
Efficient construction of maximal and minimal

representations of motifs of a string ⋆

François Nicolas a, Veli Mäkinen a and Esko Ukkonen a

a Department of Computer Science,
P. O. Box 68 (Gustaf Hällströmin katu 2b)

FIN-00014 University of Helsinki

Abstract

Two substrings of a given text string are called synchronous (occurrence-equivalent)
if their sets of occurrence locations are translates of each other. Linear time algo-
rithms are given for the problems of finding a shortest and a longest substring that
is synchronous with a given substring. We also introduce approximate variants of
the motif discovery problem and give polynomial time algorithms for finding longest
and shortest substrings whose suitably translated occurrence location set contains
or, respectively, is contained in a given set of locations. The FFT technique used here
also leads to an O(n log n) algorithm for finding the maximum-content gapped motif
that is synchronous with a given set of locations; the previously known algorithm
for this problem is only quadratic.

1 Introduction

Discovery of repetitive patterns or motifs of a given string of symbols t is a
central task in combinatorial analysis of sequences, with numerous applica-
tions on various areas such as information retrieval from texts, and biological
sequence analysis [6].

To economically represent such motifs, say, as an index structure, it is of
interest to find a sparse set of representatives for all motifs [1,8,10]. Two

⋆ Supported by the Academy of Finland under grants 21196 (From Data to Knowl-
edge) and 7523004 (Algorithmic Data Analysis).

Email addresses: nicolas@cs.helsinki.fi (François Nicolas),
vmakinen@cs.helsinki.fi (Veli Mäkinen), ukkonen@cs.helsinki.fi
(Esko Ukkonen).

Preprint submitted to Elsevier Science 19 March 2009

motifs are considered equivalent (’synchronous’) if their occurrence locations
in t are translates of each other. The maximal (longest) and minimal (shortest)
motifs in an equivalence class are obvious candidates for representing the class.
For example, string AAXBYCCCZAAUBVCCCA has substring motif AA that occurs
twice. The longest substring motif with the same translated occurrences is CCC
and the shortest is B. In this paper, we give efficient algorithms for finding
such representatives for substring and gapped motifs as well as consider some
approximate variants with relaxed synchronicity requirements.

For substring motifs (i.e., motifs without gaps) the suffix-tree of the original
string is the well-known full index which can be constructed in linear time and
from which the occurrence locations of any substring motif can be found in
time linear in the length of the motif and the number of its occurrences. The
suffix-tree also helps in finding a longest and a shortest synchronous substring
motif for a given motif. In fact, if we require that the shortest motif should
be a substring of the given motif and, similarly, that the longest motif should
be a superstring of the given motif, then the shortest and longest motifs can
be quite easily found using suffix-tree techniques in linear time [11,12]. In
Section 4 of this paper we complement this result by giving a linear-time
algorithm for finding a shortest and a longest representative motif without
the substring/superstring restriction.

We also consider the following problem of approximate motif discovery. Given
some set of locations of t, it is possible that no substring motif has (after
any translation) exactly this set of occurrence locations. Then it is of interest
to find a substring motif that has this same pattern of occurrences in some
approximate sense.

Two such approximations will be introduced. The first one is a longest sub-
string motif whose translated occurrence set contains the given set of locations
(longest super-synchronous motif). It is shown in Section 5 that such a motif
can be found using FFT in O(|t| log |t|) time. This same technique can inter-
estingly be applied also on the discovery of gapped motifs (i.e., motifs that can
contain so-called don’t care symbols that match any symbol). We obtain an
O(|t| log |t|) algorithm for constructing the maximum-content gapped motif,
i.e., the motif with largest number of non-gap symbols, that is synchronous
to a given motif (or to a given set of occurrence locations). This improves on
the earlier, quadratic-time algorithm of [2,9–12]. It was also shown recently,
that finding a smallest such gapped motif is NP–complete [11,12].

Finally, we propose in Section 6 another approximate motif, namely shortest
substring motif whose translated occurrence set is contained in the given set of
locations (shortest sub-synchronous motif). Such a motif can be found using
combined suffix-tree and dynamic programming techniques in time O(|t|2).

2

2 Synchronous motifs

2.1 Synchronicity

A string w (over Σ) is a finite sequence of elements (called letters or symbols)
drawn from a finite alphabet (Σ). The length of w is denoted |w|. If not
otherwise stated, we assume for simplicity that Σ is the integer alphabet, i.e.,
Σ = [0, |w| − 1] where [0, |w| − 1] denotes the interval of all integers from 0
to |w| − 1.

String concatenation is denoted multiplicatively. The letter of w that occurs
at position i is denoted w[i]: w = w[0]w[1]w[2] · · ·w[|w| − 1]. The substring
of t between locations i and j is denoted w[i, j]: w[i, j] = w[i]w[i+1] · · ·w[j−
1]w[j].

The set of all occurrence locations of x in t is denoted Loct(x): Loct(x) is
the set of all i ∈ [0, |t| − |x|] such that t[i, i + |x| − 1] = x. For example,
if t = 01001001010 then Loct(10) = Loct(1) = {1, 4, 7, 9}, Loct(11) = ∅,
Loct(0) = {0, 2, 3, 5, 6, 8, 10}, and Loct(010) = Loct(01) = {0, 3, 6, 8}.

We say that x and y are synchronous in t if Loct(x) and Loct(y) are translates
of each other, i.e., if there exists an integer d such that Loct(x) = Loct(y)+d.
Synchronism is an equivalence relation on the substrings of t. In our exam-
ple t = 01001001010, substrings 1 and 010 are synchronous as Loct(1) =
Loct(010) + 1.

The synchronicity relation of substrings and other motifs has earlier been
considered (under various names and notations), e.g., in [1,2,8–10].

2.2 Problems on synchronous and approximately synchronous substrings

This paper tackles the four problems listed below. In each case t is a string
(the text) over Σ, and x is a non-empty substring of t.

Problem 1 (Longest Synchronous Substring) Find a longest string x∗

such that x and x∗ are synchronous in t.

Problem 2 (Shortest Synchronous Substring) Find a shortest string x∗

such that x and x∗ are synchronous in t.

In the following two problems we introduce relaxed variants of synchronicity.
The motivating situation is such that we are given some set of locations of

3

t and want to find a motif that is associated with them. As it may happen
that no substring of t is exactly synchronous with the given locations, we only
require that the given locations, when suitably translated, are contained in or
contain the occurrence locations of the motif to be discovered. In what follows,
L is a set of locations of t, i.e., a subset of [0, |t| − 1]; for example, L could
be L = Loct(x) for some x or just a set of somehow interesting locations of t
for which we want to find a motif.

Problem 3 (Longest Super-Synchronous Substring) Find a longest
string x∗ such that there exists an integer d satisfying L + d ⊆ Loct(x

∗).

Problem 4 (Shortest Sub-Synchronous Substring) Find a shortest
string x∗ such that there exists an integer d satisfying Loct(x∗) + d ⊆ L.

Linear-time algorithms for Problems 1 and 2 are presented in Section 4. Note
that solutions x∗ of Problem 1 are not necessarily superstrings of x. In the same
way, solutions x∗ of Problem 2 are not necessarily substrings of x. It is known
[11,12] that the longest superstring of x and the shortest substring of x that
are synchronous to x in t can be found in linear time. An O (|t| · log |t| · log σ)
algorithm for Problem 3 and a quadratic algorithm for Problem 4 are pre-
sented in Sections 5 and 6, respectively. Here σ denotes the cardinality of the
alphabet of t, i.e., the number of distinct letters that occur in t. Note that
σ is not greater than |t| so the algorithm for Problem 3 is O

(

|t| · log2 |t|
)

.
The algorithms for Problems 1, 2 and 4 rely on suffix-trees. The algorithm for
Problem 3 relies on Fast Fourier Transform (FFT).

3 Preliminaries on suffix-trees

3.1 Basics of suffix-trees

Let us clarify some terminology related to directed graphs (digraphs) in order
to properly deal with the suffix-tree of t. In a digraph, a root is a node from
which every other node of the digraph is reachable. Define a tree as a rooted
acyclic digraph such that every non-root node has in-degree one: all edges of
a tree are directed away from its root. A node is called a leaf if its out-degree
is zero, and internal otherwise. A tree is called branching if no internal node
is of out-degree one.

The suffix-tree [14,6] of t, denoted Tt, is the leaf- and edge-labeled branching
tree (actually a compacted trie representing all suffixes of t) satisfying the
following:

4

• each edge is labeled with a non-empty substring of t$ where $ is a symbol
that does not occur in t,

• no two edges leaving a node have their labels beginning with the same letter,
• the leaves are bijectively labeled with [0, |t| − 1], and
• for each i ∈ [0, |t| − 1], the path from the root to leaf number i spells out

(t$)[i, |t|], i.e., the edge labels concatenated along the path make the suffix
of t$ starting at position i.

Notice that, as a branching tree on |t| leaves, the suffix-tree of t has at most
2 |t| − 1 nodes. Each edge-label x is encoded with a pair (i, j) of indices with
0 ≤ i ≤ j ≤ |t| such that x = (t$)[i, j]; each leaf is labeled with one integer;
internal nodes are unlabeled. Hence, the suffix-tree Tt is of size O(|t|).

Theorem 5 ([14,3,4]) Let t be a string over integers [0, |t| − 1]. The suffix-
tree Tt of t can be constructed in O(|t|) time.

For any leaf-labeled tree T and node x of T , let LabT (x) denote the set of all
leaf-labels that are reachable from x in T .

The fundamental property of suffix-trees is:

Lemma 6 ([6]) Let Tt be the suffix-tree of t, and let x be a substring of t.
There exists a unique node x of Tt such that LabTt

(x) = Loct(x). Moreover, x
can be found from x and Tt in the following way: follow the unique path from
the root that in its concatenated edge labels spells out x, until x is exhausted;
node x is the head of the edge on which the last match occurs.

It follows from this lemma that if the number of distinct letters that occur in
t is bounded then x can be computed from x and Tt in O(|x|) time.

3.2 Candidate solutions in the suffix-tree

In this section, we notice that the optimum solutions of our problems can only
be found at very particular places in the suffix-tree of the input text.

3.2.1 Maximization problems

For every node v of the suffix-tree Tt, let λTt
(v) denote the string that labels

the path from the root of Tt to node v. The next lemma is a consequence of
Lemma 6.

Lemma 7 Let x be a substring of t that occurs in t at least twice, and let x
be the node of Tt such that LabTt

(x) = Loct(x). The following two assertions

5

hold: Loct(x) = Loct(λTt
(x)) and x is a prefix of λTt

(x).

In other words, Lemma 7 states that λTt
(x) is the longest string with the

same occurrence locations in t as x. Note that if x occurs only once in t then
λTt

(x) ends with the special end symbol $, and thus λTt
(x) does not occur

in t. It follows from Lemma 7 that any optimum solution x∗ of the Longest
(Super-)Synchronous Substring problem has to be of the form x∗ = λTt

(x∗)
for some internal node x∗ of Tt.

3.2.2 Minimization problems

For every non-root node v of the suffix-tree Tt, let λ′

Tt
(v) := λTt

(u)a, where u
denotes the parent node of v and a denotes the first symbol of the string that
labels the edge from u to v.

Lemma 8 Let x be a non-empty substring of t, and let x be the node of Tt such
that LabTt

(x) = Loct(x). The following two assertions hold: Loct(λ
′

Tt
(x)) =

Loct(x) and λ′

Tt
(x) is a prefix of x.

PROOF. Follows from Lemma 6. 2

In other words, Lemma 8 states that λ′

Tt
(x) is the shortest string with the same

occurrence locations in t as x. It follows from Lemma 8 that every optimum
solution x∗ of the Shortest (Sub-)Synchronous Substring problem is of the
form x∗ = λTt

(x∗) for some non-root node x∗ of Tt.

4 Longest and shortest synchronous motifs

The aim of this section is to prove that Problem 1 (Longest Synchronous
Substring) and Problem 2 (Shortest Synchronous Substring) can be solved
in linear time under the integer alphabet hypothesis. The proof combines
Lemma 9 below and the discussion presented in Section 3.2.

Lemma 9 Let L be a subset of the integer interval [0, n − 1] for some n, and
let T be a branching tree whose leaves are bijectively labeled with a subset of
[0, n − 1]. The set of all nodes v of T such that LabT (v) is a translate of L is
computable in O(n) time.

PROOF. Let k denote the cardinality of L, and let X denote the set of all
nodes v of T such that LabT (v) has cardinality k. Clearly, set X can be found

6

in O(n) time because:

• T has at most 2n − 1 nodes, and
• the cardinalities of all sets of form LabT (v), where v is a node of T , can be

evaluated from T in a bottom-up fashion in linear time.

Since two sets are translates of each other only if they have the same cardinal-
ity, it remains to select the elements x ∈ X such that LabT (x) is a translate
of L. The trick is to realize that (LabT (x))x∈X is a family of pairwise disjoint
subsets of [0, n − 1]. Therefore, the rule of sum ensures that the cardinality of
X, denoted h, satisfies hk ≤ n. We can now finish the computations in O(n)
time as follows.

(1) For each x ∈ X, construct a (possibly unsorted) list of all elements of
LabT (x).

(2) Bucket sort simultaneously all the lists from Step 1, as well as the list of
all elements of L.

(3) For each x ∈ X, check whether LabT (x) is a translate of L by comparing
the corresponding sorted lists.

For each node v of T , LabT (v) can be formed from v and T in a time propor-
tional to the size of LabT (v), and thus Step 1 takes O(hk) time, which is also
O(n). At Step 2, there are hk + k integers to sort using n buckets, and thus
this step takes O(n) time. Finally, each of the h list comparisons at Step 4
takes O(k) time, giving total time O(n). 2

Theorem 10 There exists an algorithm that, given a string t over [0, |t| − 1]
and a non-empty substring x of t, finds in O(|t|) time a longest (resp. shortest)
string synchronous to x in t.

PROOF. The algorithm for the Longest Synchronous Substring problem is
as follows.

(1) Construct the suffix-tree Tt of t.
(2) Construct the set, denoted Y , of all nodes v of Tt such that LabTt

(v) is
a translate of Loct(x).

(3) Find a node x∗ ∈ Y with maximum |λTt
(x∗)| and return x∗ := λTt

(x∗).

It follows from Section 3.2.1 that the algorithm is correct provided that x
occurs in t at least twice.

Step 1 can be implemented in O(|t|) time by Theorem 5. Moreover, Loct(x) is
computable in O(|t|) time either by examining the suffix-tree Tt or, directly,
by applying the KMP algorithm [7]. Therefore, Step 2 can be accomplished in
O(|t|) time by Lemma 9. Finally, the lengths of all strings λTt

(v), where v is

7

a node of Tt, can be evaluated from Tt in a top-down fashion in linear time.
Therefore, Step 3 can also be implemented in O(|t|) time. We have thus shown
that the Longest Synchronous Substring problem can be solved in linear time.

To obtain a linear-time algorithm for the Shortest Synchronous Substring
problem, replace Step 3 with:

(3) Find a node x∗ ∈ Y with minimum
∣

∣

∣λ′

Tt
(x∗)

∣

∣

∣ and return x∗ := λ′

Tt
(x∗).

2

Note that the set Y constructed in the above proof represents all substrings
that are synchronous to x. In fact, y is synchronous to x if, and only if, there
is a node v ∈ Y such that λ′

Tt
(v) is a prefix of y and y is a prefix of λTt

(v).

It also follows from Theorem 10 that a collection of substrings that contains
a longest and a shortest representative for every class of the synchronism
equivalence can be constructed in time O(|t|2). This is because the number
of such classes is O(|t|) as the strings λTt

(v) for internal nodes v of Tt are
representing all classes.

5 Longest super-synchronous and maximum-content gapped mo-
tifs

The aim of this section is to prove that Problem 3 (Longest Super-Synchronous
Substring) can be solved in sub-quadratic time.

Definition 11 For any integer sets F and G, define ∆(F, G) as the set of all
integers d such that F + d ⊆ G.

For instance, if F = {−2, 1, 3} and G = {−3, 0, 2, 5, 7, 8, 11, 13} then
∆(F, G) = {−1, 4, 10}. The next lemma (that is based on the FFT tech-
nique from [5]) is essentially contained in [6, Section 4.3.2]. Its proof is given
for the sake of completeness.

Lemma 12 Let n be a positive integer and let F and G be two subsets of
integers from [0, n − 1]. The integer set ∆(F, G) is computable in O(n log n)
time.

Note that ∆(F, G) is a subset of [1 − n, n − 1], and thus ∆(F, G) can be en-
coded in O(n) space as a bit vector or as a sorted list.

8

PROOF. Let m denote the smallest element of F . Since for every integer
d, ∆(F − d, G) = ∆(F, G) − d, we may replace F with F − m without loss
of generality. Now, ∆(F, G) is a subset of [0, n − 1], and thus ∆(F, G) equals
the set of all d ∈ [0, n − 1] such that (F + d) ∩ G has the same cardinality
as F . Let us explain how to compute the cardinality of (F + d) ∩G for every
d ∈ [0, n − 1] in O(n log n) time.

For any set E, let χE denote the indicator function of E: χE(p) = 1 for every
p ∈ E and χE(p) = 0 for every p /∈ E. Define two polynomials f(z) and g(z)
by:

f(z) :=
n−1
∑

p=0

χF (n − 1 − p)zp and g(z) :=
n−1
∑

p=0

χG(p)zp .

Then, for every d ∈ [0, n − 1], the coefficient of zn−1+d in the product f(z)g(z)
equals the cardinality of (F + d) ∩ G. Since the product of two polynomials
with degrees less than n is computable in O(n logn) time using FFT [13], the
lemma holds. 2

For clarity reasons, we first consider the binary alphabet case of our problem
and thereafter the general integer-alphabet case.

Theorem 13 There exists an algorithm that, given a string t over {0, 1} and
a set L ⊆ [0, |t| − 1] of locations of t, finds in O(|t| · log |t|) time a longest
string x∗ such that Loct(x

∗) contains a translate of L.

PROOF. The algorithm for the Longest Super-Synchronous Substring prob-
lem in the binary alphabet case is as follows.

(1) Compute D := ∆ (L, Loct(0)) ∪ ∆ (L, Loct(1)).
(2) Find two integers i and j such that [i, j] is the largest run of consecutive

integers included in D, and return x∗ := t[p + i, p + j], where p is some
element of L.

Let us first study the time complexity of the algorithm. The computations
of Loct(0) and Loct(1) are straightforward. After that, ∆ (L, Loct(0)) and
∆ (L, Loct(1)) are computable in O(|t| · log |t|) time by Lemma 12. Hence,
Step 1 is computable in O(|t| · log |t|). Clearly, Step 2 can be performed in
O(|t|) time.

Let us now prove the correctness of the algorithm.

Claim 14 For any integers i and j with i ≤ j, [i, j] is a subset of D if, and
only if, t[p + i, p + j] = t[q + i, q + j] for all p, q ∈ L.

9

PROOF. Let d be an integer. For each a ∈ {0, 1}, d belongs to ∆ (L, Loct(a))
if, and only if, t[p + d] = a for all p ∈ L. Therefore, d belongs to D if, and
only if, t[p + d] = t[q + d] for all p, q ∈ L. Since d can run from i to j, the
claim holds. 2

It is easy to see that a non-empty string x∗ is a feasible solution of the problem
if, and only if, there exist two integers i and j with i ≤ j such that x∗ = t[p+
i, p + j] for every p ∈ L. Hence, Claim 14 means that the runs of consecutive
integers that are included in D are in one-to-one correspondence with the
feasible solutions of the problem. More precisely, each subset of D of the form
[i, j] with i ≤ j corresponds to a solution string with length j− i+1. It follows
that the algorithm is correct. 2

Let us now state the main result of the section.

Theorem 15 There exists an algorithm that, given a string t over [0, |t| − 1]
and a subset L ⊆ [0, |t| − 1], finds a longest string x∗ such that Loct(x

∗)
contains a translate of L. The running time of the algorithm is O(|t| · log |t| ·
log σ) where σ denotes the number of distinct letters that occur in t.

PROOF. The trick is to encode the input text t into a binary string by means
of a uniform letter-to-word substitution. Otherwise, the idea is the same as in
the proof Theorem 13. More precisely, the algorithm for the Longest Super-
Synchronous Substring problem is as follows.

(1) Compute the set, denoted Σ, of all letters that occur in t.
(2) Construct an injective function γ : Σ → {0, 1}m, where m := ⌈log σ⌉.
(3) Construct the binary string t′ := γ(t[0])γ(t[1]) · · ·γ(t[|t| − 1]).
(4) Construct D := ∆(L′, Loct′(0)) ∪ ∆(L′, Loct′(1)), where L′ :=

{mp : p ∈ L}.
(5) Compute two integers i and j with maximum j − i such that

[mi, mj + m − 1] ⊆ D and return x∗ := t[p + i, p + j], where p is some
element of L.

The most time consuming step is Step 4. By Lemma 12, it takes O(|t′| · log |t′|)
time, and since |t′| = m |t|, we have |t′| · log |t′| = O(|t| · log |t| · log σ). Note
that Step 1 can be performed in O(|t|) time because we assume that the letters
of t are integers from [0, |t| − 1]. Steps 2, 3 and 5 can clearly be achieved in
O(m |t|) time.

The proof of correctness is similar to the binary case because for every integer
i, [mi, mi + m − 1] is a subset of D if, and only if, t[p + i] = t[q + i] for all p,
q ∈ L. 2

10

We conclude by applying the FFT technique of this section to a problem
on motifs with gaps. Such motifs may contain joker (don’t care) symbols ?

that match any symbol. In our example string AAXBYCCCZAAUBVCCCA, gapped
motifs AA?B and B???C are synchronous to substring AA.

Continuing our theme on maximal representatives, we now consider the ques-
tion of finding the gapped motif that is synchronous to a given set L of lo-
cations of t and has the largest possible content. By the content we mean
the number of non-joker symbols in the motif. In our example, for locations
L = {0, 9} the gapped motif with largest possible content is AA?B?CCC (as-
suming that no jokers are allowed at the beginning or at the end).

A well-known alignment algorithm [2,9–12] finds a maximum-content gapped
motif in quadratic time by:

• making k copies of t where k denotes the cardinality of L,
• aligning them such that the locations in L become on top of each other

making one column, and
• reading a consensus motif from the columns of the alignment.

Theorem 16 Given a string t over [0, |t| − 1] and a subset L ⊆ [0, |t| − 1],
a maximum-content gapped motif g∗ such that L + d ⊆ Loct(g

∗) for some
integer d can be found in time O(|t| · log |t| · log σ) where σ denotes the number
of distinct letters that occur in t.

PROOF. The algorithm is the same as in the proof of Theorem 15 but now
we use the set D in a different way. We should include into the gapped motif a
representative of each location of t whose letter is repeated in t as required by
L, i.e., when aligned according to L, the corresponding column would contain
only this letter which therefore should appear in the maximum-content motif.

Such letters can be read from D. Replace Step 5 of the algorithm of Theorem 15
by the following.

(5) Let G be the set of all indices i such that [mi, mi+m−1] ⊆ D, and let r
denote the smallest and s the largest element of G. Then the maximum-
content motif g∗ is g∗ := grgr+1 . . . gs−1gs where for some fixed element p
of L and every i ∈ [r, s], gi := t[p + i] if i ∈ G, and gi := ? otherwise.

Construction of G and g∗ obviously takes time O(m |t|), hence the time-bound
of the algorithm stays the same as in Theorem 15. The simple details of the
correctness proof are left to the reader. 2

11

6 Shortest sub-synchronous motifs

The aim of this section is to prove that Problem 4 (Shortest Sub-Synchronous
Substring) can be solved in quadratic time. The proof relies on the discussion
presented in Section 3.2.2 and on the two lemmas below.

We first make the following simple remark on replacing an arbitrary alphabet
by integers.

Remark 17 Let t be a string. If the equality between any two letters of t is
decidable in constant time then it is possible to compute from t, in O(|t|2)
time, a string t̃ over the integer alphabet [0, |t| − 1] such that for any indices
i and j, t̃[i] = t̃[j] if, and only if, t[i] = t[j].

It follows from Remark 17 that the general Shortest Sub-Synchronous Sub-
string problem reduces in quadratic-time to its restriction to instances where
the text t and its substring x are over the integer alphabet [0, |t| − 1]. As our
solution algorithm will be quadratic, we can also afford this quadratic-time
alphabet transformation.

Lemma 18 Let L be a set of integers, let W be a non-empty set, and let
(Kw)w∈W be a family of integer sets. Then

∆

(

⋃

w∈W

Kw, L

)

=
⋂

w∈W

∆(Kw, L) .

PROOF. The simple proof is left to the reader. 2

The main machinery of the algorithm for Shortest Sub-Synchronous Substring
is described in the proof of the next lemma.

Lemma 19 Let L be a subset of [0, n − 1] for some n, and let T be a branching
tree whose leaves are bijectively labeled with a subset of [0, n − 1]. The set of
all nodes v of T such that a translate of LabT (v) is included in L is computable
in O(n2) time.

PROOF. Let k denote the cardinality of L. For each node v of T , define Dv :=
∆(LabT (v), L) (see Definition 11). Then a translate of LabT (v) is included in
L if, and only if, Dv 6= ∅. It follows from Lemma 12 that all Dv’s can be
constructed in O(n2 log n) time. However, we can do better: we can compute
the sorted list of all elements of Dv for every node v of T in a bottom-up
fashion in O(kn) time using the following two properties.

12

Property 1 For each leaf node v, Dv = L− i, where i denotes the label of v.

Property 2 For each internal node v, Dv =
⋂

w∈W Dw, where W denotes the
set of all children of v.

Property 1 is trivial. To prove Property 2, apply Lemma 18 with Kw :=
LabT (w) for every w ∈ W and remark that

⋃

w∈W Kw = LabT (v).

Let us examine the time complexity. Bucket sorting L takes O(n) time. Af-
ter that, Dv is computable in O(k) time for any leaf node v by Property 1.
Furthermore, given d sorted lists of at most k integers each, it is possible to
compute their sorted intersection in O(dk) time. Thus, it follows from Prop-
erty 2 that for every internal node v, Dv is computable in O(dk) time, where
d denotes the out-degree of v, provided that Dw has already been computed
for every child w of v. Hence, the total time requirement is O(kn), which is
also O(n2). 2

We can now prove the main result of the section.

Theorem 20 There exists an algorithm that, given a string t and a set L ⊆
[0, |t| − 1] of locations of t, finds in O(|t|2) time a shortest string x∗ such that
L contains a translate of Loct(x∗).

PROOF. The algorithm for the Shortest Sub-Synchronous Substring prob-
lem can be sketched as follows.

(1) Construct the suffix-tree Tt of t.
(2) Construct the set, denoted Y , of all nodes v of Tt such that a translate

of LabTt
(v) is included in L.

(3) Find a node x∗ ∈ Y with minimum
∣

∣

∣λ′

Tt
(x∗)

∣

∣

∣ and return x∗ := λ′

Tt
(x∗).

It follows from Section 3.2.2 that the algorithm is correct if the trivial cases
L = [0, |t| − 1] (the root of Tt belongs to Y) and L = ∅ (Y is empty) are
disregarded.

Combining Remark 17 and Theorem 5, we obtain that Step 1 needs O(|t|2)
time. Step 2 can be implemented in O(|t|2) time by Lemma 19. Step 3 can
also be naively implemented within the same time bound. 2

13

7 Conclusion

Efficient algorithms for discovery of maximal and minimal representative mo-
tifs were presented. The approximate variants of the problem seem to deserve
further study; we have just made some initial remarks.

References

[1] A. Apostolico and L. Parida. Incremental paradigms of motif discovery. J. of
Computational Biology, 11(1):15–25, 2004.

[2] H. Arimura and T. Uno. An efficient polynomial space and polynomial delay
algorithm for enumeration of maximal motifs in a sequence. J. of Combinatorial
Optimization, 13(3):243–262, 2007.

[3] M. Farach. Optimal suffix tree construction with large alphabets. In Proc.
of the 38th Annual Symposium on Foundations of Computer Science (FOCS
1997), pages 137–143, 1997.

[4] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-
complexity of suffix tree construction. J. of the ACM, 47(6):987–1011, 2000.

[5] M. J. Fischer and M. S. Paterson. String matching and other products. In
R. M. Karp, editor, Complexity of Computation, volume VII of SIAM–AMS
Proceedings, pages 113–125, 1974.

[6] D. Gusfield. Algorithms on Strings, Trees, and Sequences–Computer Science
and Computational Biology. Cambridge University Press, 1997.

[7] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt. Fast pattern matching in
strings. SIAM J. on Computing, 6(2):323–350, 1977.

[8] L. Parida, I. Rigoutsos, A. Floratos, D. E. Platt, and Y. Gao. Pattern discovery
on character sets and real-valued data: linear bound on irredundant motifs and
an efficient polynomial time algorithm. In Proc. of the 11th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA 2000), pages 297–308, 2000.

[9] J. Pelfrêne, S. Abdeddäım, and J. Alexandre. Extracting approximate patterns.
J. of Discrete Algorithms, 3(2–4):293–320, 2005.

[10] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs for
generating repeated patterns with wild cards. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2(1):40–50, 2005.

[11] E. Ukkonen. Structural analysis of gapped motifs of a string. In Proc. of
the 32nd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2007), volume 4708 of LNCS, pages 681–690, 2007.

14

[12] E. Ukkonen. Maximal and minimal representations of gapped and non–gapped
motifs of a string. Theoretical Computer Science, 2009. In press.

[13] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge
University Press, 1999.

[14] P. Weiner. Linear pattern matching algorithms. In Proc. of the 14th Annual
Symposium on Switching and Automata Theory (Foundations of Computer
Science, FOCS), pages 1–11, 1973.

15

