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Abstract

To compare learning algorithms that differ
by the adopted statistical paradigm, model
class, or search heuristic, it is common to
evaluate the performance on training data
of varying size. Measuring the performance
is straightforward if the data are generated
from a known model, the ground truth. How-
ever, when the study concerns real-world
data, the current methodology is limited
to estimating predictive performance, typi-
cally by cross-validation. This work intro-
duces a method to compare algorithms’ abil-
ity to learn the model structure, assuming no
ground truth is given. The idea is to identify
a partial structure on which the algorithms
agree, and measure the performance in re-
lation to that structure on subsamples of the
data. The method is instantiated to structure
learning in Bayesian networks, measuring the
performance by the structural Hamming dis-
tance. It is tested using benchmark ground
truth networks and algorithms that maximize
various scoring functions. The results show
that the method can produce evaluation out-
comes that are close to those one would ob-
tain if the ground truth was available.

1 INTRODUCTION

Evaluating the statistical efficiency of an estimator for
some parameter of interest is a fundamental task when
developing new estimators or applying existing ones.
Two primary examples of parameter estimation are
density estimation and structure learning in graphical
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models. Research in machine learning often proposes
estimators that take the form of an algorithm, which
takes data as input and produces some estimate as out-
put. Due to the analytic intractability of the statistical
model or the computational procedure, evaluating the
statistical efficiency usually relies on empirical studies,
in which the performance of one or several algorithms
is measured in relation to synthetic or real-world data.

If one relies on synthetic data generated from a fixed
model, the so-called ground truth, then evaluating the
statistical efficiency is straightforward, aside from pos-
sible computational issues: One samples data sets of
varying sizes, applies the estimator, and compares the
obtained estimate to the parameter of interest. The
main methodological questions then concern the choice
of the ground truth and the choice of the performance
measures. For example, in the context of learning
Bayesian networks—the focus of this paper—it has
been common to generate data from some benchmark
networks, like Alarm [Beinlich et al., 1989], and study
how well the learned models recover the data gener-
ating probability distribution or the network struc-
ture [Liu et al., 2012]. For the former, a standard
metric is the cross entropy (CE) between the learned
distribution and the ground truth [Heckerman et al.,
1995]; for the latter, the structural Hamming distance
(SHD) [Tsamardinos et al., 2006] has become popular.

Evaluating the efficiency in relation to real-world data
is less straightforward. As the data generating model
is not known, or it may not even exist in the form of
the statistical model underlying the estimator, there
is no direct way to compare the obtained estimate to
the parameter of interest. There are indirect ways,
however, provided that the parameter is “intimately
related” to observable data. The distribution of data
points is an example of such a parameter; the cross-
validation method enables approximating CE (or any
related metric). For other parameters, like the model
structure, the present authors are not aware of any cor-
responding method. For example, Bayesian networks
learned from benchmark data sets have not been eval-



Intersection-Validation: A Method for Evaluating Structure Learning without Ground Truth

Table 1: Evaluation measures and methods for the
statistical efficiency of learning Bayesian networks.

Parameter (learning target)
Distribution Structure
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(this paper)

uated by approximating SHD, but either based on an
implied estimated distribution (thus a different param-
eter) or using a given scoring function, like the BIC
score, in special settings where all the compared algo-
rithms aim to maximize the same scoring function.

To summarize, we currently lack a method for evalu-
ating the statistical efficiency of structure learning in
relation to real-world data and structural metrics; see
Table 1 for a summary of the state of the art in learn-
ing Bayesian networks. Can we find a method that is
to structure learning as cross-validation is to learning
the distribution?

In this paper, we put forward such a method, we call
intersection-validation (InterVal). The method ap-
plies to a setting where the interest is evaluating the
relative performance of two or more algorithms. The
idea is to first identify a partial structure on which the
different algorithms agree when given the full data set,
and then measure the distance between that partial
structure and the structures the algorithms learn on
subsamples of the data. The hope is that the partial
structure mostly consists of structural features that
are “easiest to learn” and part of the unknown ground
truth, yet distinguishing the algorithms on smaller
data sets.

We instantiate the InterVal method for evaluating the
statistical efficiency of structure learning in Bayesian
networks. Specifically, we present a definition of par-
tial structure in that context. We also investigate em-
pirically to what extent and under what conditions the
method is able to produce essentially the same evalu-
ation outcomes one could obtain if the ground truth
was known. However, our study makes only the first
steps in this direction, leaving several questions to be
answered by future work.

The remainder of this paper is organized as fol-
lows. We review some basic concepts and notation of
Bayesian networks in Section 2. Section 3 presents the

InterVal method. In Section 4 we investigate the per-
formance of the method in various scenarios based on
experimental results. We conclude by discussing the
prospects and limitations of the method in Section 5.

2 PRELIMINARIES

All the graphs we consider are directed and simple.
Let G = (V,E) be a graph with node set V and edge
set E ⊆ V ×V . We denote a node pair (u, v) by uv and
say that its type in G (or, in E) is bidirected, forward,
backward, or nonadjacent if, respectively, both uv and
vu, only uv, only vu, or neither belongs to E.

Suppose G contains no directed cycles, i.e., it is a di-
rected acyclic graph, DAG. With each node v ∈ V as-
sociate a random variable Xv. Let p be a probability
distribution over the |V | variables. The pair (G, p) is a
Bayesian network, BN, if the joint distribution factor-
izes as

∏
v p
(
Xv | (Xu)u∈Gv

)
, whereGv = {u : uv ∈ E}

is the set of parents of v in G.

Two DAGs G and G′ on the same node set V are
equivalent if they host the same set of distributions,
i.e., (G, p) is a BN if and only if (G′, p) is a BN. This
holds exactly when the two DAGs have the same skele-
ton (i.e., the same set of nonadjacent node pairs) and
v-structures (i.e., triplets of nodes u, u′, v such that uu′

is nonadjacent in G while u, u′ ∈ Gv). The equivalence
class of G is represented by the completed partial DAG,
CPDAG, whose node set is V and the edge set is the
union of the edge sets of the equivalent DAGs.

The structural Hamming distance between two
CPDAGs C and C ′, denoted by SHD(C,C ′), is the
number of node pairs whose types are different in the
two graphs [Tsamardinos et al., 2006].

The cross entropy between two probability distribu-
tions p and q, denoted by CE(p, q), is the expected
value of − ln q(X) under p. For discrete distributions
we thus have that CE(p, q) = −

∑
x p(x) ln q(x). A

practical alternative to exact evaluation of the metric
is to take the average of − ln q(X) over a large number
of independent draws X from p.

In the context of this paper a data set is a sequence
of data points X1, X2, . . . , XN , each of which can be
viewed as a draw from some BN (G, p), i.e., from p.

3 INTERSECTION-VALIDATION

We consider K learning algorithms A1, A2, . . . , AK .
Each Ai takes a data set D as input and returns a
CPDAG Ai(D) as the output. Our interest is in esti-
mating how fast, as a function of data size, each algo-
rithm’s output approaches the ground truth CPDAG,
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Figure 1: Two CPDAGs and their agreement graph.
Dashed lines connect excluded node pairs.

C∗, that we assume exists but is unknown. Specifically,
we wish to rank the algorithms based on the structural
Hamming distance SHD(Ai(D), C∗), varying the data
size, but relying on a single given data set D0.

The idea of the InterVal method, which we formalize
in the remainder of this section, is as follows. We first
extract what we call an agreement graph, A0, that rep-
resents the common ground of the K CPDAGs Ai(D0)
and serves as a proxy of the ground truth. Then we
measure the distance between each Ai(D) and A0, for
varying subsamples D of D0, by an appropriate vari-
ant of the structural Hamming distance, and base the
ranking of the algorithms on these distances.

3.1 The Agreement Graph

For a collection of graphs, the agreement graph will be,
in essence, the set of node pairs whose type is the same
in every graph in the collection. To treat such objects
more formally, we use a relaxed notion of graph: a
partial graph on a set of node pairs S is a pair (S,E)
where E ⊆ S. Note that an ordinary graph on V is
obtained as a special case with S = V × V . We define
an intersection operation on partial graphs:

Definition 1. The strict intersection of two partial
graphs P = (S,E) and P ′ = (S′, E′) is the partial
graph P eP ′ = (I, E ∩E′∩ I), where I ⊆ S ∩S′ is the
set of node pairs whose type is the same in P and P ′.

Strict intersection differs from the ordinary intersec-
tion operation of graphs where we always have I =
S ∩ S′. The following basic fact allows us to talk
about the intersection of multiple partial graphs with-
out specifying the order of pairwise operations.

Proposition 1. The strict intersection operation is
commutative and associative.

In what follows, we only consider strict intersections of
CPDAGs and refer to an intersection as the agreement
graph. Figure 1 shows an illustrated example.

3.2 The Partial Hamming Distance

We cannot use the structural Hamming distance for
measuring the distance between a learned CPDAG and

the agreement graph because the latter argument is
generally not a CPDAG. Therefore we consider the
following straightforward extension:

Definition 2. The partial Hamming distance between
two partial graphs P =(S,E) and P ′=(S,E′), denoted
by PHD(P, P ′), is the number of node pairs in S whose
types are different in P and P ′.

It is easy to show that PHD is a metric.

Proposition 2. The partial Hamming distance is a
metric in the set of partial graphs on a fixed set of
node pairs.

Because we use PHD to measure the distance between
a CPDAG and a partial graph, we first project the
CPDAGs to the set of node pairs of the partial graph.

Definition 3. The projection of a CPDAG (V,E) to a
set of node pairs S is the partial graph (S∩V×V, S∩E).

For a CPDAG C and a partial graph P on a set S we
will write simply PHD(C,P ) for PHD(C ′, P ) where C ′

is the projection of C to S.

3.3 Estimation by Subsampling

The following method estimates the ranking of the
given learning algorithms for a given sample size s <
|D0|. The method has one user parameter, the number
of subsamples r; in our experiments we set r = 10.

1. Let A0 be the agreement graph of
{
Ai(D0)

}K
i=1

.

2. For t = 1, 2, . . . , r, construct a Dt by sampling s
data points without replacement from D0.

3. Compute the distance dit = PHD(Ai(Dt), A0) for
all pairs of i and t.

4. Along with the empirical joint distribution
Dr(s) =

{
(d1t, d2t, . . . , dKt)

}r
t=1

, report the per-
algorithm sample means

µr
i (s) =

1

r

r∑
t=1

dit

and possible other summary statistics.

In visualizations we typically plot the sample means
µr
i (s) and the respective standard errors. However,

depending on the precise formulation of the ranking
problem, other statistics of the empirical distribution
Dr(s) can be used.

3.4 Asymptotic Consistency

Consider a collection of Bayesian networks B on a
fixed set of random variables Xv, v ∈ V . Let θ be
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a mapping from B to some set R. We call a sequence
of functions TN that map a sequence of data points
X1, X2, . . . , XN to an element of R a consistent esti-
mator of θ if for all (G, p) ∈ B, the sequence TN con-
verges to θ(G, p) in probability as N → ∞, assuming
the data points are independent draws from p.

For example, a learning algorithm A is a consistent
estimator of the CPDAG C∗ of the data generating
BN, or consistent for short, if the probability of the
event {A(D0) = C∗} tends to one as the data size N =
|D0| grows. It is known that, under mild conditions
on the collection B, an algorithm is consistent if it
maximizes a well-behaving scoring function, such as
the BIC score [Koller and Friedman, 2009, Thm. 18.2].

Let µi(s) be the expected value of SHD(Ai(D), C∗),
where the data set D consists of s independent draws
from the data generating BN. Now, the consistency of
learning algorithms translates directly to the consis-
tency of the InterVal estimators:

Theorem 3. Let A1, A2, . . . , AK be consistent learn-
ing algorithms. Then for all i ∈ [K] and s ∈ N we
have that µN

i (s) is a consistent estimator of µi(s).

This result follows because the agreement graph A0

converges to C∗ and so PHD(·, A0) converges to
SHD(·, C∗); note that in µN

i (s) we could replace N
by any number that grows with N . While this simple
asymptotic result is of little use in practice, it summa-
rizes the idea of the InterVal method and servers as a
starting point of the quest for finite-sample guarantees.

4 EXPERIMENTAL RESULTS

In this section, we empirically compare intersection-
validation with the other three methods for evaluating
structure learning algorithms (Table 1).

For obtaining algorithms that produce different re-
sults on finite data while still being asymptotically
consistent, we used exact score based learning with
varying scoring functions: BDeu [Heckerman et al.,
1995] with four different ESS values (0.01, 0.1, 1,
10), the BIC score [Schwarz, 1978], and fNML [Si-
lander et al., 2010]. We computed globally optimal
DAGs using GOBNILP [Cussens, 2011, Bartlett and
Cussens, 2013]. The program takes as input either
data files or pre-computed local scores. For the first
case, when directly working with data, the program
supports only BDeu with varying ESS as scoring func-
tion. Therefore for BIC and fNML we first calcu-
lated the local scores using the URLearning package
(http://urlearning.org) [Yuan and Malone, 2013].
To limit the computational effort, for all of the six
scoring functions we set the maximum indegree pa-
rameter to four. We estimated the parameters accord-

Table 2: Benchmark networks. MaxIn is the max-
imum indegree and Param the number of free param-
eters of the network.

Network Nodes Arcs MaxIn Param

Sachs 11 17 3 178
Insurance 27 52 3 984
Alarm 37 46 4 509

ing to the posterior mean with the prior coinciding
with structure learning; for BIC and fNML, we set the
ESS to 5.0.

For benchmarking we used three classic fully speci-
fied Bayesian networks as ground-truth: Alarm [Bein-
lich et al., 1989], Insurance [Binder et al., 1997], and
Sachs [Sachs et al., 2005]; we obtained the networks
from www.bnlearn.com/bnrepository. Due to the
moderate numbers of variables and arcs (Table 2)
these networks are suitable for structure learning using
GOBNILP.

For each benchmark network, we generated data sets
of varying size

N = 100× 2n , with n = 0, 1, . . . , 8 , (1)

and repeated the process ten times, obtaining 3× 9×
10 = 270 data sets in total.

4.1 Performance of Established Methods

Before evaluating InterVal itself, let us first examine
the performance of the three known evaluation meth-
ods of Table 1 on the chosen benchmark data sets in
order to obtain a reference point for the comparisons
in the later sections.

For each of the generated data sets, each of the
six learning algorithms returned a Bayesian network,
which we evaluated based on two distance measures:
structural Hamming distance (SHD), which compares
only the network structures, and cross-entropy (CE),
which compares the entire distribution. In addition,
we computed the mean log-predictive probability via
ten-fold cross-validation (CV). For each benchmark
network, algorithm, and sample size we averaged each
performance measure over the ten generated data sets.
The resulting learning curves for all data sets and eval-
uation methods are shown in Figure 2.

By visually inspecting the curves, we find that both
ground-truth based evaluation metrics (SHD and CE)
lead to different conclusions about the performance of
the six learning methods relative to each other. Con-
versely, comparing CE and CV we find that the latter
reproduces the curves of the former with remarkable
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Figure 2: Evaluation of learning algorithms with existing methods for three exemplary data sets.

accuracy. We conclude that CV is a poor approxi-
mation of SHD, so a method that evaluates structure
learning in absence of a ground truth is needed.

We also observe that SHD converges only in case of
Sachs, where eventually all methods find the correct
CPDAG. For Insurance and Alarm no learning method
achieves this at a sample size of 25,600 data points yet.
For all networks, CE and CV seem to converge already
at around 12,800 data points, convergence of the distri-
bution happens much faster than convergence of the
structure. Finding the generating network structure
(up to the equivalence class) is thus a harder problem
than approximating the generating distribution.

One challenge in using learning curves, as in Figure 2,
for comparing evaluation methods is that visual in-
terpretation needs—to some degree—subjective judg-
ment. To quantify differences between two evaluation
methods more objectively, we took for a given data
set the six mean performance measures for each of the
two methods in comparison and computed the Pearson
correlation among them. We show these correlations
for the pairwise comparison of CE vs SHD and CE vs
CV in Figure 3. Missing values (sample size 25,600 for
all networks and two further sample sizes for Sachs) are
caused by a complete agreement of algorithms for at
least one method, rendering Pearson correlation unde-
fined due to zero variance. We omit the correlation of
SHD vs CV for brevity as it is virtually identical to
that of SHD vs CE.
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Figure 3: Correlation among evaluation methods.

The main conclusion from this study is that Pear-
son correlation is indeed suitable to quantify differ-
ences among learning curves numerically as it coincides
with visual interpretation: For CE and CV, which are
nearly indistinguishable by visual inspection, we ob-
tain a correlation of 0.98 on average and of 0.94 in the
worst case. Conversely, where is rankings obviously
different, e.g., for comparing SHD and CE for Alarm

and Insurance at all sample sizes, there is no positive
correlation but rather a slight anti-correlation among
the mean values.

4.2 Intersection-Validation: First Evaluation

Now we evaluate the InterVal method assuming the
given data set is of size N , which we call the intersec-
tion point. For a moment we fix the intersection point
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point 1,600. Left: Partial Hamming distance up to the
intersection point 1600. Right: Correlation of PHD
with other evaluation methods.

N to 1,600. We pick this value since ground-truth-
based methods revealed that substantial learning hap-
pens already with that amount of data, but for none
of the data sets all algorithms agree according to any
evaluation method yet.

We computed agreement graphs from the results of
the six structure learning algorithms at the intersec-
tion point. Next, we created from these maximal data
sets ten subsamples according to the data set sizes
specified in Eq. 1. Finally, we learned network struc-
tures from the subsampled data with all six methods
and computed the partial Hamming distances between
the learned networks and the agreement graph. We re-
peated this procedure for all ten data sets of size 1,600
and for all three generating networks and plot the av-
eraged PHD for sample sizes 100, 200, 400, and 800.
In addition, we computed for all data sets and sample
sizes the correlation of PHD against the assessment of
the other methods. The results are shown in Figure 4.

We observe that PHD reproduces the results of SHD
in the case of Alarm almost perfectly with visually
hardly distinguishable learning curves and a correla-

tion of nearly 1. For Sachs, the correlations are a bit
smaller, but that is not very surprising given the non-
monotonic behavior of the SHD ground truth learning
curves. For Insurance, however, the learning curves dif-
fer visually a bit and the correlation to SHD is smaller,
ranging from 0.5 to 0.9, depending on the sample size.
While it is still higher compared to the correlation of
PHD to CE or CV, PHD as a proxy for SHD does not
always perform as well as CV as a proxy of CE (cf.
Figure 3). This might be due to the fact that the net-
work structure converges slower than the distribution
(Section 4.1) and is more prone to noise due to the
lower resolution of the discrete state space.

4.3 Varying the Intersection Point

Next we study the performance of SHD for varying in-
tersection points, simulating the property of real-world
data sets to be of different size in relation to the (un-
known) ground truth network. We repeated the com-
putations described in Section 4.2 for all intersection
points from 200 onwards according to Eq. 1 and all
three generating networks. The resulting 24 plots of
PHD learning curves are shown in the Supplement.

Figure 5 summarizes the results by displaying the cor-
relation between PHD and SHD as a function of sub-
sample size for all intersection points. We observe that
InterVal approximates SHD well for most locations of
the intersection point, but the performance varies.

For Alarm the decay is very small, even taking the
intersection point of at sample size 200 achieves a
correlation of 0.93 to the ground-truth based method
at sample size 100. This generating network demon-
strates that InterVal can work almost perfectly when
the ground-truth SHD curves are sufficiently smooth
and some parts of the network are learned correctly
already at small sample sizes.

In the case of Insurance the correlation of PHD and
SHD varies a lot. One explanation might be that, in
relation to the size of the network, Insurance shows the
slowest convergence w.r.t. SHD (Figure 2). Even at
sample size 25,600 all algorithms have still an SHD
of at least ten, whereas for Alarm all but BDeu(10)
find almost the correct equivalence class. Another, ex-
planation might be the rather unstable SHD learning
curves under ground truth at relatively large sample
sizes, e.g., two late crossings of BIC and fNML.

For Sachs, we need at least intersection point 800 to
approximate the ground-truth based assessment accu-
rately. A possible explanation is given by the SHD plot
in Figure 2, where at sample size 400 four of the six
algorithms still have an SHD of about 10, indicating
that they have made not much progress in identify-
ing the correct structure yet. As a consequence, the
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Figure 5: Correlation PHD vs SHD for different intersection points (legend) and sample sizes (x-axis).

agreement graph is at intersection point 400 hardly
more than guesswork and InterVal cannot reproduce
the SHD-based assessment for smaller sample sizes.

We conclude that the amount of available data at the
intersection point matters to some degree, but it is
not an equally important factor for all data sets and
distributions. In addition, the stability of the SHD-
learning curves under ground-truth also plays a role.
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Figure 6: Properties of the agreement graphs.

4.4 Predicting the Performance

To further investigate under which conditions InterVal
performs well, we next investigate the properties of the
agreement graphs at different intersection points for
the three generating networks. Figure 6 (left) shows
the relative size of the agreement graph, that is, the
number of included node pairs divided by number of
total node pairs. While the relatives sizes are all larger
than 0.7, it should be noted that a node-pair can also
agree if none of the algorithm reports an edge among
them. In particular, for sparse networks with many
variables, such as Alarm, this type of node pairs may
amount the vast majority.

Figure 7 shows for Sachs the ground-truth DAG and
CPDAG as well as agreement graphs at different in-
tersection points, which originate from the first of
the ten data samples in the study. Interestingly,
for this network there are no directed edges in the
CPDAG as the original DAG has no unshielded v-
structures. Comparing the agreement graphs to the
ground truth CPDAG, we observe that most of the
node-pairs that are not included in the agreement
graphs (dashed lines) correspond to edges in the
ground truth CPDAG. Comparing this to the other
two generating networks (Supplement), we conclude
that it is rather a peculiarity of the small number of
variables, though. More important, edges that all al-
gorithms agree upon are indeed in the ground truth
and this observation also holds in the case of Alarm

and Insurance.

Hence, we should also consider the absolute number
of edges in the agreement graph, i.e., the number of
connected node pairs (CNP) as informative statistic
about the quality of the agreement graph. We plot
the CNP in Figure 6 (right) and observe that at low
sample sizes the CNP of the agreement graph is for all
networks very small, indicating that initially most al-
gorithms disagree completely. In particular, for Sachs,
we have only 1.4 and 2.7 CNP in the agreement graph
on average for intersection point 200 and 400, so it is
hardly surprising that InterVal fails to reproduce SHD.
Having no more than three non-empty node pairs as
base for comparing algorithms appears to be too few.
However, it is remarkable that agreement on as few
as five CNP (intersection point 200 for Insurance) can
be enough for a strong positive correlation between
InterVal and SHD.

We also investigated whether the size of the agreement
graph and/or the CNP can be used as a predictor for
the accuracy of InterVal (Figure 8). There is a positive
correlation for Sachs (0.801), and Alarm (0.858) between
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Figure 7: Comparison of Sachs ground truth network with agreement graphs from first data sample. Here we
omit the arrow heads of bidirectional edges for simplifying the visualization.
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Figure 8: Accuracy of Intersection-Validation as corre-
lation PHD to SHD (y-axis) vs size of agreement graph
(x-axis) for all combinations of intersection point and
sample size. Legend indicates number of connected
node pairs (CNP) in the agreement graph.

the effectiveness of InterVal and the relative size of
the agreement graph. But for Insurance the accuracy is
relatively independent of the agreement graph size.

These results demonstrate that the relative size of
the agreement graph and the absolute number of con-
nected node pairs can be used as a predictor for the ef-
fectiveness of InterVal. While they cannot be the only
determining factors, they allow to predict when Inter-
Val should not be applied: When either the number of
connected node pairs is less than five or the size of the
intersection-graph amounts less than 80% of the to-
tal node-pairs, InterVal should not be used with much
confidence. Conversely, having an agreement graph
with a relative size greater than 0.9 allows—at least
for the data sets in this study—a good approximation
of SHD-based evaluation under known ground-truth.

5 CONCLUDING REMARKS

We have proposed a method that allows evaluating
the quality of learned network structures even in the
case that no ground-truth DAG is known. In contrast
to evaluating the predictive performance via cross-
validation, our InterVal method evaluates structural

similarity among the network as learning target in-
stead of the entire distribution.

We empirically demonstrated that the method yields
conclusions about the performance of algorithms that
resemble those obtained from measuring SHD if the
ground-truth DAG was known. We also observed that
these conclusions can differ dramatically from those
that are obtained by evaluating the learned distribu-
tion. While the presented studies concern the compar-
ison of six algorithms, InterVal can also be applied to
the simpler pairwise comparison (Supplement).

In addition, we studied the question of whether the
accuracy of InterVal can be predicted purely from what
can be observed. We found that the relative size of the
agreement graph as well as the number of connected
node pairs it in give a reliable forecast on the accuracy.

One limitation of the InterVal method is that it cannot
make a statement about the performance of algorithms
on the entire given data set, but only on smaller sub-
samples. However, cross-validation has essentially the
same property: 10-fold cross-validation evaluates the
distribution at 90% of the given sample size.

We believe the proposed method has high potential
and warrants future research in several directions.
One is to seek rigorous finite-sample accuracy guar-
antees under practical assumptions. Another direc-
tion is to both expand the experiments in the variety
of ground truth Bayesian networks and in the consid-
ered algorithms. It would be also interesting to study
how well InterVal works with structural metrics other
than SHD [de Jongh and Druzdzel, 2009, Peters and
Bühlmann, 2015].
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