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1. Introduction
• Onomastics

� Multidisciplinary: linguistics, history, some geography

� Let's add computer science

• Goals

� Dependences between occurrences of different names

∗ New information on how places are named

� Homogeneous regions

∗ New information on the relationships between settlement history,
linguistic regions and naming

• Methods

� Pretty straightforward application of data mining techniques to a novel
data set

� Most of this more thoroughly explained in Leino et al. (2003)

• Tools

� Basic Unix/Linux tools

� the Perl scripting language <URL:http://www.perl.org/>

� the R statistics environment <URL:http://www.r-project.org/> ,
esp. with the spatial statistics packages splancs and spatstat

� the GRASSGIS environment <URL:http://grass.itc.it/>
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2. Place Name Data
• Finnish National Land Survey Place Name Register (Leskinen 2002)

� 718000 name instances

� 58000 lakes

� 25000 different lake names

� 54 most common lake names: 9 008 lakes

� 45 name endings: 55 538 lakes

• High-dimensional marked point processes

� Spatial statistics: mostly single processes, at best low dimensionality

� Data mining: mostly non-spatial data

Pitkäjärvi;1;Suomi;410;Vakavesi;6682578;2541586;6684464;3375471;049;
Espoo - Esbo;011;Helsingin seutukunta;01;Uusimaa - Nyland;1;Uusimaa - Nyland;
1;Etelä-Suomen lääni - Södra Finlands län;204301A;19O1D4;1;
Virallinen kieli tai saame;1;Enemmistön kieli;1;Maastotietokanta;10011998;
40011998

Pitkäjärvi;6684464;3375471;049

järvi;Pitkäjärvi;6684464;3375471;049

Figure 1: Example of raw Place Name Register data, common names data and
name endings data
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Name endings data (+) Kernel estimate
common lake names data (+) of the lake intensity

Figure 2: Lake names in the Place Name Register data
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3. Association Rules
• X ⇒ Y, where X, Y ⊆ {A1, . . . , An}

� Frequency f (X ∪Y)

� Accuracy f (X∪Y)
f (X)

• Spatial association rules

� Various views on these (eg. Koperski and Han 1995, Estivill-Castro and
Lee 2001, Huang et al. 2002, 2003)

� Here: X ⇒r Y, where r is radius

Figure 3: Spatial association rule A ⇒r B as selection

• If no association (ie. A and B independent of each other), selection in
Figure 3 is a random sample
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3.1. Results
• Figure 4 shows the distribution of two pairs of names and �gure 5 their
kernel estimates. The distributions look relatively similar.

Ahvenlampi 'Perch Lake' (x) Joutenlampi'Swan Lake' (x)
Haukilampi 'Pike Lake' (+) Hanhilampi 'Duck Lake' (+)

Figure 4: Distribution of two pairs of names
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Ahvenlampi 'Perch Lake' ( ) Joutenlampi'Swan Lake' ( )
Haukilampi 'Pike Lake' ( ) Hanhilampi 'Duck Lake' ( )

Figure 5: Kernel estimates of the names in �gure 4
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• Figure 6 shows the Poisson-approximated probabilities.

� Ahvenlampi⇒r Haukilampi: a strong association at small radii

� Hanhilampi⇒r Joutenlampi: much weaker and at longer radii

Ahvenlampi => Haukilampi:
+ At 1 km found 20; p(n<20) = 1.0000 (corrected 1.00)
+ At 2 km found 40; p(n<40) = 1.0000 (corrected 1.00)
+ At 3 km found 51; p(n<51) = 1.0000 (corrected 0.99)
+ At 4 km found 75; p(n<75) = 1.0000 (corrected 1.00)
+ At 5 km found 92; p(n<92) = 1.0000 (corrected 0.97)
+ At 6 km found 116; p(n<116) = 1.0000 (corrected 0.98)
+ At 7 km found 137; p(n<137) = 1.0000 (corrected 0.95)
+ At 8 km found 170; p(n<170) = 1.0000 (corrected 1.00)
+ At 9 km found 181; p(n<181) = 1.0000 (corrected 0.96)
+ At 10 km found 204; p(n<204) = 1.0000 (corrected 0.98)

Hanhilampi => Joutenlampi:
At 1 km found 0; p(n<0) = 0.0000 (corrected 0.00)
At 2 km found 3; p(n<3) = 0.9259 (corrected 0.00)
At 3 km found 3; p(n<3) = 0.6418 (corrected 0.00)
At 4 km found 5; p(n<5) = 0.6983 (corrected 0.00)
At 5 km found 9; p(n<9) = 0.8927 (corrected 0.00)
At 6 km found 18; p(n<18) = 0.9990 (corrected 0.00)
At 7 km found 21; p(n<21) = 0.9985 (corrected 0.00)

+ At 8 km found 31; p(n<31) = 1.0000 (corrected 0.98)
At 9 km found 33; p(n<33) = 1.0000 (corrected 0.91)
At 10 km found 37; p(n<37) = 1.0000 (corrected 0.91)

Figure 6: Associations in two pairs of names
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• Other interesting pairs of names as well

� Mustalampi 'Black Lake' ⇒r Valkealampi 'White Lake': expected, but
an indication that the method works

� Lehmilampi 'Cow Lake' ⇒r Likolampi 'Retting Lake': association re-
sults from cultural connection

� Likolampi 'Retting Lake'⇒r Pitkälampi 'Long Lake': association but no
obvious reason

• Various interesting questions on the characteristics of contrastive / varia-
tional names

� Quite a few cases where the names contrast with regard to one of the
semantic features of the modi�er

� Difference between the terms kontrastnamn and variationsnamn?

� Possibly a partial answer to Pamp (1991):

Det �nns skäl att förmoda att analogien vid bildning av natur-
namn verkar också när namnen har kommit till på saklig grund.
Problemet är bara att den här fungerar så diskret att den oftast
är mycket svår att påvisa.
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3.2. Repulsion
• A special case of association rules, A ⇒r A

• Not obvious that a sample like in Figure 3 could be considered random.
However, the sum of samples in Figure 7 can.

Figure 7: Spatial association rule A ⇒r A as a series of selections
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• Repulsion appears to be rare; this is surprising.

• There are even cases like Umpilampi 'Overgrown Lake' where there is signif-
icant attraction (cf. Figure 8). Evidently each of these names is actively used
by a very small group of people, likely just a single farm.

Umpilampi => Umpilampi:
At 1 km found 9; p(n<9) = 0.9999 (corrected 0.66)

+ At 2 km found 32; p(n<32) = 1.0000 (corrected 1.00)
+ At 3 km found 66; p(n<66) = 1.0000 (corrected 1.00)
+ At 4 km found 82; p(n<82) = 1.0000 (corrected 1.00)
+ At 5 km found 103; p(n<103) = 1.0000 (corrected 1.00)
+ At 6 km found 126; p(n<126) = 1.0000 (corrected 1.00)
+ At 7 km found 136; p(n<136) = 1.0000 (corrected 1.00)
+ At 8 km found 154; p(n<154) = 1.0000 (corrected 1.00)
+ At 9 km found 164; p(n<164) = 1.0000 (corrected 1.00)
+ At 10 km found 171; p(n<171) = 1.0000 (corrected 1.00)

Figure 8: Conspicuous absence of repulsion between instances of Umpilampi
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4. Probabilistic Modeling
• View the data as a matrix, with municipalities as rows and names (or name
endings) as columns; each cell has the frequency of these names in the
municipality.

• Apply the EM clustering algorithm (Dempster et al. 1977, Redner and
Walker 1984, McLachlan 1996):

� Assign random component weights

� E-step: For each data point, compute the probability that the data
resulted from the model

� M-step: Compute the component weights according to the results of
the E-step

� Iterate the E and M steps as necessary

• Observations

� Clusters spatially well connected.

� As the number of clusters increases, new divisions appear � but the
old boundaries mostly stay in place.

� Clusters correspond with onomastic and historical information.

� The old Western Finnish habitation shows fairly well

� Also the boundary between the Eastern and Western dialect groups;
names re�ect an older demographic state than current dialects

� Interesting parallels to dialectometric maps (Wiik 1999)
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Figure 9: 2-way clustering on common names (left) and name endings (right)
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Figure 10: 4-way clustering on common names (left) and name endings (right)
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5. Conclusions and Further Research
• Basic data mining methods can be applied to spatial point data

• Impact on onomastics

� Certain types of contrastive names aremore widespread than previously
thought; theories about naming processes have to be re-evaluated

� Repulsion appears far less noticeable than expected. This, too, has to
be explained somehow.

� Clustering seems a possible starting point for composing an onomastic
overview. This can be combined with other data, such as that on
dialectal variation.

• Association involving more than two names: {A1, . . . Ai} ⇒r B

� How to extend known algorithms to spatial data, ie. data with no clear
observations?

� Γ ⇒r B, where Γ ≡ 'There are names of type α nearby'

� Combination of simple association rules and clustering: 'Names
{A1, . . . , Ai} are often found near each other'
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