
A Space–Time Tradeoff for Permutation Problems∗

Mikko Koivisto† Pekka Parviainen‡

Abstract

Many combinatorial problems—such as the traveling sales-

man, feedback arcset, cutwidth, and treewidth problem—

can be formulated as finding a feasible permutation of n

elements. Typically, such problems can be solved by dy-

namic programming in time and space O∗(2n), by divide

and conquer in time O∗(4n) and polynomial space, or by a

combination of the two in time O∗(4n2−s) and space O∗(2s)

for s = n, n/2, n/4, Here, we show that one can improve

the tradeoff to time O∗(T n) and space O∗(Sn) with TS < 4

at any
√

2 < S < 2. The idea is to find a small family of

“thin” partial orders on the n elements such that every lin-

ear order is an extension of one member of the family. Our

construction is optimal within a natural class of partial order

families.

1 Introduction

Sequencing or permutation problems ask for a permu-
tation on an n-element set so as to minimize a given
cost function. Classical examples include the travel-
ing salesman problem (TSP), the feedback arcset prob-
lem, and the treewidth problem; the present work is
partly motivated by a generalization of the feedback
arcset problem, the task of finding an optimal Bayesian
network, which has recently attracted considerable in-
terest in artificial intelligence and machine learning re-
search [11, 14, 15, 16, 19]. Common to all the mentioned
problems is that the cost of a permutation σ1σ2 · · ·σn

decomposes into n local terms, the jth term depend-
ing only on the sequence σj−d+1σj−d+2 · · ·σj and, pos-
sibly, the set of the remaining j− d preceding elements,
{σ1, σ2, . . . , σj−d}, for some constant d ≥ 0. We call
these permutation problems of degree d; TSP, for in-
stance, is of degree 2, the jth term being the distance
from city σj−1 to city σj .

Thanks to Bellman [2], Held and Karp [10], and
others [1, 12], we know that permutation problems can
be solved by dynamic programming across the subsets
of the n elements in time and space O∗(2n); through-

∗Supported by the Academy of Finland, Grant 125637.
†Helsinki Institute for Information Technology HIIT, Univer-

sity of Helsinki. Email: mikko.koivisto@cs.helsinki.fi.
‡Helsinki Institute for Information Technology HIIT, Univer-

sity of Helsinki. Email: pekka.parviainen@cs.helsinki.fi.

out the paper O∗ will suppress a factor polynomial in n.
While there is an obvious interest in seeking faster algo-
rithms, it is particularly the huge storage requirement
of dynamic programming that determines the feasibil-
ity limit in practice. Thus, from the point of view of
practical applications, the main concern is reducing the
space requirement.

Some permutation problems are known to admit
algorithms that run in time and space O∗(Cn) with
some C < 2. Recent examples include at least the
treewidth problem [6, 8], the pathwidth problem [8],
and TSP in bounded degree graphs [4, 7]. For so-
called precedence constrained sequencing problems such
improvements to dynamic programming were found
already three decades ago: Schrage and Baker [18]
introduced a labeling scheme for the constraints to
reduce the number of states in dynamic programming;
Lawler [13] provided a streamlined implementation that
allows to bound the time and space requirement by the
number of ideals of the precedence structure represented
by a partial order.

But, in general, one may need to trade time for
space. For instance, if given only polynomial space, it is
not known if one can solve TSP in time O∗(2n). In fact,
the best bound known is O∗(4n), achieved by a divide
and conquer algorithm that considers all partitions
of the n cities into two sets of about equal sizes,
solves the TSP on the corresponding two subinstances
recursively, and finally glues the two solutions and
selects an optimum over all the

(
n

bn/2c
)

partitions; while
this TSP algorithm is by Björklund and Husfeldt [3], the
divide and conquer technique itself is well known, e.g.,
due to Savitch [17], Gurevich and Shelah [9], and others
[6, 21]. Although algorithms faster than that, possibly
requiring moderately exponential space, should be much
more valuable in practice, there seem to be little prior
work on interpolating between the two extremes of
the space complexity. (We note that for partitioning
problems Björklund et al. [5] devise such tradeoffs using
the principle of inclusion and exclusion.)

What is, however, easily observed is that applying
divide and conquer until the subproblems are of size
s and then switching over to dynamic programming
requires time O∗(4n2−s) and space O(2s), for any s =
n/2, n/4, n/8, Yet, this scheme falls short if more

space, say O∗(24/5n), is available. This is unfortunate,
for reducing the space complexity by “only” a few orders
of magnitude, with about an equivalent increase in the
runtime, is what would make an algorithm feasible in
practice, given the typical processing speed and memory
size of modern computers.

Motivated by these concerns, which are particularly
relevant in the Bayesian network application, we re-
cently introduced a different approach, called the pair-
wise scheme [15]. The idea is to choose k pairs of ele-
ments (arbitrarily) and fix the mutual order of the ele-
ments within each pair, that is, a partial order on the
n elements. For each of the 2k possible partial orders,
the fraction of permutations compatible with it can be
scanned through by dynamic programming. In total,
this takes time O∗((3/2)k2n) and space O∗((3/4)k2n)
for any k = 0, 1, . . . , n/2. This gives a reasonable
scheme in moderately exponential space, O∗(Sn) with√

2 ≤ S ≤ 2.
Here, we address some intriguing questions that

remain. First, can one achieve the efficiency of the
divide and conquer scheme, that is, time O∗(Tn) and
O∗(Sn) with TS ≤ 4, for any

√
2 ≤ S ≤ 2? Note

that the pairwise scheme gives TS > 4 for S < 2.
Second, are there some T and S with TS < 4 such that
permutation problems can be solved in time O∗(Tn)
and space O∗(Sn)? Cases S = 1 and S = 2 are well-
known open problems, and it is tempting to conjecture
that also in between the value 4 gives a lower bound.
However, we will refute this conjecture by answering
both questions in the affirmative.

1.1 The problem and main results. For a unified
treatment of various permutation problems, we abstract
the notions of minimizing over permutations and de-
composing the cost of a permutation into local terms by
letting the costs take values in some semiring R with
addition ⊕ and multiplication �. Thus, the cost f(σ)
of a permutation σ, that is, a sequence σ1σ2 · · ·σn of n
different elements from N = {1, 2, . . . , n}, decomposes
into a product of n local costs:

f(σ) =
n⊙

j=1

fj

(
{σ1, σ2, . . . , σj}, σj−d+1 · · ·σj−1σj

)
,

and the task is compute the sum
⊕

σ f(σ) over all per-
mutations σ. Here, if d > j we read σj−d+1 · · ·σj−1σj

as σ1 · · ·σj−1σj , and if d = 0 the sequence is void. We
call any problem of this form, with the fj specified by
the problem input, a permutation problem of degree d,
or of bounded degree when d is some constant.

The traveling salesman problem, for example, is a
permutation problem of degree 2 in the min–sum semir-
ing of reals, with f1(A, x) = 0, and fj(A, x, y), for j > 1,

equaling the weight of edge xy in an input graph with
vertex set N , indifferent of A. Strictly speaking, this
formulation corresponds to the problem of computing
the minimum total weight over Hamiltonian paths, not
cycles; one can fix this by minor modifications.

The feedback arcset problem is a permutation prob-
lem of degree 1 in the min–sum semiring, with fj(A, x)
equaling the number (or total weight) of edges from
A \ {x} to x in the input graph.

For yet another example, the cutwidth problem is
a permutation problem of degree 0 in the min–max
semiring, with fj(A) equaling the number of edges with
one endpoint in A and the other in N \ A, where N is
the vertex set of the input graph.

Finally, the treewidth problem is a permutation
problem of degree 1 in the min–max semiring, with
fj(A, x) equaling the number of vertices in N \ A that
have a neighbor in the unique component of the induced
subgraph G[A] containing x, where G is the input graph
with vertex set N ; see, e.g., Bodlaender et al. [6].

As the algorithms we consider operate on semirings,
we take the time requirement of an algorithm as the
total number of semiring additions and multiplications
it performs, and the space requirement as the maximum
number of semiring elements that need to be stored at
any point during the execution of the algorithm. Here it
is reasonable to assume that the (black-box) functions
fj can be evaluated in time and space polynomial in n.

While we are interested in schemes that yield a good
time bound at any space bound of choice, we find it
convenient to gauge the efficiency of an algorithm by
a single, best-case number: we define the time–space
product of an algorithm as the infimum of the product
TS such that the algorithm (with worst case input) runs
in time O∗(Tn) and space O∗(Sn). We further define
the time–space product of a permutation problem as the
infimum of the time–space product over all algorithms
solving the problem; as above, T and S will refer to the
time and space contributions also in the sequel.

Theorem 1.1. The time–space product of any permu-
tation problem of bounded degree is less than 3.93.

We prove this by a combinatorial construction that
generalizes and improves upon the pairwise scheme [15].
We find it handy to view a permutation σ = σ1σ2 · · ·σn

as a linear order,1 with σiσj ∈ σ if and only if i ≤ j.

1A partial order P on baseset M is a subset of M × M such
that for all x, y, z ∈ M it holds that xx ∈ P (reflexive), xy ∈ P
and yx ∈ P implies y = x (antisymmetry), and xy ∈ P and
yz ∈ P implies xz ∈ P (transitivity); P is a linear order (or, total
order) if, in addition, xy ∈ P or yx ∈ P (comparability). Another
partial order Q on M is an extension of P if P ⊆ Q. Note that a
partial order fully specifies its baseset.

We make use of Lawler’s observation (see the references
[18, 13, 20] and Section 2) that the sum of f(σ) over
the linear extensions σ of a fixed partial order P can be
computed by dynamic programming in time and space
proportional to the number of ideals of P ; an ideal of
P is a set of elements I such that if y ∈ I and xy ∈ P ,
then x ∈ I; we denote by I(P) the set of ideals of P .
In our setting no particular partial order is given, but
the challenge is to find a “small” family of “thin” partial
orders such their linear extensions together exactly cover
the n! linear orders on the ground set N , that is, any
linear order on N is an extension of exactly one member
of the family. This motivates the definition of the time–
space product of a family P of partial orders on N as
the nth root of the product

θ(P) =
(∑

P∈P
|I(P)|

)(
max
P∈P

|I(P)|
)
.

To prove Theorem 1.1, we will construct a sequence
of families Pn such that θ(Pn)1/n < 3.93 for any
sufficiently large n.

In the present pursuit, we will study a subclass
of series–parallel partial orders (see, e.g., Steiner [20]
and references therein), namely, parallel compositions
of bucket orders; we postpone formal definitions of
such partial orders and the associated families to later
sections. This restriction not only suffices for proving
the bound in Theorem 1.1, but also enables showing that
the bound is the best one can achieve with such partial
orders. Curiously enough, the optimum is achieved with
partial orders that are parallel compositions of n/26
bucket orders of type 13 ∗ 13, that is, 13 elements in
the first bucket and 13 in the second. More generally,
we may take k such bucket orders (leaving the remaining
n − 26k elements unordered) and obtain the following
tradeoff in the space complexity range 1.452 < S ≤ 2.

Theorem 1.2. Let k be an integer at most n/26. Then
any permutation problem of bounded degree can be solved
in time O∗(αk2n) and space O∗(βk2n), with

α =
(

26
13

)
(214 − 1)

/
226 < 2.54× 103 ,

β = (214 − 1)
/
226 < 2.45× 10−4 .

With k = bn/26c, Theorem 1.2 implies Theorem 1.1.
The range where a time–space product less than 4

is achieved can be extended to
√

2 < S < 2 by replacing
13 above by larger numbers, 14, 15, . . .; we omit detailed
calculations and refer to Figure 1, which shows a
selection of different space–time tradeoff schemes. The
1∗1 scheme is the aforementioned pairwise scheme [15],
while the näıve m ∗ (n−m) scheme, m ≥ n/2, tries out

1 1.2 1.4 1.6 1.8 2
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Tradeoff

S (Space = Sn)

T
 (

T
im

e
=

 T
n)

TS = 4
D&C + DP
1 ∗ 1
13 ∗ 13
m ∗ m, 14 ≤ m ≤ n/2
m ∗ (n − m)

Figure 1: Space–time tradeoff schemes for permutation

problems. The time requirement O∗(T n) is shown as a

function of the space requirement O∗(Sn), for 1 ≤ S ≤ 2.

every partition of the n elements into two sets of sizes
m and n−m, for each solving the constrained problem
in time and space O∗(2m).

Our complexity bounds readily apply to the men-
tioned, well-known permutation problems. The bounds
are the best we know of, except for the treewidth prob-
lem, for which Fomin and Villanger [8] have presented
an algorithm running in time and space O(1.7549n) and
another algorithm running in time O(2.6151n) and poly-
nomial space. Thus, for the treewidth problem, our
bounds become interesting (i.e., not dominated by ei-
ther of the two) when 1.5048 < S < 1.7549.

2 Dynamic programming over partial orders

We begin with the basic dynamic programming algo-
rithm for permutation problems. For simplicity, we con-
sider permutation problems of degree 2; we trust the
reader can generalize this to any degree d. For any
A ⊆ N and x ∈ A, define g(A, x) as the sum of

|A|⊙
j=1

fj

(
{σ1, σ2, . . . , σj}, σj−1σj

)
,

over all permutations σ1σ2 · · ·σ|A| of the elements in A
with σ|A| = x. Note that the sum of f(σ) over all per-
mutations σ of the elements in N equals

⊕
x∈N g(N,x).

Because multiplication distributes over addition in a

semiring, we have the recurrence

g({x}, x) = f1({x}, x) ,
g(A, x) =

⊕
y∈A\{x}

g(A \ {x}, y)� f|A|(A, yx)

for A ⊆ N and |A| ≥ 2 .

Thus, a straightforward dynamic programming algo-
rithm computes g(N,x) for all x ∈ N , and hence the
sum of f(σ) over all permutations on N , in time and
space O∗(2n).

We then generalize the above algorithm to compute
the sum of the cost over all linear extensions of a given
partial order P on N . For A ⊆ N denote by P [A]
the induced partial order P ∩ (A × A). For any ideal
A ∈ I(P) and element x ∈ A, define gP (A, x) as the
sum of

|A|⊙
j=1

fj

(
{σ1, σ2, . . . , σj}, σj−1σj

)
,

over all linear extensions σ of P [A] with σ|A| = x. Note
that if P is the trivial order {xx : x ∈ N}, then gP

equals the above defined g.
Consider gP (A, x). If A \ {x} is not an ideal of P ,

then gP (A, x) = 0, since the sum is empty. Suppose
therefore that A \ {x} is an ideal of P . Then, any
linear extension σ of P [A] with σ|A| = x determines
a linear extension σ′ = σ[A \ {x}] of P [A \ {x}] with
some y = σ′|A|−1. Thus, the recurrence takes the form

gP ({x}, x) = f1({x}, x)
for {x} ∈ I(P) ,

gP (A, x) =
⊕

y∈A\{x}

gP (A \ {x}, y)� f|A|(A, yx)

for A,A \ {x} ∈ I(P) and |A| ≥ 2 .

That is, the formulas are the same as in the basic version
but applied only for ideals A of P where x ∈ A is a
maximal element. Again, a straightforward dynamic
programming algorithm shows the following.

Proposition 2.1. The sum of the costs f(σ) over all
linear extensions σ of a given partial order P on N can
be computed in time and space O∗(|I(P)|).

To extend the sum over all linear orders, we gener-
ally need to consider more than one partial order. Recall
that a family of partial orders P exact covers the linear
orders on N if every linear order on N is an extension
of exactly one partial order in P. Given such an exact
cover, the sum over linear orders can be computed by
simply computing the sums over the linear extensions

of each partial order in P separately, and finally taking
the sum of the |P| results. Thus, by Proposition 2.1, we
have the following.

Proposition 2.2. Let P be a family a partial orders
that exactly covers the linear orders on N . Then, given
P, the sum of the costs f(L) over all linear orders on N
can be computed in time O∗(∑

P∈P |I(P)|
)

and space
O∗(maxP∈P |I(P)|

)
.

We summarize in terms of the time–space product:
Let (Pn) be a sequence of partial order families such that
each Pn exactly covers the linear orders on {1, 2, . . . , n}.
Then the time–space product of the bounded-degree
permutation problem is at most limn θ(Pn)1/n (suppos-
ing the limit exists).

3 Parallel Bucket Orders: Upper Bound

We will consider parallel compositions of bucket or-
ders, defined as follows. A partial order P is the par-
allel composition of partial orders P1, P2, . . . , Pk if the
Pi are pairwise disjoint and their union is P , that
is, {P1, P2, . . . , Pk} is a partition of P ; given P , the
partition becomes unique if each component Pi is re-
quired to be connected, that is, Pi does not further
partition into two nonempty parts. A partial order
B on baseset M is a bucket order if M can be parti-
tioned into nonempty sets B1, B2, . . . , B`, called buck-
ets, such that xy ∈ B if and only if x = y or x ∈ Bi

and y ∈ Bj for some i < j; the bucket sequence
B1B2 · · ·B` is unique; the bucket order is said to be
of length ` and type |B1| ∗ |B2| ∗ · · · ∗ |B`|. For exam-
ple, if B1 = {1, 3} and B2 = {2}, then the bucket order
B1B2 = {11, 22, 33, 12, 32} on {1, 2, 3} is of length 2 and
type 2 ∗ 1.

As already mentioned, parallel compositions of
bucket orders belong to the class of series–parallel par-
tial orders. Simple rules are known for calculating the
number of ideals of a series–parallel partial order; see,
e.g., Equations 3.1 and 3.2 in Steiner [20] and references
therein. The following two lemmas are mere applica-
tions of these rules.

Lemma 3.1. The number of ideals of a bucket order
B = B1B2 · · ·B` is given by |I(B)| = 1 − ` + 2|B1| +
2|B2| + · · ·+ 2|B`|.

Lemma 3.2. Let P be the parallel composition partial
orders P1, P2, . . . , Pk. Then the number of ideals of P
is given by |I(P)| = |I(P1)| |I(P2)| · · · |I(Pk)|.

To define a partial order family that exactly covers
the linear orders on the ground set N , we introduce a
notion of reordering. We say that two bucket orders

are reorderings of each other if they have the same
baseset and they are of the same type (and length). For
example, the bucket order {1, 3}{2} is a reordering of
{1, 2}{3} but not of {2}{1, 3}. Further, we say that two
parallel composition of bucket orders are reorderings of
each other if their connected components can be labeled
as P1, P2, . . . , Pk and Q1, Q2, . . . , Qk such that Pi is a
reordering ofQi for all i. If P is a parallel composition of
bucket orders, we denote by P(P) the family of partial
orders that are reorderings of P . We call P(P) the
equivalence class of P (w.r.t. the reordering relation).

Proposition 3.1. Let P be a parallel composition of
bucket orders. Then P(P) exactly covers the linear
orders on the baseset of P .

Proof. Let P1, P2, . . . , Pk be the connected components
of P with basesets N1, N2, . . . , Nk, respectively. Let
σ = σ1σ2 . . . , σn be a linear order on the baseset of P .
It suffices to show that there is a unique partial order
Q equivalent to P such that σ is an extension of Q.

For each i = 1, 2, . . . , k, we construct a bucket order
Qi on Ni as follows. Let m1 ∗m2 ∗· · ·∗m` be the type of
Pi. For j = 1, 2, . . . , ` denote sj = m1 +m2 + · · ·+mj ,
s0 = 0, and m = s`. Let σ′ = σ′1σ

′
2 · · ·σ′m be the

induced order σ[Ni]. Now, let Qi = C1C2 · · ·C` with
Cj = {σ′t : sj−1 < t ≤ sj}. Note that, on one hand, σ′

is an extension of Qi, and on the other hand, any other
reordering of Qi must contain a pair xy with yx ∈ σ′.

Finally, let Q be the parallel composition of the
bucket orders Qi. Note that σ is an extension of Q,
since if xy ∈ Q, then xy ∈ Qi for some i, and hence,
xy ∈ σ. �

By basic combinatorial arguments we find the num-
ber of reorderings of a given parallel composition of
bucket orders:

Lemma 3.3. The number of reorderings of a bucket
order of type m1 ∗m2 ∗ · · ·m` is given by (m1 + m2 +
· · ·+m`)!/(m1!m2! · · ·m`!).

Lemma 3.4. The number of reorderings of the parallel
composition of bucket orders P1, P2, . . . , Pk is given by
p1p2 · · · pk, where pi is the number of reorderings of Pi.

Armed with Lemmas 3.1–3.4, we can calculate the
time–space product of the equivalence class of any
parallel composition of bucket orders. Let P be the
parallel composition of bucket orders P1, P2, . . . , Pk.
Then we have∑
Q∈P(P)

|I(Q)| = |P(P)||I(P)| =
k∏

i=1

|P(Pi)||I(Pi)| ,

max
Q∈P(P)

|I(Q)| = |I(P)| =
k∏

i=1

|I(Pi)| ,

and thus

θ(P(P)) = |P(P)||I(P)|2 =
k∏

i=1

|P(Pi)||I(Pi)|2 .

We complete this section with a specific family of
partial orders that yields a good time–space tradeoff; in
the next section, we show that the time–space product
of this family is the minimum over all equivalence
classes of parallel compositions of bucket orders. For
natural numbers n and k with 26k ≤ n define the
family Pn,k as follows. First, for i = 1, 2, . . . , k, let
Ni = {x ∈ N : 26(i − 1) < x ≤ 26i}, and let Pi

be an arbitrary 13 ∗ 13 bucket order on Ni. Then, let
N0 = {x ∈ N : 26k < x ≤ n}, and let P0 be the bucket
order {xx : x ∈ N0}. Finally, let Pn,k the equivalence
class of the parallel composition of P0, P1, . . . , Pk.

Straightforward application of the formulas pre-
sented in the section gives following result, which, by
Propositions 2.2 and 3.1, implies Theorem 1.2.

Lemma 3.5. (13 ∗ 13 scheme) Let n and k be natural
numbers with 26k ≤ n. Then∑
Q∈Pn,k

|I(Q)| = αk2n and max
Q∈Pn,k

|I(Q)| = βk2n ,

where

α =
(

26
13

)
(214 − 1)

/
226 < 2.539055× 103 ,

β = (214 − 1)
/
226 < 2.441258× 10−4 .

We see that Theorem 1.2 in turn implies Theo-
rem 1.1: If n is divisible by 26, then θ(Pn,bn/26c)1/n =
4(αβ)1/26 = 3.9271 In general, for any ε > 0 we have
θ(Pn,bn/26c)1/n < 4(αβ)1/26(αβ)−1/n < 4(αβ)1/26 + ε
for sufficiently large n. This means that with this se-
quence of partial order families the infimum of the time–
space product TS is 4(αβ)1/26 < 3.93. It may be worth
noting that, actually, the “first” family that already
yields a time–space product less than 4 is the one where
the number 13 above is replaced by 5, that is, with
bn/10c parallel bucket orders of type 5 ∗ 5.

4 Parallel Bucket Orders: Lower Bound

In this section we argue that the 13 ∗ 13 scheme
(Lemma 3.5) is actually optimal in the sense that it
minimizes the time–space product within the class of
partial order families in question. To this end, let P
be the parallel composition of k bucket orders on N =
{1, 2, . . . , n}. To lower-bound the product θ(P(P)),
define ψ(m) as the minimum of |P(B)||I(B)|2 over all

bucket orders B on m elements. Before we calculate
ψ(m) below, we first note the bound

θ(P(P)) ≥
k∏

i=1

ψ(|Nh|)

≥ min
{
ψ(m)n/m : m = 1, 2, . . . , n

}
.(4.1)

Here the first inequality follows by the definition of
ψ and the second by ψ(m) > 0 and the following
elementary observation.

Lemma 4.1. Let s1, s2, . . . , sk ≥ 1 be numbers that
sum up to s, and let φ(r) > 0 for any r. Then
φ(s1)φ(s2) · · ·φ(sk) ≥ min

{
φ(si)s/si : i = 1, 2, . . . , k

}
.

Proof. Suppose the contrary. Then
∏

i φ(si)sj is
(strictly) less than φ(sj)s for all j = 1, 2, . . . , k. Tak-
ing products on both sides yields the contradiction that∏

j

∏
i φ(si)sj =

∏
i φ(si)s is less than

∏
j φ(sj)s. �

It remains to calculate ψ(m) and show that
ψ(m)1/m is minimized atm = 26. We begin by calculat-
ing |P(B)||I(B)|2 for a bucket order B = B1B2 · · ·B`.
If each Bj consists of mj elements, then |P(B)||I(B)|2
is given by

θ(m1,m2, . . . ,m`) =
(m1 +m2 + · · ·+m`)!

m1!m2! · · ·m`!
×(1− `+ 2m1 + 2m2 + · · ·+ 2m`)2 .

We next show that θ(m1,m2, . . . ,m`) is minimized
subject to m1 + m2 + · · · + m` = m either at ` = 1,
m1 = m or at ` = 2, m1 = dm/2e, m2 = bm/2c; this will
allow us to express ψ(m) as min{4n, θ(dm/2e, bm/2c)}.

We consider first the case ` = 2 and show that
θ(m1,m2) is minimized when m1 and m2 are as close
to each other as possible, formalized in the following
“balancing lemma.”

Lemma 4.2. If m1 and m2 are positive integers with
m1 +m2 = m, then θ(m1,m2) ≥ θ(dm/2e, bm/2c).

Proof. We consider even and odd m separately.
Suppose m = 2a is even. Let c ≤ a−1 be a positive

integer. We will show that θ(a + c, a − c)/θ(a, a) ≥ 1.
To this end, observe first that

(2a+c + 2a−c − 1)/(2a + 2a − 1) ≥ 2c−1.

Thus,

θ(a+ c, a− c)
θ(a, a)

≥ a!a!
(a+ c)!(a− c)!

4c−1 =: ρ(a, c) .

Next, note that ρ(a, c) grows with a for any fixed c; to
see this, observe that the ratio ρ(a, c)/ρ(a− 1, c) equals

a2/[(a+c)(a−c)] > 1 for 0 < c < a. Thus, for any fixed
c it would suffice to show that ρ(c+1, c) ≥ 1. What we,
in fact, can do is to show that ρ(c + 1, c) grows with c
and that ρ(3, 2) > 1, which leaves the case c = 1 open
for a moment. Here, the former claim is proved by

ρ(c+ 1, c)
ρ(c, c− 1)

=
4(c+ 1)2

(2c+ 1)2c
>

4(c+ 1)2

(2c+ 2)2
= 1 ,

and the latter claim by calculation: ρ(3, 2) = 6/5 > 1.
Finally, the case of c = 1 is handled by

θ(a+ 1, a− 1)
θ(a, a)

=
a

a+ 1

(5 · 2a−1 − 1
4 · 2a−1 − 1

)2

>
2

2 + 1

(5
4

)2

=
50
48

> 1 .

Suppose then that m = 2a + 1 is odd. Again,
let c ≤ a − 1 be a positive integer. To show that
θ(a + 1 + c, a − c)/θ(a + 1, a) ≥ 1 we will repeat the
line of argumentation given above for even m. To this
end, observe

(2a+1+c + 2a−c − 1)/(2a+1 + 2a − 1) ≥ 2c+1/3 .

Thus,

θ(a+ 1 + c, a− c)
θ(a+ 1, a)

≥ (a+ 1)!a!
(a+ 1 + c)!(a− c)!

4c+1

9
=: ρ′(a, c) .

Next, note that ρ′(a, c) grows with a for any fixed c; to
see this, observe that the ratio ρ′(a, c)/ρ′(a−1, c) equals
(a+1)a/[(a+1+ c)(a− c)] > 1 for 0 < c < a. Thus, for
any fixed c it would suffice to show that ρ′(c+1, c) ≥ 1.
What we, in fact, can do is to show that ρ′(c+1, c) grows
with c and that ρ′(3, 2) > 1, which leaves the case c = 1
open for a moment. Here, the former claim is proved by

ρ′(c+ 1, c)
ρ′(c, c− 1)

=
4(c+ 2)(c+ 1)
(2c+ 2)(2c+ 1)

>
4(c+ 2)(c+ 1)
(2c+ 4)(2c+ 2)

= 1 ,

and the latter by calculation: ρ′(3, 2) = 64/45 > 1.
Finally, the case of c = 1 is handled by

θ(a+ 2, a− 1)
θ(a+ 1, a)

=
a

a+ 2

(9 · 2a−1 − 1
6 · 2a−1 − 1

)2

>
2

2 + 2

(3
2

)2

=
18
16

> 1 . �

At first glance, one might think that the uniform
distribution should minimize θ(m1,m2, . . . ,m`) also for

` > 2. However, this is in fact not the case.2 Therefore,
the proof technique we use for Lemma 4.2 or other (often
powerful) convexity arguments seem not applicable.
Instead, we are able to prove the following “shortening
lemma”, which states that for any bucket order of length
` + 1 ≥ 3 there is another bucket order of length ` ≥ 2
that yields a smaller time–space product.

Lemma 4.3. Let ` ≥ 2 and let m1 ≥ m2 ≥ · · · ≥
m`+1 ≥ 0 and c1 ≥ c2 ≥ · · · ≥ c` ≥ 0 be integers such
that m`+1 = c1 + c2 + · · · + c` and c1 − c` ≤ 1. Then
θ(m1,m2, . . . ,m`+1) > θ(m1 + c1,m2 + c2, . . . ,m` + c`).

Proof. Put ai := mi + ci for i = 1, 2, . . . , `. Also,
denote b := m`+1 for brevity. We will show that
θ(a1, a2, . . . , a`)/θ(m1,m2, . . . ,m`, b) < 1.

We begin with the case b = 1. Then it suffices to
show that

θ(m1 + 1,m2, . . . ,m`)
θ(m1,m2, . . . ,m`, 1)

=
1

m1 + 1

(
2m1+1 + 2m2 + · · ·+ 2m` + 1− `

2m1 + 2m2 + · · ·+ 2m` + 2− `

)2

< 1 .

To see that this holds, we consider a few cases to
show that the squared term is always less than m1 + 1.
Because the squared term is always less than 4, we are
done for m1 ≥ 3. Now, if m1 = 2, then the squared
term is at most [(23 + 21 − 1)/(22 + 21 + 21 − 2)]2 =
(9/6)2 = 9/4 < 3, Finally, if m1 = 1, then the squared
term is at most [(22 + 21 − 1)/(21 + 21 + 21 − 2)]2 =
(5/4)2 = 25/16 < 2.

Then, for any b ≥ 1, we notice the bound

m1!m2! · · ·m`!b!
a1!a2! · · · a`!

≤ b!
(b+ 1)b

(4.2)

that follows since the denominator contains the factori-
als in the numerator, except for b!, plus b other terms
all greater or equal to b+ 1.

Next suppose 2 ≤ b ≤ `. Under this assumption
ai = mi + 1 for i = 1, 2, . . . , b and ai = mi for
i = b+ 1, b+ 2, . . . , `. So we find that

2a1 + 2a2 + · · ·+ 2a` + 1− `

≤ 2
(
2m1 + 2m2 + · · ·+ 2m` + 2b − `

)
.(4.3)

To see this, subtract the terms on the left from the ones
on the right to get

2mb+1 + 2mb+2 + · · ·+ 2m` + 2b+1 − `− 1
≥ (`− b+ 2)2b − `− 1 ≥ 0 .

2A counter example is θ(3, 3, 3) ≈ 4.536 > 4.421 ≈ θ(4, 4, 1).

Here the last inequality follows because (` − b + 2)2b

clearly grows with b for 1 ≤ b ≤ `, and at b = ` we have
2`+1 ≥ `+ 1, which holds for all ` > 0. Combining the
bounds (4.2) and (4.3) yields

θ(a1, a2, . . . , a`)
θ(m1,m2, . . . ,m`, b)

≤ 4b!
(b+ 1)b

< 1

for b ≥ 2, since (4 · 2!)/(2 + 1)2 = 8/9 and it is easy to
verify that 4b!/(b+ 1)b decreases when b grows.

It remains to consider the case b > `. We will
first examine the cases b = 3 and b = 4, and then the
remaining case b ≥ 5.

Suppose b = 3; hence, ` = 2. Thus a1 = m1 +2 and
a2 = m2 + 1, and so

θ(a1, a2)
θ(m1,m2, b)

=
3!

(m1 + 2)(m1 + 1)(m2 + 1)

×
(

2m1+2 + 2m2+1 − 1
2m1 + 2m2 + 23 − 2

)2

.

Now, if m1 = 3, then m2 = 3, and the above ratio
evaluates to 6/80(47/22)2 < 1. Otherwise m1 ≥ 4, and
the ratio can be bounded from above by 6/(6 ·5 ·4)42 =
4/5 < 1.

Next suppose b = 4. This means ai ≤ mi + 2 for all
i = 1, 2, . . . , `. Using the bound (4.2) yields

θ(a1, a2, . . . , a`)
θ(m1,m2, . . . ,m`, b)

≤ 42 · 4!
(4 + 1)4

=
384
625

< 1 .

Finally, suppose b ≥ 5. Observe ai ≤ mi + db/`e ≤
mi + (b+ `− 1)/` ≤ mi + (b+ 1)/2. Thus,

2a1 + 2a2 + · · ·+ 2a` + 1− `

≤ 2(b+1)/2
(
2m1 + 2m2 + · · ·+ 2m` + 2b − `

)
;(4.4)

note that 2b − ` is positive, since b > `. Combining the
bounds (4.2) and (4.4) yields

θ(a1, a2, . . . , a`)
θ(m1,m2, . . . ,m`, b)

≤ 2b+1b!
(b+ 1)b

< 1 .

Here the last inequality follows because at b = 5 we have
25+15!/(5 + 1)5 = 80/81 < 1 and because this bound
decreases when b grows. To verify the latter claim,
observe that the bound at b divided by the bound at
b− 1 equals 2[b/(b+ 1)]b ≤ 2[(b+ 1)/b]e−1 ≤ 8/(3e) < 1
for any b ≥ 3. �

Combining the shortening lemma (Lemma 4.3) with
the balancing lemma (Lemma 4.2) immediately yields
the following summary.

Lemma 4.4. Let m ≥ 1 be an integer. Then ψ(m)
equals the smaller of θ(m) = 4m and θ(dm/2e, bm/2c).

We are now ready to show that the time–space
product of the 13 ∗ 13 scheme is the smallest one can
achieve with parallel compositions of bucket orders.

Proposition 4.1. (Lower bound) Let P be a par-
allel composition of bucket orders on {1, 2, . . . , n}.
Then the time-space product θ(P(P))1/n is at least
4(αβ)1/26 ≥ 3.9271, where α and β are as defined in
Lemma 3.5.

Proof. By the bound (4.1), it suffices to show that
ψ(m)1/m is minimized at m = 26. By calculation, using
Lemma 4.4, we find that this is indeed the case when
1 ≤ m ≤ 149 (results not shown).

It remains to show that ψ(m)1/m ≥ ψ(26)1/26 =
3.9271 . . . for all m ≥ 150. Because this clearly holds if
ψ(m) = θ(m), we may, by Lemma 4.4, without any loss
in generality assume ψ(m) = θ(dm/2e, bm/2c). To this
end, define υ(m) :=

(
m

bm/2c
)1/m and observe

ψ(m)1/m = υ(m)
(
2dm/2e + 2bm/2c − 1

)2/m

≥ υ(m)
(
2m/2+1 − 1

)2/m

≥ 2υ(m) .

Next we show that υ(m) grows with m, by proving
υ(2a − 1)/υ(2a) ≤ 1 and υ(2a)/υ(2a + 1) ≤ 1 for any
a = 1, 2, . . . (actually, for any m ≥ 150 would do). The
former is shown by(
υ(2a− 1)
υ(2a)

)2a−1

=
(

2a
a

) 1
2a a

2a
≤

(
22a

) 1
2a 1

2
= 1 ;

the latter is shown by(
υ(2a)

υ(2a+ 1)

)2a+1

=
(

2a
a

) 1
2a a+ 1

2a+ 1

≤
(22a

e

) 1
2a 1

2

(
1 +

1
2a+ 1

)
≤ e−

1
2a e

1
2a+1

< e0 = 1 ,

where the first inequality holds for a ≥ 2, whereas in
the case a = 1 we replace e by 2 and obtain the bound
2
√

2/3 < 1.
Now it suffices to verify that 2υ(150) =

3.92778 . . . > 3.9271. �

Acknowledgements The authors are grateful to Fe-
dor Fomin, Petteri Kaski, Saket Saurabh, and Yngve
Villanger for valuable discussions about the divide and
conquer technique for permutation problems.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski,
Complexity of finding embeddings in a k-tree, SIAM
J. Alg. Disc. Meth., 8 (1987), pp. 277–284.

[2] R. Bellman, Dynamic programming treatment of the
travelling salesman problem, J. Assoc. Comput. Mach.,
9 (1962), pp. 61–63.

[3] A. Björklund and T. Husfeldt, Exact algorithms for
exact satisfiability and number of perfect matchings,
Algorithmica, 52 (2008), pp. 226–249.

[4] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto,
The travelling salesman problem in bounded degree
graphs, in Proc. of the 35th International Colloquium
on Automata, Languages and Programming (ICALP
2008), pp. 198–209. Springer LNCS 5125, 2008.

[5] , Computing the Tutte polynomial in vertex-
exponential time, in Proc. of the 49th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS 2008), pp. 677–686. IEEE Computer Society,
2008.

[6] H. Bodlaender, F. Fomin, A. Koster, D. Kratsch,
and D. Thilikos, On exact algorithms for treewidth,
in Proc. of the 14th Annual European Symposium on
Algorithms (ESA 2006), pp. 672–683, 2006.

[7] D. Eppstein, The traveling salesman problem for cubic
graphs, J. Graph Algorithms Appl., 11 (2003), pp. 61–
81.

[8] F. Fomin and Y. Villanger, Treewidth computation and
extremal combinatorics, in Proc. of the 35th Interna-
tional Colloquium on Automata, Languages and Pro-
gramming (ICALP 2008), pp. 210–221. Springer LNCS
5125, 2008.

[9] Y. Gurevich and S. Shelah, Expected computation time
for Hamiltonian path problem, SIAM J. Comput., 16
(1987), pp. 486–502.

[10] M. Held and R. Karp, A dynamic programming ap-
proach to sequencing problems, J. Soc. Indust. Appl.
Math., 10 (1962), pp. 196–210.

[11] M. Koivisto and K. Sood, Exact Bayesian structure
discovery in Bayesian networks, Journal of Machine
Learning Research, 5 (2004), pp. 549–573.

[12] E. Lawler, A comment on minimum feedback arc sets,
IEEE Trans. on Circuit Theory, pp. 296–297, 1964.

[13] , Efficient implementation of dynamic program-
ming algorithms for sequencing problems, Technical
Report BW 106/79, Stiching Matematisch Centrum,
Amsterdam, 1979.

[14] S. Ott and S. Miyano, Finding optimal gene networks
using biological constraints, Genome Informatics, 14
(2003), pp. 124–133.

[15] P. Parviainen and M. Koivisto, Exact structure discov-
ery in Bayesian networks with less space, in Proc. of
the 25th Conference on Uncertainty in Artificial Intel-
ligence (UAI 2009).

[16] E. Perrier, S. Imoto, and S. Miyano, Finding optimal
Bayesian network given a super-structure, Journal of
Machine Learning Research, 9 (2008), pp. 2251–2286.

[17] W. Savitch, Relationships between nondeterministic
and deterministic tape complexities, Journal of Com-
puter and System Sciences, 4 (1970), pp. 177–192.

[18] L. Schrage and K. R. Baker, Dynamic programming
solution for sequencing problems with precedence con-
straints, Operations Research, 26 (1978), pp. 444–449.

[19] T. Silander and P. Myllymäki, A simple approach for
finding the globally optimal Bayesian network structure,
in Proc. of the 22nd Conference on Uncertainty in
Artificial Intelligence (UAI 2006), pp 445–452. AUAI
Press, 2006.

[20] G. Steiner, On the complexity of dynamic programming
for sequence problems with precedence constraints, An-
nals of Operations Research, 26 (1990), pp. 103–123.

[21] V. Vassilevska and R. Williams, Finding, minimizing,
and counting weighted subgraphs, in Proc. of the 41st
ACM Symposium on Theory of Computing (STOC
2009), pp. 455–464. ACM Press, 2009.

