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Abstract

We introduce ProbLog, a probabilistic extension of
Prolog. A ProbLog program defines a distribution
over logic programs by specifying for each clause
the probability that it belongs to a randomly sam-
pled program, and these probabilities are mutually
independent. The semantics of ProbLog is then de-
fined by the success probability of a query, which
corresponds to the probability that the query suc-
ceeds in a randomly sampled program. The key
contribution of this paper is the introduction of an
effective solver for computing success probabili-
ties. It essentially combines SLD-resolution with
methods for computing the probability of Boolean
formulae. Our implementation further employs
an approximation algorithm that combines iterative
deepening with binary decision diagrams. We re-
port on experiments in the context of discovering
links in real biological networks, a demonstration
of the practical usefulness of the approach.

1 Introduction

Over the past two decades an increasing number of prob-
abilistic logics has been developed. The most prominent
examples include PHA [Poole, 1993], PRISM [Sato and
Kameya, 2001], SLPs [Muggleton, 1996], MLNs [Richard-
son and Domingos, 2006] and probabilistic Datalog (pD)
[Fuhr, 2000]. These frameworks attach probabilities to logi-
cal formulae, most often definite clauses. In addition, they of-
ten impose various constraints on probabilities. For instance,
in SLPs, clauses defining the same predicate are assumed to
be mutually exclusive; PRISM and PHA only attach probabil-
ities to factual information, and again constraints are imposed
that essentially exclude the possibility that certain combina-
tions of facts are simultaneously true. These assumptions fa-
cilitate the computation of the probability of queries and sim-
plify the learning algorithms for such representations. One
approach, the pD formalism of [Fuhr, 2000] that is intimately
related to ProbLog, does not impose such restrictions but its
inference engine has severe limitations. At the same time,
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it seems that there are – despite a great potential – still only
few real-life applications of these probabilistic logics. The
reasons for this might well be that the assumptions are too
strong and sometimes hard to manage by the user, or that the
solvers are often too slow or too limited.

We introduce ProbLog which is – in a sense – the simplest
probabilistic extension of Prolog one can design. ProbLog is
essentially Prolog where all clauses are labeled with the prob-
ability that they are true, and – similar as pD but unlike the
other approaches mentioned – these probabilities are mutu-
ally independent. ProbLog has been motivated by the real-life
application of mining large biological networks where edges
are labeled with probabilities. Such networks of biological
concepts (genes, proteins, phenotypes, etc.) can be extracted
from large public databases, and probabilistic links between
concepts can be obtained by various prediction techniques. In
this and many other applications, probabilistic links are mu-
tually independent and can easily be described in ProbLog.

A ProbLog program specifies a probability distribu-
tion over all possible non-probabilistic subprograms of the
ProbLog program. The success probability of a query is
then defined simply as the probability that it succeeds in
these subprograms. The semantics of ProbLog is not really
new, it closely corresponds to that of pD [Fuhr, 2000] and
of [Dantsin, 1991]. The key contribution of this paper, how-
ever, is the introduction of an effective inference procedure
for this semantics, and its application to a real-life link dis-
covery task.

The success probability of a ProbLog query can be com-
puted as the probability of a boolean monotone DNF (Dis-
junctive Normal Form) formula of binary random variables.
Unfortunately, the latter problem is NP-hard [Valiant, 1979].
Since pD employs a naive approach based on inclusion-
exclusion for computing the probabilities of these formulae,
the evaluation of about 10 or more conjuncts is infeasible in
the implementation of pD according to [Fuhr, 2000]. In con-
trast, ProbLog’s approximation algorithm is able to deal with
formulae containing up to 100000 formulae. The ProbLog
solver has been motivated by and employs recent advances in
binary decision diagrams (BDDs) for dealing with Boolean
functions. At the same time, it employs an approximation al-
gorithm for computing the success probability along the lines
of [Poole, 1992]. Using this algorithm we report on exper-
iments in biological networks that demonstrate the practical
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usefulness of the approach. Obviously, it is straightforward to
transfer ProbLog to other link and network mining domains.

The paper is structured as follows. We describe a moti-
vating application in Section 2. In Section 3, we introduce
ProbLog and its semantics. We shall assume some familiar-
ity with the Prolog programming language, see for instance
[Flach, 1994] for an introduction. In Section 4, we show how
ProbLog queries can be represented by monotone DNF for-
mulae and then computed with BDDs. Section 5 gives an ap-
proximation algorithm for ProbLog queries, and experiments
on real biological data are reported in Section 6. Finally, in
Sections 7 and 8, we discuss related work and conclude.

2 Example: ProbLog for biological graphs

As a motivating application for ProbLog, consider link min-
ing in large networks of biological concepts. Enormous
amounts of molecular biological data are available from pub-
lic sources, such as Ensembl1, NCBI Entrez2, and many oth-
ers. They contain information about various types of ob-
jects, such as genes, proteins, tissues, organisms, biological
processes, and molecular functions. Information about their
known or predicted relationships is also available, e.g., that
gene A of organism B codes for protein C, which is expressed
in tissue D, or that genes E and F are likely to be related since
they co-occur often in scientific articles. Mining this data
has been identified as an important and challenging task (see,
e.g., [Perez-Iratxeta et al., 2002]).

Such a collection of interlinked heterogeneous biological
data can be conveniently seen as a weighted graph or net-
work of biological concepts, where the weight of an edge
corresponds to the probability that the corresponding nodes
are related [Sevon et al., 2006]. Probabilities of edges can
be obtained from methods that predict their existence based
on, e.g., co-occurrence frequencies or sequence similarities.
A ProbLog representation of such a graph could in the most
simple case consist of probabilistic edge/2 facts though finer
grained representations using relations such as codes/2, ex-
presses/2 would also be possible.

A typical query that a life scientist may want to ask from
such a database of biological concepts is whether a given gene
is connected to a given disease. In a probabilistic graph, the
importance of the connection can be measured as the prob-
ability that a path exists between the two given nodes, as-
suming that each edge is true with the specified probability,
and that edges are mutually independent [Sevon et al., 2006].
Such queries are easily expressed in logic by defining the
(non-probabilistic) predicate path(N1,N2) in the usual way.
Now the query ?- path(’gene 620’, ’disease alzheimer’)
would look for paths between the given nodes. Since edges
were assumed probabilistic, this query has a certain success
probability. This probability, defined below, directly corre-
sponds to the probability that a path exists between the nodes,
known as the two-terminal network reliability problem.

Obviously, logic – and ProbLog – can easily be used to
express much more complex possible relations. For instance,
two proteins that both interact with a third one possibly also

1www.ensembl.org
2
www.ncbi.nlm.nih.gov/Entrez/

interact with each other if they are all expressed in the same
tissue. Or, two genes are possibly functionally related if they
have closely related annotations from Gene Ontology3.

3 ProbLog

A ProbLog program consists – as Prolog – of a set of definite
clauses. However, in ProbLog every clause ci is labeled with
the probability pi.

Example 1 As an example, consider:
1.0: likes(X,Y):- friendof(X,Y).
0.8: likes(X,Y):- friendof(X,Z), likes(Z,Y).
0.5: friendof(john,mary).
0.5: friendof(mary,pedro).
0.5: friendof(mary,tom).
0.5: friendof(pedro,tom).

Even though we shall focus on the “pure” subset of Prolog,
i.e. definite clause logic, ProbLog also allows one to use
most built-in predicates in Prolog by assuming that all clauses
defining built-in predicates have label 1.

A ProbLog program T = {p1 : c1, · · · , pn : cn} now
defines a probability distribution over logic programs L ⊆
LT = {c1, · · · , cn} in the following way:

P (L|T ) =
∏

ci∈L

pi

∏
ci∈LT \L

(1 − pi) (1)

Unlike in Prolog, where one is typically interested in de-
termining whether a query succeeds or fails, in ProbLog we
are interested in computing the probability that it succeeds.
The success probability P (q|T ) of a query q in a ProbLog
program T is defined by

P (q|L) =

{
1 ∃θ : L |= qθ
0 otherwise

(2)

P (q, L|T ) = P (q|L) · P (L|T ) (3)

P (q|T ) =
∑

M⊆LT

P (q, M |T ) (4)

In other words, the success probability of query q corre-
sponds to the probability that the query q has a proof, given
the distribution over logic programs.

4 Computing success probabilities

Given a ProbLog program T = {p1 : c1, · · · , pn : cn} and a
query q, the trivial way of computing the success probability
P (q|T ) proceeds by enumerating all possible logic programs
M ⊆ LT (cf. Equation 4). Clearly this is infeasible for all
but the tiniest programs.

We develop a method involving two components. The first
is concerned with the computation of the proofs of the query
q in the logical part of the theory T , that is in LT . Its result
will be a monotone DNF formula. The second component
computes the probability of this formula.

3
www.geneontology.org
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?- l(j,t).

:- fo(j,t).
l1

:- fo(j,A),l(A,t).

:- l(m,t).

:- fo(m,t).

�

f3

l1
:- fo(m,B),l(B,t).

:- l(p,t)

:- fo(p,t).

�

f4

l1
:- fo(p,C),l(C,t).

:- l(t,t)

:- fo(t,t).
l1

:- fo(t,D),l(D,t).
l2

f4

l2

f2
:- l(t,t)

:- fo(t,t).
l1

:- fo(t,E),l(E,t).
l2

f3

l2

f1

l2

Figure 1: The SLD-tree for the goal likes(john,tom), using
obvious abbreviations.

4.1 ProbLog queries as DNF formulae

To study the set of logic programs where a given query can be
proved we consider the logical part LT of the theory T . We
now show how this set of logic programs can be represented
by a DNF formula.

We employ SLD-resolution, from which the execution
mechanism of Prolog is derived. As an example, the SLD-
tree for the query ?- likes(john,tom). is depicted in Figure 1.
The paths from the root to individual leaves of the SLD-tree
represent either a successful or a failed proof. From a path
that ends in the empty goal denoted by �, one can construct
an answer substitution θ making the original goal true. The
other proofs end at an (underlined) goal that fails.

The standard SLD-resolution computes the SLD-tree in a
top-down fashion. It initializes the root of the SLD-tree with
the query ?−l1, · · · , ln to be proven and then recursively gen-
erates a subgoal of the form ? − b1θ, · · · , bmθ, l2θ, · · · , lnθ
for each clause h : −b1, · · · , bm in the logic program for
which the most general unifier of h and l1 is the substitution
θ. See e.g. [Flach, 1994] for a more extensive treatment.

Each succesful proof in the SLD-tree has a set of clauses
{p1 : d1, · · · , pk : dk} ⊆ T employed in that proof. These
clauses are necessary for the proof, and the proof is indepen-
dent of other clauses in T . As a consequence, the probability
that this proof succeeds is

∏
i pi. (In other words, the sum of

probabilities of programs containing these clauses is
∏

i pi.)
Let us now introduce a Boolean random variable bi for each

clause pi : ci ∈ T , indicating whether ci is in logic program;
i.e., bi has probability pi of being true. The probability of a
particular proof involving clauses {p1 : d1, · · · , pk : dk} ⊆
T is then the probability of the conjunctive formula b1∧· · ·∧
bk. Since a goal can have multiple proofs, the probability that
goal q succeeds equals the probability that the disjunction of
these conjunctions is true. More formally, this yields:

P (q|T ) = P

⎛
⎝ ∨

b∈pr(q)

∧
bi∈cl(b)

bi

⎞
⎠ (5)

where we use the convention that pr(q) denotes the set of

proofs of the goal q and cl(b) denotes the set of Boolean vari-
ables (clauses) used in the proof b. Thus the problem of com-
puting the success probability of a ProbLog query can be re-
duced to that of computing the probability of a DNF formula,
which is monotone as all variables appear positively.

Example 2 Continuing our running example, and using
l1, l2 as names (and Boolean variables) for the two clauses
defining likes and f1, · · · , f4 for friendof,

P (likes(john, tom)|T )

= P ((l1 ∧ l2 ∧ f1 ∧ f2 ∧ f4) ∨ (l1 ∧ l2 ∧ f1 ∧ f3)). (6)

Since P (l1) = 1, this is equal to

P ((l2 ∧ f1 ∧ f2 ∧ f4) ∨ (l2 ∧ f1 ∧ f3)). (7)

4.2 Computing the probability of DNF formulae

Computing the probability of DNF formulae is an NP-hard
problem even if all variables are independent, as they are in
our case. There are several algorithms for transforming a dis-
junction of conjunctions into mutually disjoint conjunctions,
for which the probability is obtained simply as a sum. In
the literature, this is sometimes referred to as the problem of
transforming sum-of-products into sum-of-disjoint-products.
One basic approach relies on the inclusion-exclusion princi-
ple from set theory. It requires the computation of conjunc-
tive probabilities of all sets of conjunctions appearing in the
DNF formula. This is clearly intractable in general. More ad-
vanced techniques expand the conjunctions also with negated
subformulae, in order to disjoin each of them from all previ-
ous ones [Luo and Trivedi, 1998]. However, these algorithms
seem to be limited to a few dozens of variables and a few
hundreds of sums. Motivated by the advances made in the
manipulation and representation of Boolean formulae using
binary decision diagrams (BDDs) since their introduction by
[Bryant, 1986], we employ this class of techniques.

A BDD is an efficient graphical representation of a
Boolean function over a set of variables. A BDD represent-
ing the formula in Equation 7 is shown in Figure 2. Given
a fixed variable ordering, a Boolean function f can be repre-
sented as a full Boolean decision tree where each node on the
ith level is labeled with the ith variable and has two children
called low and high. Each path from the root to some leaf
stands for one complete variable assignment. If variable x
is assigned 0 (1), the branch to the low (high) child is taken.
Each leaf is labeled by the outcome of f given the variable
assignment represented by the corresponding path. Starting
from such a tree, one obtains a BDD by merging isomorphic
subgraphs and deleting redundant nodes until no further re-
duction is possible. A node is redundant iff the subgraphs
rooted at its children are isomorphic. In Figure 2, dashed
edges indicate 0’s and lead to low children, solid ones indi-
cate 1’s and lead to high children.

In practice, the chosen variable ordering determines the ex-
tent to which substructures can be shared in the BDD and thus
has an enormous influence on the size and complexity of the
resulting BDD. State-of-the-art BDD implementations there-
fore employ heuristics to automatically reorder the variables
during BDD construction, which help to control the combi-
natorial explosion.
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Figure 2: A BDD representing the Boolean in equation 7.

Given a BDD, it is easy to compute the probability of the
corresponding Boolean function by traversing the BDD from
the root node to a leaf. At each inner node, probabilities from
both children are calculated recursively and combined after-
wards as it is done in the following procedure. In practice,
memorization of intermediate results is used to avoid the re-
computation at nodes that are shared between multiple paths.

Probability(input: BDD node n )

1 if n is the 1-terminal then return 1
2 if n is the 0-terminal then return 0
3 let h and l be the high and low children of n
4 prob(h) := call Probability(h)
5 prob(l) := call Probability(l)
6 return pn · prob(h) + (1 − pn) · prob(l)

As we shall see in Section 6, the resulting algorithm can be
applied to ProbLog programs containing hundreds of clauses
(Boolean variables in the BDD) and tens of thousands of
proofs (products of variables). In our implementation of
ProbLog, we store the conjunctions corresponding to proofs
in a prefix-tree for reasons of efficiency.

One interesting further use of the already constructed BDD
for a given query q is that it becomes very efficient to answer
conditional probability questions of the form P (q|T, b′1∧· · ·∧
b′k) where the b′is are possibly negated Booleans representing
the truth-values of clauses. To compute the answer, one only
needs to reset the probabilities of the corresponding nodes to
1 or 0, and call the procedure Probability.

5 An approximation algorithm

In this section we introduce an algorithm for approximating
the success probability of queries in ProbLog. This is useful
for large ProbLog programs, since the size of the monotone
DNF formula can explode.

A first obvious observation leading towards a faster algo-
rithm is that – as in Example 2 – one can remove all Boolean
variables that correspond to clauses with probability 1.

A second and more important observation allows one to
eliminate complete proofs from the monotone DNF formula.
During the computation of the SLD-tree, which proceeds
depth-first, from left to right in Prolog, we keep track of
a DNF formula d that represents the DNF of the already
computed proofs. If further proofs are encountered whose
conjunction b1 ∧ . . . ∧ bn is logically entailed by d, i.e.
d |= b1 ∧ . . . ∧ bn, then these proofs can be removed from
further consideration. Because we work with monotone DNF
formulae, this condition can be checked efficiently by veri-
fying that b1 ∧ . . . ∧ bn is not entailed by any of the con-

juncts d1 ∧ · · · ∧ dk in d. This corresponds to testing whether
{d1, · · · , dk} ⊆ {b1, · · · , bn}, a kind of subsumption.

This observation motivates the use of iterative deepening
instead of depth-first search to compute the SLD-tree and the
corresponding DNF formula. In this way, it becomes more
likely that later proofs will be subsumed by already com-
puted ones. Iterative deepening essentially proceeds as depth-
first search but does not expand goals in the SLD-tree whose
depth exceeds a threshold. It then iteratively increases this
depth-bound. Iterative deepening also avoids getting trapped
into possibly infinite paths in the SLD-tree. Instead of using
a depth-bound one can also employ a probability bound in
ProbLog, resulting in a best-first kind of search.

A final observation, leading to approximations of success
probabilities, is that an incomplete SLD-tree can be used
(during iterative deepening) to derive an upper and a lower
bound on the success probability of the query. This obser-
vation and the corresponding algorithm are related to work
by [Poole, 1992] in the context of PHA, but adapted towards
ProbLog. For ProbLog, the bounds can be obtained by con-
structing two DNF formulae from the incomplete SLD-tree.
The first DNF formula d1 encodes the successful proofs al-
ready occurring in the tree. The second DNF formula d2 en-
codes the successful proofs already occurring in the tree as
well as the proofs that have been cut off. We then have that

P (d1) ≤ P (q|T ) ≤ P (d2). (8)

This directly follows from the fact that d1 |= d |= d2 where d
is the Boolean DNF formula corresponding to the full SLD-
tree of the query.

Example 3 Consider the SLD-tree in Figure 1 only till depth
4. In this case, d1 encodes the left success path while d2

additionally encodes the paths up to likes(pedro,tom) and
likes(tom,tom), i.e.

d1 = (l1 ∧ l2 ∧ f1 ∧ f3)

d2 = (l1 ∧ l2 ∧ f1 ∧ f3) ∨ (l2 ∧ f1 ∧ f2) ∨ (l2 ∧ f1 ∧ f3)

The formula for the full SLD-tree is given in equation 6.

Better approximations will be obtained by stretching the
bound on the depth of SLD-trees. The following algorithm
approximates the success probability of a ProbLog query q
to ε.

Approximate(query q; program T ; bound ε)

1 depthbound := 1;
2 d1 := false
3 repeat
4 d2 := d1

5 call Iterate(q, true, depthbound, d1, d2)
6 p1 := call Probability(d1)
7 p2 := call Probability(d2)
8 increment depthbound
9 until p2 − p1 ≤ ε

10 return p1, p2

IJCAI-07
2471



Iterate(query q; conjunction c; depthbound d; DNF d1, d2)

1 if q is empty and d1 �|= c
2 then d1 := d1 ∨ c
3 d2 := d2 ∨ c
4 elseif d < 0 and d1 �|= c
5 then d2 := d2 ∨ c
6 else let q be l, q1, · · · , qn

7 select rule h : −b1, · · · , bm

8 such that mgu(h, l) = θ and the rule is
9 represented by Boolean variable b

10 d := d − 1
11 call Iterate(b1θ, · · · , bmθ, q1θ, · · · , qnθ;c ∧ b; d)

Theorem 1 Upon termination, the procedure
Approximate(q, T , ε) returns values p1 and p2 such
that p1 ≤ P (q|T ) ≤ p2 and p2 − p1 ≤ ε.

The algorithm may not always terminate for all inputs, but
this is hardly avoidable given that Prolog does not always ter-
minate (even when using iterative deepening).

Example 4 Consider calling Approximate with the query
? − p; the program 1.0 p : −p; and the bound ε = 0.5.
The procedure will never terminate (because the SLD-tree is
infinite and repetetive).

6 Experiments

We implemented the approximation algorithm in Prolog
(Yap-5.1.0) and used CUDD4 for BDD operations. Motivated
by the fact that even for simple connection queries, the num-
ber of proofs quickly explodes in our biological networks, we
primarily try to answer the following question:

Q How well does our approximation algorithm scale?

As our test graph G, we used a real biological graph around
four random Alzheimer genes (HGNC ids 620, 582, 983,
and 8744), with 11530 edges and 5220 nodes. The graph
was extracted from NCBI and some other databases by tak-
ing the union of subgraphs of radius 3 from the four genes
and producing weights as described in [Sevon et al., 2006].
As a test case, we focused on evaluating the connection be-
tween two of the genes (620, 983). For scaling experiments,
we randomly subsampled edges from G to obtain subgraphs
G1 ⊂ G2 ⊂ . . . of sizes 200, 400, ..., 5000 edges. Each Gi

contains the two genes and consists of one connected compo-
nent. Average degree of nodes ranges in Gis approximately
from 2 to 3. Subsampling was repeated 10 times.

The ProbLog approximation algorithm was then run on the
data sets with the goal of obtaining ε = 0.01 approximations.
As the minimal length of paths in between those two nodes is
4 in the original graph, we initialized the iterative deepening
threshold (number of used clauses) to 4.

In this setting, the connection query could be solved to
ε = 0.01 for graphs with up to 1400 to 4600 edges, depending
on the random sample. As an illustrative example, Figure 3(a)
shows the convergence of the bounds for one graph with 1800
edges. Figure 3(b) shows the average width of the probability
interval for the 10 random subgraphs of 1400 edges. In most

4
http://vlsi.colorado.edu/˜fabio/CUDD

cases, results are quite accurate already after levels 6–8. The
maximal level used over all Gi was 14 clauses, correspond-
ing to at most eleven search levels. Running times for one
subgraph typically range from seconds for small graphs up to
four hours for the largest successful runs. Figure 3(c) shows
running times for the 10 random graphs of 1400 edges on a
3.2 GHz machine. In our tests, BDD construction typically
became infeasible if the number of conjunctions used for the
upper bound exceeded 100000. In all those cases, the width
of the last calculated probability interval was already smaller
than 0.03. Together all these results indicate that the approach
can give good bounds for quite large problems, which an-
swers question Q positively.

A partial explanation of the good scalability is given in Fig-
ure 3(d). It shows the total number of proofs as well as the
numbers of proofs needed for the bounds (ε = 0.01) for two
illustrative random sequences of subgraphs. The numbers are
given as a function of the maximal size of the BDD, used
here as an approximation of the problem complexity. As can
be seen, the number of proofs explodes badly, while the num-
bers of proofs needed for the bounds scale up much nicer.

7 Related Work

The ProbLog semantics is not really new, it closely corre-
sponds to the semantics proposed by [Dantsin, 1991] and of
pD [Fuhr, 2000] even though there are some subtle differ-
ences. Whereas ProbLog and the approach by Dantsin em-
ploy Prolog, pD focusses on Datalog and hence, does not al-
low for functors. Furthermore, the work on pD comes more
from a database perspective and has also devoted a lot of at-
tention to negation. Whereas Dantsin does not report on an
implementation, pD has been implemented in the HySpirit
system, which computes success probabilities in two steps.
The first step employs magic sets to compute the answers to
the Datalog component of the query, and in a second step em-
ploys the inclusion-exclusion principle to compute the prob-
ability of the resulting DNF expressions. This second step
makes the approach severely limited. Indeed, [Fuhr, 2000]

states: “Practical experimentation with Hyspirit has shown
that the evaluation of about 10 or more conjuncts is not fea-
sible.” In contrast, using ProbLog’s approximation algorithm
one can deal with up to 100000 conjuncts as shown in the ex-
periments. This is also needed in order to cope with realistic
applications in link mining.

Second, the ProbLog semantics extends also the distribu-
tional semantics by [Sato and Kameya, 2001] and the pro-
posal by [Dantsin, 1991] in that it also allows for attaching
probabilities to clauses, not just to ground facts. Although
this ability has to be exercised with caution (as the truth of
two clauses, or non-ground facts, need not be independent,
e.g. when one clause subsumes the other one), it does provide
new abilities, as illustrated in the likes/2 example. More im-
portantly, systems such as PRISM [Sato and Kameya, 2001]

and also PHA [Poole, 1993], avoid the combinatorial prob-
lem of the second step by imposing various constraints on the
allowed programs which basically guarantee that the formula
describing all proofs of a query is a sum-of-disjoint-products.
Whereas such conditions may be natural for some types of
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Figure 3: (a) Convergence of bounds for one graph with 1800 edges, as a function of the search level. (b) Convergence of the
probability interval for 10 test graphs with 1400 edges. (c) Running times for 10 test graphs with 1400 edges. (d) Total number
of proofs and numbers of proofs needed for bounds (ε = 0.01) for two illustrative test graph sequences (‘A’ and ‘B’).

applications, such as those involving context-free grammars,
they hinder the application of these frameworks to some other
applications. For instance, the characteristics of the biologi-
cal network mining task are incompatible with the restrictions
imposed by systems such as PRISM and PHA.

Finally, pure SLPs [Muggleton, 1996] differ in the way the
clauses are labeled and, hence, possesses a quite different se-
mantics. The labels in SLPs correspond – as in probabilistic
context-free grammars – to the probability that the clause is
used to continue a proof if some atom having the same predi-
cate as the head of the clause has to be proven.

8 Conclusions

We have defined ProbLog, a probabilistic version of Pro-
log, and have shown that the success probability of ProbLog
queries can be computed using a reduction to a monotone
DNF formula, whose probability can then be determined us-
ing BDDs, and we have also introduced an effective and ef-
ficient approximation algorithm for computing these proba-
bilities. The technique has been experimentally evaluated on
a challenging and involved real-life problem of mining bio-
logical networks. ProbLog’s key advantage in this type of
application is its simplicity as well as the flexibility for pos-
ing complex queries that support the analyst. There are sev-
eral questions for further research. The most prominent ones
are whether techniques employed for learning PRISM pro-
grams or SLPs could be adapted for learning ProbLog, and
vice versa, whether the independence assumption made in
ProbLog could be adapted for use in PRISM or PHA.
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