Comparison of Component Models in Analysing Dialectal Features

Antti Leino¹, Saara Hyvönen² 5 August 2008

^{1,2} Department of Computer Science

- ¹ Research Institute for the Languages of Finland
- ² Fonecta Ltd

Background Finnish Dialects

- Traditional view, relatively unchanged for the past half century
- Western dialects
 - 1 Southwestern dialects
 - 2 Mid-Southwestern dialects
 - 3 Tavastian dialects
 - 4 Southern Ostrobothnian dialect
 - 5 Central and Northern Ostrobothnian dialects
 - 6 Northernmost dialects
- Eastern dialects
 - 7 Savonian dialects
 - 8 Southeastern dialects

Corpora

- Traditional Finnish dialectology based largely on morphological and phonological features
- Lauri Kettunen, Suomen murteet IIIA: murrekartasto 'Finnish Dialects IIIA: Dialect Atlas', 1940
 - 213 maps
 - Out of print for decades, still widely used
 - Computer corpus (Embleton Wheeler 1997)
- Lexical variation: Suomen murteiden sanakirja 'Dictionary of Finnish Dialects'
 - Ongoing project at the Research Institute for the Languages of Finland: Vol. I 1985, Vol. VIII 2008, Vol. XX c. 2040
 - Here: distribution maps for c. 5 500 articles
 - Used earlier by Hyvönen et al. (2007)

Objectives

- Earlier work (Hyvönen et al. 2007) indicated that clustering is not ideal for dialect features
- Component analysis works better
 - But which one? So many to choose from
- Compare five different methods to these two corpora
 - Factor Analysis
 - Non-negative Matrix Factorisation
 - Aspect Bernoulli
 - Independent Component Analysis
 - Principal Component Analysis

- All these can be thought of as latent variable models
- Aim to find a small number of latent variables / factors / components / aspects that explain the data
- Ideally, factors interpretable in terms of dialect regions
- Each factor can be visualised as a choropleth map, with a colour slide between the extremes

- Aims to find a small set of factors which explain the data
- Factors hopefully interpretable
- Here one would expect some correspondence between factors and dialects
- Implementation by Trujillo-Ortiz et al. (2006)

Methods

Non-negative Matrix Factorisation

- Aims to find a small set of *non-negative* factors which explain the data in a non-negative way, e.g.
 - Kainuu could be explained using Savonian and Ostrobothnian components with weights 1 and 2 ('1 part Savonian and 2 parts Ostrobothnian')
 - A certain dialect word or feature could be half Tavastian and half Southwestern
- Non-negativity intuitively appealing: what does it mean if a word is '-0.5 Tavastian'?
- Berry et al. (2007)

Methods Aspect Bernoulli

- Designed for binary data
- Interpretation can be given in terms of probabilities
 - E.g. a municipality / dialect word / dialect feature is 83 % Savonian
- Designed to deal with noisy data
 - But as seen later on, too much is too much
- Kaban et al. (2004)

Methods

Independent Component Analysis

- Aims to find statistically independent components
- Most often used to separate signals with lots of measurements and a few measurement points
 - E.g. the coctail party problem: 5 people talking, 5 microphones: separate speech signals
- Here we consider dialect words / features as the signal
- PCA as a pre-processing step: we use only a small number of principal components (otherwise components too localized)
- Hyvärinen et al. (2001)

- Finds the direction in the data which explains most of the variation
- Each component explains the variation left in the data after the variation explained by previous components has been removed
- Interpretation must be done bearing the previous components in mind
- Hotelling (1933)

Series I: Dialect Atlas Overview

- Relatively clean data: no significant gaps
 - Exception: northernmost Finland
- Ten-component run for each method
 - For PCA, first ten components
- Most methods manage this without too many problems
- Some differences

Series I: Dialect Atlas Factor Analysis

Series I: Dialect Atlas

Non-negative Matrix Factorisation

Series I: Dialect Atlas Aspect Bernoulli

Series I: Dialect Atlas Independent Component Analysis

Series I: Dialect Atlas Principal Component Analysis

Series II: Dialect Dictionary Overview

- Much more spotty data
 - Some municipalities thoroughly surveyed
 - Some far less so
- Ten-component run for each method
 - For PCA, first ten components
- Different issues with different methods than in the Dialect Atlas data
- All methods have at least one 'noise' component

Series II: Dialect Dictionary Factor Analysis

Series II: Dialect Dictionary Non-negative Matrix Factorisation

Series II: Dialect Dictionary Aspect Bernoulli

Series II: Dialect Dictionary Independent Component Analysis

Series II: Dialect Dictionary Principal Component Analysis

Conclusions

- Two different issues with data
 - Amount of variables (≈ features, words)
 - Amount of noise (≈ spottiness of data)
- For reasonably clean data, Non-negative Matrix Factorisation and Aspect Bernoulli work well
- For large number of variables Independent Component Analysis works
- Factor Analysis is a good compromise: not the best, but works for both cases
- Principal Component Analysis is very different from the others – use with care

References

- Berry, Michael W. Browne, Murray Langville, Amy N. Pauca, Paul V. Plemmons, Robert J. 2007: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis 52(1): 155–173.
- Embleton, Sheila Wheeler, Eric S. 1997: Finnish dialect atlas for quantitative studies. Journal of Quantitative Linguistics 4(1–3): 99–102.
- Hotelling, Harold 1933: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417–41, 498–520.
- Hyvärinen, Aapo Karhunen, Juha Oja, Erkki 2001: Independent Component Analysis. John Wiley & Sons.
 - Hyvönen, Saara Leino, Antti Salmenkivi, Marko 2007: Multivariate analysis of Finnish dialect data an overview of lexical variation. Literary and Linguistic Computing 22(3): 271–290.
 - Kaban, Ata Bingham, Ella Hirsimäki, Teemu 2004: Learning to read between the lines: The aspect Bernoulli model. Proceedings of the 4th SIAM International Conference on Data Mining 462–466
- Trujillo-Ortiz, A. Hernandez-Walls, R. Castro-Perez, A. Rodriguez-Ceja, M. Melendez-Sanchez, A.L. – del-Angel-Bustos, E. – Melo-Rosales, M. – Vega-Rodriguez, B. – Moreno-Medina, C. – Ramirez-Valdez, A. – D'Olivo-Cordero, J.P. – Espinosa-Chaurand, L.D. – Beltran-Flores, G.L. 2006: ANFACTPC: Factor Analysis by the Principal Components Method. A MATLAB file. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=10601.