
Data Mining and Knowledge Discovery, 3, 7–36 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Discovery of frequentDatalog patterns

LUC DEHASPE luc.dehaspe@cs.kuleuven.ac.be
Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

HANNU TOIVONEN hannu.toivonen@rni.helsinki.fi
Rolf Nevanlinna Institute & Department of Computer Science,
P.O. Box 4, FIN-00014 University of Helsinki, Finland

Editor: Sǎso Džeroski and Nada Lavraˇc

Abstract. Discovery of frequent patterns has been studied in a variety of data mining settings. In its simplest
form, known from association rule mining, the task is to discover all frequent itemsets, i.e., all combinations of
items that are found in a sufficient number of examples. The fundamental task of association rule and frequent
set discovery has been extended in various directions, allowing more useful patterns to be discovered with special
purpose algorithms. We presentWarmr, a general purpose inductive logic programming algorithm that addresses
frequent query discovery: a very generalDatalog formulation of the frequent pattern discovery problem.

The motivation for this novel approach is twofold. First, exploratory data mining is well supported:Warmr
offers the flexibility required to experiment with standard and in particular novel settings not supported by special
purpose algorithms. Also, application prototypes based onWarmr can be used as benchmarks in the comparison
and evaluation of new special purpose algorithms. Second, the unified representation gives insight to the blurred
picture of the frequent pattern discovery domain. Within theDatalog formulation a number of dimensions
appear that relink diverged settings.

We demonstrate the frequent query approach and its use on two applications, one in alarm analysis, and one in
a chemical toxicology domain.

Keywords: frequent patterns, inductive logic programming,Datalog queries, association rules, episodes,
sequential patterns

1. Introduction

Discovery of recurrent patterns in large data collections has become one of the central topics
in data mining. In tasks where the goal is to uncover structure in the data and where there is
no preset target concept, the discovery of relatively simple but frequently occurring patterns
has shown good promise.

Association rules (Agrawal et al, 1993) are a basic example of this kind of setting. A
prototypical application example is in market basket analysis: first find out which items
tend to be sold together, the frequent item set discovery phase, and next postprocess these
frequent patterns into rules about the conditional probability that one set of items will be
in the basket given another set already there, the association rule discovery phase. The
motivation for such an application is the potentially high business value of the discovered
patterns. At the heart of the task is the problem of determining all combinations of items
that occur frequently together, where “frequent” is defined as “exceeding a user-specified
frequency threshold”. The use of a frequency threshold for filtering out non-interesting
patterns is natural for a large number of data mining problems. Patterns that are rare, e.g.,
that concern only a couple of customers, are probably not reliable nor useful for the user.

8 DEHASPE AND TOIVONEN

A family of data mining problems can be specified as follows (Mannila and Toivonen,
1997). Given a databaser, a classL of sentences (patterns), and a selection predicateq,
the task is to find the theory ofr with respect toL andq, i.e., the setTh(L, r, q) = {Q ∈
L | q(r, Q) is true}. The selection predicateq is used for evaluating whether a sentence
Q ∈ L defines a (potentially) interesting pattern inr. For the discovery of frequent pat-
terns,q is defined so thatq(r, Q) is true if and only if the frequency of patternQ in database
r exceeds the frequency threshold. Problem settings that fit this description and that are
close to the problem of discovering association rules include the use of item type hierar-
chies (Han and Fu, 1995, Holsheimer et al., 1995, Srikant and Agrawal, 1995), the discov-
ery of episodes in event sequences (Mannila and Toivonen, 1996, Mannila et al., 1997), and
the search of sequential patterns from series of transactions (Agrawal and Srikant, 1995,
Srikant and Agrawal, 1996). For all these cases the pattern languageL is different, and
specialized algorithms exist for the tasks.

We present a powerful inductive logic programming algorithm,Warmr, for a large
subfamily of this type of tasks.Warmr discovers frequentDatalog queries that succeed
with respect to a sufficient number of examples. In other words, the languageL consists of
Datalog queries, andWarmr outputs those that are “frequent” in a givenDatalog (or
relational) databaser. TheDatalog formulation is very general, as it allows the use of
variables and multiple relations in patterns, and it thus significantly extends the expressive
power of patterns that can be found.

The flexibility ofWarmr is a strong advantage over previous algorithms for the discovery
of frequent patterns. Each discovery task is specified toWarmr in terms of a declara-
tive language bias definition. The language bias declarations determine whichDatalog
queries are admissible, i.e., which subset ofDatalog constitutes the languageL for the
particular task. With different languages (and databases)Warmr can be adapted to diverse
tasks, including the settings mentioned above and also more complex novel problems, with-
out requiring changes to the implementation.Warmr thus supports truly explorative data
mining: pattern types can be modified and experimented with very flexibly with a single
tool.

This article is organized as follows. We start in Section 2 by describing the data mining
task of discovering frequentDatalog queries. In Section 3 we presentWarmr, an
algorithm that discovers frequentDatalog queries. We show in Section 4 howWarmr
and the described setting can be used to implement and extend some well-known data mining
tasks. Two novel applications of frequentDatalog queries andWarmr are discussed
in Section 5, one in telecommunication alarm analysis and one in a chemical toxicology
domain. Finally, in Sections 6 and 7, we touch upon related work, and conclude.

2. The frequent query discovery task

We useDatalog (see, e.g., (Ullman, 1988)) to represent data and patterns. There is a
straightforward and well-defined correspondence betweenDatalog and both relational
databases and first-order clausal logic. The use ofDatalog allows us to describe a number
of data mining tasks in the area of frequent pattern discovery in a clear and uniform manner.

Relational algebra, the formal framework of relational databases, has the same expressive
power asDatalog without recursion. For instance, the recursive conceptancestorcan be

FREQUENT DATALOG PATTERNS 9

defined inDatalog but not in relational algebra.Datalog, in turn, is a subset of clausal
logic (andProlog) that is restricted to function-free definite clauses. In this paper, we
restrict ourselves toDatalog to simplify the discussion. It should be stressed however that
the algorithms described below in practice operate in the more generalProlog setting.

We now briefly review theDatalog concepts used in this paper, and describe the data
mining task of discovering frequent patterns or, inDatalog terminology, frequent queries.
Next, we introduce a formalism to specify a remaining essential parameter of the frequent
query discovery task: a search spaceL of Datalog queries.

2.1. Datalog concepts

In Datalog a term is defined as a constant symbol or a variable. To distinguish between
them, we write variables with an initial upper case letter, while using names beginning
with lower case letters for constants. Anatomis anm-ary predicatesymbol followed by
a bracketedm-tuple of terms. Adefinite clauseis a universally quantified formula of the
form B←A1, . . . , An (n ≥ 0), whereB and theAi are atoms. This formula can be read as
“B if A1 and. . . andAn”. If n = 0 a definite clause is also called afact. Groundclauses
are clauses that contain only constants as terms, no variables. Asubstitutionθ is a set of
bindings{X1/a1, . . . , Xm/am} of variablesXi to termsai. If we substituteai for each
occurrence ofXi in a clauseC, we obtainCθ, theinstanceof C by substitutionθ. If Cθ is
ground, it is called aground instanceof formulaC, andθ is called agrounding substitution.

A deductiveDatalog databaseis a set of definite clauses. Often a distinction is made
between theextensionaldatabase, which contains the predicates defined by means of ground
facts only, and the remainingintensionalpart.

A Datalog (andProlog) query is a logical expression of the form?- A1, . . . , An.
Submitting such a query to aDatalog database corresponds to asking the question “does
a grounding substitution exist such that conjunctionA1 and . . . andAn holds within the
database”. The (resolution based derivation of the) answer to a given query with vari-
ables{X1, . . . , Xm} binds these variables to terms{a1, . . . , am}, such that the query
succeedsif ai is substituted for eachXi. This so-calledanswering substitutionis denoted
by {X1/a1, . . . , Xm/am}. Due to the nondeterministic nature of the computation of an-
swers, a single queryQ may result in many answering substitutions. We will refer by
answerset(Q, r) to the set of all answering substitutions obtained by submitting queryQ
to aDatalog databaser.

As already pointed out, if recursion is not allowed, these concepts correspond directly to
relational database terminology. Predicates map to relations, facts to tuples of a relation,
and a query such as

?- window(Windowid, Alarmtype), isa(Alarmtype, warning)

can be written in SQL as

select window.window id, window.alarmtype
from window, is a
where window.alarmtype=is a.alarmtype
and is a.ancestor=’warning’

10 DEHASPE AND TOIVONEN

An overview of strategies to make the relationship betweenDatalog and relational
databases operational can be found in (Ullman, 1988).

2.2. Frequent query discovery

In terms of the generic formulation of the frequent pattern discovery problem by Mannila
and Toivonen (1997) (see also above, Section 1), we consider the following data mining
task.

Definition 1. Assumer is aDatalog database,L is a set ofDatalog queriesQ that
all contain an atomkey, andq(r , Q) is true if and only if the frequency of queryQ ∈ L
with respect tor givenkeyis at least equal to the frequency threshold specified by the user.
Thefrequent query discovery taskis to find the setTh(L, r, q, key) of frequent queries.

Compared to the original formulation, we have added a fourth parameter, i.e., atomkey,
to the frequent pattern discovery task. In our framework this extra parameter is essential,
as it determineswhat is counted. As we will shortly clarify in our definition of frequency,
each binding of the variables inkeyuniquely identifies an entity.

In previous formulations of the task, thekeyunambiguously followed from the context.
For instance, we count transactions in market basket analysis or windows in episode dis-
covery. In frequent query discovery, with many predicates in the database, the focus of
counting can be on any attribute and has to be specified by the user. The additionalkey
parameter allows us to switch, for instance, from counting transactions, to customers, to
supermarkets, to managers, to regions or to whatever relevant attribute in our market basket
database.

We next define what frequency exactly means in this setting.

Definition 2. Assumer is aDatalog database andQ ∈ L is a query that contains
atomkey. Then the relativefrequencyof queryQ with respect to databaser givenkeyis

frq (Q, r, key) =
|{θk ∈ answerset(?- key,r) |Qθk succeeds w.r.t.r}|

|{θk ∈ answerset(?- key,r)}|

i.e., the fraction of substitutions of the key variables with which the queryQ is true, or,
more intuitively, the fraction of examples in which patternQ occurs.

Example: Consider the analysis of alarms from a telecommunication network (Klemet-
tinen et al, 1998). The task is to discover episodes (Mannila et al., 1997), combinations of
alarms that tend to occur close to each other and that are thus potentially causally related.
Given a long sequence of alarms and a window width, one looks at the sequence by sliding
a window of the given width on the sequence. A set of alarms that occurs frequently in the
windows is called a parallel episode (Mannila et al., 1997).

For the episode discovery task, we store in the databaser facts of the formwindow(wid,
atype)← to indicate that windowwid contains an alarm of typeatype. Notice that in a
practical implementation this information should probably be computed in an incremental
manner at run time.

FREQUENT DATALOG PATTERNS 11

There are a large number of alarm types, and it is often useful to study episodes on dif-
ferent levels of abstraction. For instance, alarm type 1001 belongs to the class of switch
alarms, but also to the class of BSC disturbances and the class of BSC alarms. In general,
alarm types form an “is a” hierarchy (with the shape of a lattice). This information can be
provided as background knowledge, in the form of factsis a(1001, switch)←, is a(1001,
BSCdisturbance)←, is a(BSCdisturbance, BSCalarm)←, and so on. The transitive defi-
nition of is a can be specified as a clause in the intensional part of the background database.

Discovery of frequent parallel episodes with an alarm type hierarchy can now be defined
as a special case of frequent query discovery as follows. The databaser contains, for each
time windowwid on the input alarm sequence, a factwindow id(wid)← and zero or more
factswindow(wid, atype)←. As we want to count windows, we setkeyto window id(Wid).
The databaser further contains, as domain knowledge, facts of the formis a(atype, par-
ent atype)←. The patterns inL consist of the obligatorykeyatomwindow id(Wid) together
with one or more atoms or atom pairs of the formwindow(Wid, atypei) andwindow(Wid,
ATypej), is a(ATypej , atypek).

Suppose we want to count the frequency of query

Q = ?- windowid(Wid), window(Wid, AType), isa(AType, switch)

i.e., “the window contains an alarm type that belongs to the class ofswitchalarms”. For
each factwindow id(widk)← there is a substitution

θk = {Wid/widk} ∈ answerset(?- windowid(Wid), r) .

We then have to find the fraction of such substitutionsθk for which

Qθk = ?- windowid(widk), window(widk, AType), isa(AType, switch)

succeeds.
This situation is actually identical to the discovery of frequent sets for association rules.

For the supermarket basket analysis application, simply replace windows by transactions
and alarm types by item types. The problem of discovering such frequent sets on mul-
tiple levels of an item type hierarchy has been considered, e.g., in (Han and Fu, 1995,
Holsheimer et al., 1995, Srikant and Agrawal, 1995).

To conclude the description of the frequent query discovery task, let us once more estab-
lish the link with relational database terminology. In SQL syntax the absolute frequency
of Q can be obtained with the following query, inspired by (Lindner and Morik, 1995,
Blockeel and De Raedt, 1996):

select count(distinct *)
from select fields that correspond to the variables inkey

from relations in Q
where conditions expressed in Q

2.3. Declarative language bias

The representation of patterns asDatalog queries requires a formalism to constrain the
query languageL to a set of meaningful and useful patterns. With association rules the

12 DEHASPE AND TOIVONEN

definition of L is straightforward:L is simply 2I , the collection of all subsets of the
set I of items. Srikant, Vu, and Agrawal (Srikant et al, 1997) describe a technique to
impose and exploit user-defined constraints on combinations of items, but otherwise the
definition ofL has received little attention in the frequent pattern discovery literature. In
inductive logic programming, on the other hand, this issue has been studied extensively
in the subfield of declarative language bias. This is motivated by huge, often infinite,
search spaces, that require a tight specification of patterns worth considering. Several
formalisms have been proposed for adding language bias information in a declarative manner
to the search process (for an overview, see (Ad´e et al, 1995, N´edellec et al., 1996)). Our
formalism,Wrmode, is an adaptation toWarmr of theRmode format developed for
Tilde (Blockeel and De Raedt, 1998) which, in turn, is based on the formalism originally
developed forProgol (Muggleton, 1995).

We will demonstrate later how theWrmode notation can be used to constrainL to some
interesting classes of patterns. The required subset ofWrmode is described below.

2.3.1. TheWrmode basics Let us first look at the simple case whereL contains no
variables, i.e., only ground queries are allowed. Under these circumstances, theWrmode
notation extends the straightforwardL = 2I bias toDatalog queries: given a setAtoms
of ground atoms, the languageL consists of2Atoms, i.e., of all possible combinations of the
atoms. For example,Atoms = {p(a,b), q(c)} definesL = 2Atoms = {?- true; ?- p(a,b);
?- q(c); ?- p(a,b),q(c)}.

When variables are allowed inL, the power set idea can be extended to a set of literals,
as done, for instance, in (Weber, 1997) and (Dehaspe and De Raedt, 1997). However, this
solution is inconvenient for two reasons. First, we might want to define infinite languages.
For instance, in a graph represented as a set ofDatalog factsedge(From,To)we might
want to allow queries?- edge(X1,X2), edge(X2,X3), edge(X3,X4), . . . of arbitrary length.
Thereto, an atom inAtoms should be allowed several times in the query and not just once as
in 2Atoms. Second, we do not want to control the exact names of the variables in the query,
as we do for constants, but rather the sharing of names between variables. For example,
query?- rectangle(Width,Height), Width<Height is equivalent to query?- rectangle(X,Y),
X<Y but not to query?- rectangle(Width,Height),X<Y.

In theWrmode framework, non-ground atoms inAtoms are allowed to occur multiple
times in the query, as long as their variables obey the so-calledmode constraints. These
are declared for each variable argument of each atom by means of threemode-labels+,−,
and±:

+ the variable is strictlyinput, i.e. bound before the atom is called
− the variable is strictlyoutput, i.e. bound by the atom
± the variable can be both input and/or output, i.e. anything goes

In our approach the atoms of the query are evaluated one by one, following an ordering
that is consistent with the mode declarations. The intuition is that the evaluation of some
atoms, such asX < Y in the example above, presupposes the binding of certaininput
variables to a constant. On the other hand some atoms, e.g.rectangle(Width,Height), are
allowed or required to introduce newoutputvariables bound during evaluation of the atom.

FREQUENT DATALOG PATTERNS 13

Table 1.Examples ofWrmode definitions and queries (dis)allowed in the corresponding languages.

Wrmode definition Atoms example pattern∈ L example pattern 6∈ L

{p(−,−),q(−)} ?- p(X,Y),q(Z) ?- p(X,Y),q(Y)
{p(+,−),q(−)} ?- q(X),p(X,Y),p(Y,Z) ?- p(X,Y)
{p(+,±),q(−)} ?- q(X),p(X,X),p(X,Y) ?- q(X),p(Y,X)
{p(±,a),q(±)} ?- p(X,a),q(X),q(Z),p(Z,a) ?- p(X,Y)

A query is then mode conform if an ordering of atoms exists such that every input variable
occurs in one of the previous atoms, and no output variable does. Some examples of queries
that are consistent and inconsistent with mode declarations are listed in Table 1. Throughout
the paper we use the notational convention that the atoms of a query are evaluated from left
to right.

2.3.2. Typing inWrmode Additional constraints on the sharing of variable names can
be imposed via type declarations. TheWrmode convention is to append these to the mode
declarations inAtoms. A query is then type conform if and only if arguments that share
a variable name have identical types or at least one of them is untyped. For example, with
mode and type declarationsAtoms = {p(−s,−t),q(+t,a)}, query?- p(X,Y),q(Y,a)is in L,
but not?- p(X,Y),q(X,a)since the first arguments of predicatesp andq have incompatible
types. Notice the difference between constants and types in declarationsAtoms: types are
preceded by a mode label and constants are not.

2.3.3. TheWrmode key As we have seen, the frequent query discovery task requires
the specification of akeyatom which is obligatory in all queries. WithinWrmode notation
this is done withkey = KeyAtom, whereKeyAtomis a mode and type declaration as defined
above. Obviously, the key atom declaration should not contain any+ mode labels.

For an example of a non-ground language, considerkey = p(−,−) andAtoms = {q(+)}.
These declarations together defineL = {?- p(X,Y); ?- p(X,Y),q(X); ?- p(X,Y),q(Y);
?- p(X,Y),q(X),q(X); ?- p(X,Y),q(X),q(Y); . . .}. Notice the presence of logically redundant
queries such as?- p(X,Y),q(X),q(X).

2.3.4. Logical redundancy andWrmode The Wrmode notation is only meant to
capture application-specific constraints onL. These are usually supplemented by a num-
ber of general constraints hardwired in the data mining algorithm in whichWrmode is
embedded. Logical non-redundancy is such an application-neutral and algorithm-specific
constraining principle. For instance, the lastWrmode definition in Table 1 allows
?- p(X,a), q(X), p(Y,a), q(Y), q(Y), which is logically equivalent to the shorter?- p(X,a),q(X).
Within Warmr the first pattern would be filtered away in the candidate generation phase,
as explained below in Section 3.2.3.

14 DEHASPE AND TOIVONEN

2.3.5. Wrmode extensions The implementation ofWrmode contains many extra
features that provide more expressive power and allow more condensed notations. One
general mechanism is to make the presence of atoms conditional on the presence or absence
of other atoms. For instance, in the case of alarm analysis, the query?- windowid(Wid),
window(Wid,AType)is bound to succeed for all windows, assuming all windows contain at
least one alarm. To avoid the evaluation of such uninteresting patterns we could require
thatwindow(Wid,AType)only occurs in combination with an atomis a(AType,atype). The
details of how to achieve this withWrmode are beyond the scope of this article, and we
will make abstraction of this and similar extensions in the rest of the paper.

Example: In the previous example we stated that for the parallel episode discovery task,
the patterns inL consist of an atomwindow id(Wid) together with atoms or atom pairs of
the formswindow(Wid, atypei) andwindow(Wid, ATypej), is a(ATypej , atypek).

For theWrmode specification of this we first set the key atom by specifying

key = windowid(−w)

In words, we want to count windows, not alarm types or whatever. For the set of atoms that
can be used in constructing queries we set

Atoms = { window(+w,atype1), . . . ,window(+w,atypem),
window(+w,−a), is a(+a,aclass1), . . . , is a(+a,aclassn)}

for allmalarm types andnalarm classes. According to these declarations, the first argument
of windowhas to be an input variable of the same typew as the argument ofwindow id, and
the second argument is either a constant from{atype1,. . . ,atypem} or an output variable
different from the variable inwindow id. The first argument ofis a is an input variable of
the same typea as the second argument ofwindow. Finally, the second argument ofis a is
a constant from{aclass1,. . . ,aclassn}.

3. Query discovery withWarmr

Design of algorithms for frequent pattern discovery has turned out to be a popular topic
in data mining (for a sample of algorithms, see (Agrawal et al, 1993, Agrawal et al, 1996,
Lu et al, 1995, Savasere et al, 1995, Toivonen, 1996)). Almost all algorithms are on some
level based on the same idea of levelwise search, known in data mining from theApriori
algorithm (Agrawal et al, 1996). We first review the generic levelwise search method and its
central properties and then introduce the algorithmWarmr (Dehaspe and De Raedt, 1997)
for finding frequent queries. To conclude this section, we recall how this method fits in the
two-phased discovery of frequent and confident rules.

3.1. The levelwise algorithm

The levelwise algorithm (Mannila and Toivonen, 1997) is based on a breadth-first search
in the lattice spanned by a specialization relation¹ between patterns, cf. (Mitchell, 1982),
wherep1¹p2 denotes “patternp1 is more general than patternp2”, or “p2 is more specific
than patternp1”.

FREQUENT DATALOG PATTERNS 15

Algorithm 1 : Warmr

Inputs: Databaser; Wrmode languageL andkey; thresholdminfreq
Outputs: All queriesQ ∈ L with frq (Q, r, key) ≥ minfreq

1. Initialize leveld := 1
2. Initialize the set of candidate queriesQ1 := {?- key}
3. Initialize the set of infrequent queriesI := ∅
4. Initialize the set of frequent queriesF := ∅
5. WhileQd not empty
6. Findfrq (Q, r, key) of all Q ∈ Qd usingWarmr-Eval
7. Move the queries∈ Qd with frequency belowminfreqto I
8. UpdateF := F ∪Qd
9. Compute new candidatesQd+1 fromQd, F andI usingWarmr-Gen
10. Incrementd
11. ReturnF

The method looks at a level of the lattice at a time, starting from the most general patterns.
The method iterates between candidate generation and candidate evaluation phases: in
candidate generation, the lattice structure is used for pruning non-frequent patterns from the
next level; in thecandidate evaluationphase, frequencies of candidates are computed with
respect to the database. Pruning is based on monotonicity of¹ with respect to frequency:
if a pattern is not frequent then none of its specializations is frequent. So while generating
candidates for the next level, all the patterns that are specializations of infrequent patterns
can be pruned. For instance, in theApriori algorithm for frequent itemsets, candidates
are generated such that all their subsets (i.e., generalizations) are frequent.

The levelwise approach has two crucial useful properties:

• Assuming all candidates of a level are tested in single database pass, the database is
scanned at mostd+ 1 times, whered is the maximum level (size) of a frequent pattern.
This is an important factor when mining large databases.

• The time complexity is in practice linear in the product of the size of the result times
the number of examples, assuming matching patterns against the data is fast.

3.2. TheWarmr algorithm

The inputs ofWarmr correspond to the four parameters of the frequent query discovery
task as introduced in Definition 1. Algorithm 1, steps (5–10), showsWarmr’s main loop
as an iteration of candidate evaluation in step (6) and candidate generation in step (9). The
manipulation of setI of infrequent queries in steps (3) and (7) is necessary for the generation
phase. This is discussed below, together with some other features that distinguishWarmr
from Apriori.

16 DEHASPE AND TOIVONEN

3.2.1. Specialization relation The subset specialization relation used in most frequent
pattern discovery settings can in some restricted cases also be used for structuring a space
of Datalog queries, as done in (Weber, 1997, Weber, 1998) and (Dehaspe and De Raedt,
1997). In general however, the subset condition is too strong. For instance, we would
like to consider query?- p(Z,Z),q(Z)as a specialization of query?- p(X,Y),p(Y,X), although
{p(X,Y),p(Y,X)} is not a subset of{p(Z,Z),q(Z)}.

The most obvious general-purpose definition of the subsumption relation is based on
logical implication:Query1¹Query2 if and only ifQuery2 |= Query1. Logical impli-
cation could detect for instance that?- p(X,Y),p(Y,X)is a generalization of?- p(Z,Z),q(Z).
However, due to the high computational cost of the logical implication check, inductive
logic programming algorithms often rely on a stronger variant coinedθ-subsumption by
Plotkin (Plotkin, 1970).Query1 θ-subsumesQuery2 if and only if there exists a (possibly
empty) substitution of the variables ofQuery2, such that every atom of the resulting query
occurs inQuery1, i.e.,Query1 ⊇ Query2θ. For instance,?- p(Z,Z),q(Z)θ-subsumes
?- p(X,Y),p(Y,X), with θ = {X/Z, Y/Z}.

3.2.2. Candidate evaluation AlgorithmWarmr-Evaladapts Definition 2 of frequency
of a single queryQj to the levelwise approach, which matches a set of patterns against one
example at a time. The example is here represented byθk, the substitution for the key
variables obtained in step (2) by running?- keyagainst the database. The algorithm, in
step (2.b), applies a fixed substitutionθk to the subsequent queriesQj drawn fromQ, and
increments an associated counterqj in caseQjθk succeeds with respect to the database.

If we execute the latter evaluation with respect tor , we still need one pass through the
database per query, instead of one pass per level. The solution adopted inWarmr-Eval,
step (2.a), is based on the assumption that there exists a relatively small subsetrk of r ,
such that the evaluation of anyQθk only involves tuples fromrk. Readers familiar with
relational database technology might notice a similar assumption underlies the definition
of a cluster index. In many cases{rk} is a partition onr . The algorithm then makes a
single pass through the data in the sense that the key valuesθk are retrieved one by one, the
subsequent subdatabasesrk are activated once in (2.a), and all queries are evaluated locally
with respect tork in (2.b). An experimental evaluation of this localisation of information
in a related data mining task can be found in (Blockeel et al, 1998a).

Consider as an example the alarm analysis database introduced in the previous section.
Each subsetrk of this database would contain a factwindow id(widk)← and zero or more
factswindow(widk,atype)←. This subset of the database indeed suffices for solving queries
Qθk built with predicateswindow id andwindow. But what about the facts of the form
is a(atype, parentatype)←? Clearly these are relevant for many keyswidk and involved
in solving queries in many examplesθk. As a consequence, they cannot be assigned to one
rk exclusively. We will discuss efficient solutions in Section 3.2.4 below.

3.2.3. Candidate generation To generate candidates,Warmr-Gen employs at step
(2) a classical specialization operator underθ-subsumption (Plotkin, 1970, Muggleton and
De Raedt, 1994). A specialization operatorρ maps queries∈ L onto sets of queries∈ 2L,
such that for anyQuery1 and∀Query2 ∈ ρ(Query1),Query1 θ-subsumesQuery2. The

FREQUENT DATALOG PATTERNS 17

Algorithm 2 : Warmr-Eval

Inputs: Databaser; set of queriesQ; Wrmode key
Outputs: The frequencies of queriesQ

1. For each queryQj ∈ Q, initialize frequency counterqj := 0
2. For each substitutionθk ∈ answerset(?- key,r), do the following:

(a) Isolate the relevant fraction of the databaserk ⊆ r
(b) For each queryQj ∈ Q, do the following:

If queryQjθk succeeds w.r.t.rk, increment counterqj
3. For each queryQ;∈ Q, return frequency counterqj

operator used inWarmr-Gen essentially adds one atom to the query at a time, as allowed
by Wrmode declarations. For instance, given theWrmode declarations:

key = windowid(−w)
Atoms = { window(+w,atype1), . . . ,window(+w,atypem) ,

window(+w,−a), is a(+a,aclass1), . . . , is a(+a,aclassn)}
and

Qj = ?- windowid(W), window(W,atype1),window(W,AT1)

Warmr-Gen builds specializationsQ′j of Qj by adding an atom from set

{window(W,atypei), window(W,AT2), isa(AT1,aclassj)}
with 1 ≤ i ≤ m and1 ≤ j ≤ n.

Mode and type declarations on variables may cause an atom to be added for the first time
only deep down the lattice. For instance, in the example above, atomis a(AT1,aclassj)
could not have been added ifwindow(W,AT1)had not been inQ. This complicates pruning
significantly. We can no longer require that all generalizations of a candidate are frequent as
some of the generalizations, such as?- windowid(W), window(W,atype1),is a(AT1,aclass1)
in the example, might simply not be inL. Instead,Warmr-Gen at step (2.i) requires
candidates not toθ-subsume any infrequent query. In step (2.ii), we also require that
candidates and frequent queries are mutually inequivalent underθ-subsumption. This way
a potentially huge set of redundant solutions is eliminated.

3.2.4. Efficiency and complexity considerationsWarmr, like any other inductive logic
programming algorithm, has to cope with the theoretical result that both evaluation of a query
and testingθ-subsumption are NP complete problems. In some practical cases however,
as discussed in respectively (De Raedt and Dˇzeroski, 1994) and (Kietz and L¨ubbe, 1994),
both problems can be solved efficiently. We now localize these critical operations in the
Warmr algorithm and discuss some implemented and possible optimizations.

The composition and the loading ofrk in Warmr-Gen step (2.a) can be optimized
in two ways. First, if a fixed portionrB reoccurs as a subset of manyrk ’s, we can load

18 DEHASPE AND TOIVONEN

Algorithm 3 : Warmr-Gen

Inputs: Wrmode languageL; infrequent queriesI; frequent queriesF ;
frequent queriesQd for leveld

Outputs: Candidate queriesQd+1 for leveld+1

1. InitializeQd+1 := ∅
2. For each queryQj ∈ Qd, and for each immediate specializationQ′j ∈ L of Qj :

AddQ′j toQd+1, unless:
(i) Q′j is more specific than some query∈ I, or
(ii) Q′j is equivalent to some query∈ Qd+1 ∪ F

3. ReturnQd + 1

the commonrB once, and iteratively load only the specificrk\ rB . In inductive logic
programming jargon,rB typically corresponds to background knowledge. For instance, in
the telecommunication domain, background knowledgerB might consist of: (1) ground
facts about alarm types, network elements, and network topology, and (2) clausal rules that
capture general fault and network management principles and so forth. For instance, the
is a(atype, parenttype)← facts in the example above could be stored inrB . Second, in
cases where the repeated composition ofrk is still too costly, e.g. if many facts have to
be selected from many different predicates, a preprocessing step can be considered where
all the rk ’s are composed once and written to flat files, see (Blockeel et al, 1998a) for an
experimental evaluation.

In some cases,rk is very small compared tor and can be loaded in main memory even
if r cannot. This has the crucial advantage that evaluation of candidates inWarmr-Eval
step (2.b) can be done more efficiently with respect to a cached fraction of the database. It
is possible however to contrive a database and language such that eachrk ' r and the eval-
uation of complex queries with respect to huge databases becomes impractical. Consider
for instance the consequences of adding to the alarm analysis database facts of the form
follows(widi,widj)← and allowing queries such as?- windowid(W1), follows(W1,W2),
window(W2,1001)i.e., “the window follows a window that contains an alarm type1001”.
To solve such queries in an exampleθk we need all the factswindow(widj)← with j ≤ k.
If we further add predicateprecedes, rk becomes roughly equal tor. This example may
stretch the notion of awindowon the data, but it does illustrate that the isolation ofrk
from r and “local” evaluation ofQjθ in Warmr-Eval step (2.b) is not guaranteed to be
profitable. This approach does allow however to take advantage of situations where the
bulk of the database is immaterial to that evaluation.

Some alternative strategies to boostWarmr-Eval step (2.b) will be considered in
future work. For instance, when in query?- windowid(widk), window(widk,AType),
is a(AType,switch), window(widk,1001)the atomwindow(widk,1001)fails, there is no point
in looking for alternative bindings forAType. In Prolog terminology, thecut operator

FREQUENT DATALOG PATTERNS 19

should be inserted afteris a(AType,switch)to suppress backtracking. Another possibility
to reduce backtracking would be to reorganize setQ into some tree-like structure, similar
to Apriori’s hash trees, and evaluate the queries collectively against the data.

To prune candidatesQ′j , Warmr-Gen in steps (2.i) and (2.ii) scansI,F , andQd+1 until
a query is found that isθ-subsumed by (andθ-subsumes, in the case of (2.ii))Q′j . As a
straightforward optimization, a sorted list of predicates is associated with each query, and
the expensiveθ-subsumption test on a couple of queries is only applied after a positive subset
test on the corresponding predicate lists. Planned improvements include the reorganization
of the massively overlapping queries fromI, F , andQd+1 into a tree, as above, and
verification ofθ-subsumption against this structure.

One can also alleviate the candidate generation problem by using a declarative language
bias formalism that is equipped with a refinement operator that is optimal in the sense that it
generates each query at most once, as done, for instance, in (Dehaspe and De Raedt, 1996,
Dehaspe and De Raedt, 1997, Weber, 1997, Weber, 1998, Wrobel, 1997).

3.3. Two-phased discovery of frequent and confident rules

Frequent patterns are commonly not considered useful for presentation to the user as such.
Their popularity is mainly based on the fact that they can be efficiently post-processed into
rules that exceed given confidence and frequency threshold values. The best known exam-
ple of this two-phased strategy is the discovery of association rules (Agrawal et al, 1993),
and closely related patterns include episodes (Mannila et al., 1997) and sequential pat-
terns (Agrawal and Srikant, 1995). For all these patterns, the threshold values offer a natural
way of pruning weak and rare rules.

We introduce the notionquery extensionto refer to the first-order equivalent of an associa-
tion rule. In terms of theDatalog concepts introduced in Section 2, aquery extensionE is
an expression of the formA1, . . . , Ak ⇒ Ak+1, . . . , An, whereAi are atoms. This formula
should be read as “if query?- A1,. . . ,Ak succeeds then the extended query?- A1,. . . ,An
succeeds also”. Theconfidenceof query extensionE can be computed as the ratio of the
frequencies of queries?- A1,. . . ,An and?- A1,. . . ,Ak. Thefrequency(or support) of query
extensionE is the frequency of query?- A1,. . . ,An.

As observed in (Agrawal et al, 1993) for association rules, confident and frequent query
extensions can be found effectively in two steps. In the first step one determines the set of all
frequent queries?- A1,. . . ,An, and in the second produces query extensionsA1, . . . , Ak ⇒
Ak+1, . . . , An whose confidence exceeds the given threshold. If all frequent queries and
their frequencies are known as a result of the first step, then this easy second step is
guaranteed to output all frequent and confident query extensions.

Example: Suppose we runWarmr on the alarm analysis database introduced in Sec-
tion 2.2, withL defined by theWrmode declarations at the end of Section 2.3, and obtain
the two following queries with associated relative frequencies:

?- windowid(W),window(W,1001) freq: 0.4
?- windowid(W),window(W,1001),window(W,A),isa(A,switch) freq: 0.3

These patterns can be processed without going back to the database into a query extension:

20 DEHASPE AND TOIVONEN

window id(W),window(W,1001)⇒ window(W,A),isa(A,switch)
freq:0.3 ;conf:0.75

i.e., with 30% frequency and 75% confidence:“if there is in the window an alarm of type
1001, then the window will also contain an alarm that belongs to the class ofswitchalarms”.

4. Cases of frequent query discovery

We now present more extensive problems in the discovery of frequent patterns in the domain
of alarm analysis. These cases are inspired by previous data mining settings, but they contain
elements that have not been considered before. We show how minor modifications to the
language bias define increasingly complex tasks. We then briefly compare different settings
and algorithms for solving them.

4.1. More complex parallel episodes

Consider the case where each occurrence of an alarm has a number of attributes associated
with it. In the telecommunications domain such attributes include, in addition to the alarm
type, e.g., the urgency and the sender of the alarm. The alarm database thus consists of a
number of windows, each with a number of alarms, where each alarm has certain individual
properties. Discovery of frequent combinations of alarms where the properties of alarms
are also considered, is an interesting problem. However, mapping such a case to one of the
existing frequent pattern discovery problems does not seem to be possible without loss of
information.

Assume, for instance, an alarm database with factswin id(wid)←of window identifiers, as
before, and factswin(wid, atype, urgency, sender)← that denote for each alarm in a window
the type, the urgency level, and the sending network element of the alarm. A sample of such
a database is shown below. This setting has some similarity with the “multiple-instance
problem” known from attribute-value learning (Dietterich et al, 1997).

win(1,1001,notice,367)← win(2,1001,notice,534)←
win(1,1054,warning,367)← win(2,1005,notice,245)←
.

Let us now look at two possible strategies for transforming this setting to simple sets of
binary indicators, such as alarm types or items in the more simple examples considered
in Section 2. First, one could blow up the number of indicators and introduce an item
atype urgency sender for all combinations that occur, e.g., the first fact shown above
would be written aswin(1,1001notice367)←. A first objection to this solution is that,
especially with a high number of (many-valued) properties, this transformation will re-
sult in an exponential number of infrequent items. Moreover, even if this transformation
is practicable, it would disallow the discovery of frequent combinations of the original
properties.

As as second attempt we could add the individual properties as extra item types, as is done
with item hierarchies and in (Klemettinen et al, 1998). This, indeed, allows the discovery
of patterns such as

FREQUENT DATALOG PATTERNS 21

?- win id(Wid),win(Wid,1001),win(Wid,warning),win(Wid,534)

i.e., “an alarm of type1001, a warning, and an alarm from534”. However, we lose the
facility to discover something about combinations of properties, such as “awarningof type
1001from 534”: propertieswarningand534are tested independently and cannot be linked
to the same alarm.

To summarize the problem, we would like alarms and their properties to occur both in
isolation, and in any combination, e.g.

?- win id(W),win(W,1001,notice,367),win(W,1054,warning,S),win(W,1034,U, T)

“a noticeof type1001from 367, awarningof type1054, and an alarm of type1034”.
With Warmr such patterns could be discovered by choosing the language bias essentially

as follows:

key= win id(−w)
Atoms = { win(+w,−atype,−urgency,−sender),

eq(+atype, 1001), eq(+atype, 1002),. . . ,
eq(+urgency, notice), eq(+urgency, warning),. . . ,
eq(+sender, 245), eq(+sender, 265), . . .}

whereeq is an equality test. The corresponding language contains the pattern above in
format:

?- win id(Wid), win(Wid,A1,U1,S1), eq(A1,1001), eq(U1,notice), eq(S1,367),
win(Wid,A2,U2,S2), eq(A2,1054), eq(U2,warning),
win(Wid,A3,U3,S3), eq(A3,1034)

This bias could be easily extended to handle the case where a window as a whole may
have properties in addition to the properties of alarms. For instance, whether the window
falls on office time or not is a useful bit of information. One can then look for combinations
of alarm and window properties, such as

?- win id(Wid),win(Wid,1001,warning,S),officehours(Wid,yes)

“office timewindows containing awarning of type 1001”. To find such patterns with
Warmr, we only have to add

Atoms := Atoms ∪ {officehours(+w,yes), officehours(+w,no)}

to the language bias. Such an extension could be very interesting in the supermarket basket
analysis domain, where the properties of a transaction may contain information about the
context of shopping, about the customer, or aggregate information about the basket, such as
the time or the location of shopping, or the total value or the number of items in the basket.
Frequent patterns that could be discovered include, e.g., “baskets containing cigarettes and
paid in cash” and “senior customers buying something promoted”.

Allowing the presence of arbitrary relations between alarm properties or arbitrary back-
ground knowledge makes the setting even more interesting. For example, we can slightly
modify one of the patterns shown above:

22 DEHASPE AND TOIVONEN

?- win(W,1001,notice,367),win(W,1054,warning,S),win(W,1034,U,S)

“a notice 1001from 367, and awarning 1054and an alarm1034 from the same sender”.
Notice the sharedS variable—such patterns where the sender is shared can be found if
Warmr’s bias is extended with

Atoms := Atoms ∪ win(+w,−atype,−urgency,+sender)

All the facts mentioned above are relevant for a single windowwink only and can be stored
in mutually exclusiverk subdatabases to improve query evaluation (cf. Section 3.2.2).
Common background knowledgerB can be used to specify, e.g, neighborhood relations
in the network of telecommunication equipment. The database and language then look as
follows:

r := r ∪ {neighbor(245,265)←,. . .}
Atoms := Atoms ∪ {neighbor(+sender,+sender)}

An example of a query admitted by this extension is:

?- win id(W),win(W,1001,notice,S1),win(W,1054,warning,S2),neighbor(S1,S2)

This formulation is close to the one of general episodes given in (Mannila and Toivonen,
1996). They allow binary relations on alarms, such as for instance theneighborrelation
above, or an order relation based on a time stamp associated with the alarms. Their setting
has not been implemented in a full scale before.

4.2. Dimensions of the frequent pattern discovery task

Different frequent pattern discovery tasks can be characterized in terms of their support
for a fairly small number of features. In Table 2 we present an overview of different
tasks. Since most of the work has been presented in the context of association rules, we
use primarily terms from association rules and market basket analysis (and secondarily the
alarm vocabulary).

“Itemsets” (IS) stands for the discovery of frequent sets of items, as it is done for the
discovery of association rules in the very basic setting (Agrawal et al, 1993) (or parallel
episodes of Section 2, without a class hierarchy on alarm types (Mannila et al., 1997)).
“Item hierarchies” (IH) is the basic setting extended with a hierarchy on the items (Han
and Fu, 1995, Holsheimer et al, 1995, Srikant and Agrawal, 1995) (or the case described as
parallel episodes in the examples of Section 2). “Sequential patterns” (SP) refers to the case
in basket analysis where a number of transactions are observed for each customer, and pat-
terns relating items in different transactions are searched for (Agrawal and Srikant, 1995,
Srikant and Agrawal, 1996). “Parallel episodes with alarm properties” (PE) stands for the
more complex parallel episodes described in this section: items in a transaction have indi-
vidual properties (individual occurrences of alarms have properties). “General episodes”
(GE) is the setting where items have properties and patterns contain unary and binary re-
lations on items within a transaction (Mannila and Toivonen, 1996). Finally, “Datalog
patterns” (DP) stands for the possibilities of frequentDatalog queries.

FREQUENT DATALOG PATTERNS 23

Table 2.Dimensions of frequent pattern types. Legend: IS = itemsets, IH = itemsets with item hierarchies, SP =
sequential patterns, PE = parallel episodes with alarm properties, GE = general episodes, DP = (full)Datalog
patterns.

IS IH SP PE GE DP

Many items per transaction + + + + + +
Item type properties + + + + +
Many (ordered) transactions per example + +
Item instance and transaction properties + + +
Binary item properties (besides order) + +
Arbitrary Datalog queries +

Table 3.Dimensions of pattern discovery algorithms. Legend: IS = itemsets, IH = itemsets with item hierarchies,
SP = sequential patterns, PE = parallel episodes with alarm properties, GE = general episodes, DP =Warmr.

IS IH SP PE GE DP

Levelwise search + + + + + +
Bindings can be stored + + + + +
All backtracking suppressed + +
Subset relation between item types only +
Incremental candidate evaluation + +

The table lists six of the properties where the tasks differ. These properties are directly
reflected by the existence of different types of atoms in the languageL. A cell contains a
plus if the pattern type can deal or can easily be extended to deal with the given feature.
Note that the table is coarse: for instance, “item type properties” means a concept hierarchy
for most of the cases, and only some can handle other properties associated with item types.

According to Table 2, the most obvious gaps to fill are to either extend sequential patterns
to include item and transaction attributes and binary properties, or to extend episodes to the
case where there is another level of containment between items and examples (e.g., sets of
alarms are sent as transactions, which then occur in windows). Finally, recall that episodes
have not been implemented before in the extent described here.

4.3. Dimensions of the pattern discovery algorithms

We conclude this section with a summary of those dimensions that characterize and relate
the different pattern discovery algorithms. Table 3 shares column labels with Table2: here
a plus in a cell means that a specialized algorithm for the column can exploit the feature
marked on the row.

All algorithms can use the levelwise search method. In all settings exceptWarmr, the
use of variables is strongly limited, e.g., only to the window or transaction variable. As an
effect, the management of variable bindings is very efficient and often the bindings can even
be stored for later use with other patterns. The use of variables also affects the efficiency
of the recognition of patterns. In some settings, the search can be organized so that there
is essentially no backtracking within patterns. Some algorithms exploit the fact that their
queries can be mapped to simple cases, in particular to testing the subset relation, which is

24 DEHASPE AND TOIVONEN

efficient when compared toθ-subsumption in the general case. This has an effect both on
candidate generation and testing. Episode algorithms can take additional advantage of the
fact that the sliding of the window can be handled in an incremental manner.

The relevant—though not very surprising—observation here is that Table 3 is roughly
complementary with Table 2: columns with many plusses in one table tend have few plusses
in the other. Thus, the combination of these two tables provides a fairly balanced picture of
the obvious trade-off between expressivity and efficiency in the context of frequent pattern
mining. It also demonstrates there is no dichotomy item sets vs. queries (Apriori vs.
Warmr), but rather a gradual and complex change in the trade-off between expressivity
and efficiency, with a number of “intermediate” problems that have received considerable
attention.

Warmr is a generic algorithm that does not take advantage of any special properties of
particular problem instances. Therefore, for any specific setting, a more efficient algorithm
can probably be devised.Warmr is useful, in particular, for exploring different settings,
both existing and novel ones.

Finally, the two tables provide a blueprint for a single integrated system that uses Table 2
to determine the minimal level of expressivity required and Table 3 to fire the maximally
efficient algorithm available within that setting. In such a system,Warmr would be the
“catch-all” method.

5. Experiments

In this section we present experimental results withWarmr in the task of frequent query
discovery. First, we round off the running example on alarm analysis. The actual inputs
and a sample of the outputs are discussed in more detail. We then move on to a case where
usefulness of the patterns discovered byWarmr has been confirmed by expert evaluation
(Dehaspe et al, 1998). The task there is to identify substructures of chemical compounds
that have a potential for inducing cancer in human beings.

5.1. Alarm analysis

The experimental data originates from a fault management database of a mobile com-
munication network. The problem of discovering recurrent combinations of alarms from
such databases has been considered in (Goodman and Latin, 1991, H¨atönen et al., 1996,
Klemettinen et al, 1998, Mannila et al., 1997). Closely related data mining problems have
been considered, e.g., in (Bettini et al, 1996, Dousson et al, 1993, Morris et al, 1995, Oates
and Cohen, 1996, Sasisekharan et al, 1996, Srikant and Agrawal, 1996, Padmanabhan and
Tuzhilin, 1996, Wang et al, 1994).

The dataset consists of a sequence of 46662 alarms emitted by the network elements
such as base stations and transmission devices during a period of one month. The time
granularity of the data is one second. The average frequency of alarms is approximately
1500 alarms/day, or 1 alarm/minute, but since alarms tend to occur in bursts, the busiest
second contains 50 alarms.

There are 180 different alarm types, which can be further classified into 10 overlapping
classes. Each instance of an alarm has one of 4 urgency levels. The alarms in the dataset

FREQUENT DATALOG PATTERNS 25

have been received from 2012 network management objects of 9 different types. These
objects represent units of different granularities, and they form a containment hierarchy.
This hierarchy gives essential information about the nature of the relationships of the objects.

The discovery task we consider is to find those combinations of alarms that are fre-
quent. This problem is the one considered in episode discovery, but here, to the best of our
knowledge, we implement a much more expressive variation than has been done before.
We consider alarms with different combinations of properties, and we also consider cases
where the alarms are connected, e.g., in the object hierarchy or in some other way. We
cannot see any way of transforming this task to episode or sequential pattern discovery task
without losing information.

5.1.1. Database and background knowledgeFollowing are some of the most important
predicates used to represent the alarm data. The most obvious ones, such asalarm type(alarm,
alarmtype)←, relate each alarm instance to an alarm type, an occurrence time, several alarm
classes, etc. A background predicateprecedes(alarm1, alarm2)allows temporal order tests
between alarmsalarm1 and alarm2. Some new clauses are defined in the background
knowledge based on the occurrence time, to add potentially useful information such as
officehour(alarm)←.

In a similar manner, the database contains clausessender(alarm, object)← that indicate the
sender of each alarm; background knowledge includes predicates such asancestor(object,
ancestor), sibling(object1, object2), andsameobject type(object1, object2).

In the experiments we considered windows of width 120 seconds that start from an alarm.
To represent and define windowing, we specified in the background knowledge a fact
win id(wid)← and a factstart(wid,alarm)← to identify the window and the alarm it starts
from. Finally, we added a clause that derivesin window(wid, interval, alarm)if alarm
occurs within timeinterval from the start of windowwid.

5.1.2. Language bias TheWrmode language bias used in the experiments looks es-
sentially as follows:

key =win id(−w)
Atoms =
{in window(+w,120,−a),start(+w,±a),sender(+a,−o), precedes(+a,+a),
officehour(+a), weekend(+a), weekday(+a,mon),. . . ,weekday(+a,fri),
urgency(+a,1),. . . ,urgency(+a,4), sameurgency(+a,+a),
alarm type(+a,1001),. . . ,alarm type(+a,2270), samealarm type(+a,+a),
alarm class(+a,sw),. . . ,alarmclass(+a,tr), samealarm class(+a,+a),
senderelem(+a,95),. . . ,senderelem(+a,314), samesenderelem(+a,+a),
object type(+o,bcf),. . . ,objecttype(+o,brx), sameobject type(+o,+o),
ancestor(+o,+o),. . . ,sibling(+o,+o) }

5.1.3. Results A specific task we considered was to describe the windows following
alarms of a specific alarm type. Problems reported by this particular alarm are difficult to
track; here the goal is to discover patterns of alarms from related objects that might help in

26 DEHASPE AND TOIVONEN

explaining the important alarms. We present one of the patterns, in the more informative
query extension format:

win id(W),start(W,A),inwindow(W,120,B),alarmclass(B,bscmessage)⇒
in window(W,120,C),alarmclass(C,trans),sameurgency(A,C),sameurgency(C,B)
Freq:0.15 ; Conf:0.77

i.e., with 15% frequency and 77% confidence: “if a windowstartswith an alarmA and
contains an alarmB of classbsc-messagethen it will also contain an alarmC of classtrans
such that all alarms referred to will have thesame urgency”.

In a more general setting, where the window could start on alarms of any type, the
following pattern was discovered:

win id(W),in window(W,120,A),sender(A,O),objecttype(O,bcf),ancestor(O,P),
object type(P,bsc),inwindow(W,120,B),alarmclass(B,bstmessage)⇒
precedes(A,B),urgency(A,2),alarmclass(A,bstmessage)
Freq:0.27 ; Conf:0.68

i.e., with 68% confidence, and 27% frequency: “if there is in the window an alarm sent by
an object of typebcf, and an ancestor of that object is of typebsc, and there is also an alarm
of classbst message, then the first alarm precedes the second one and has urgency 2 and
classbst message”.

Observe that the natural language paraphrase is actually not exactly equivalent to the rule.
A query extensionX ⇒ Y should be read as “if query?- X succeedsthen query?- X,Y
succeeds” (cf. Section 3.3). Within a window, the condition part might be met for a number
of substitutions of alarms(A,B), whereas only some of them may meet the conclusion part.
A more exact English formulation would have the form “if the condition part holds (with
some substitution of the variables), then the condition and conclusion parts hold together
(with possibly some other substitution)”. The simpler formulation “if X succeedsthen Y
succeeds” is true if the intersection of condition and conclusion variables is empty, which
is obviously the case with traditional association rules, or if that intersection only contains
variables that can be bound in at most one way.

There are a large number of factors that affect the sending of alarms, such as the object
relationships, network configuration and also the surrounding environment. Representing
these factors and taking them into account in the pattern discovery is much easier with
Warmr than with the previous episode formalisms. Network management experts have
also found the pattern types discovered withWarmr more informative and useful.

5.2. Predictive toxicology

The goal of this second experiment is to discover frequent substructures of chemical com-
pounds in relation to their possible carcinogenicity. A few raw statistics confirm this task
is of clear scientific and medical interest: in western countries cancer is the second most
common cause of death, one third of the population will get cancer, and one fourth of the
population will die of cancer. An estimated 80% of these cancers are linked to environ-
mental factors such as exposal to carcinogenic chemicals. At the same time, only fraction
of chemicals are tested for carcinogenesis. This contradiction can be explained by the fact

FREQUENT DATALOG PATTERNS 27

that current methods are expensive and time consuming, hence the interest in cheaper and
faster computer based methods.

The National Toxicology Program (NTP) of the U.S. National Institute for Environmental
Health Sciences aims at safety testing of new chemicals (500 – 1000 every year) and
identification of hazardous chemicals in use (nearly 100,000). Given a compound, they
perform a range of tests that vary in expense, speed and accuracy to estimate the carcinogenic
effect of the compound on humans. At the extreme cheap, fast, and relatively inaccurate end
are biological tests that use bacteria. At the other end are long (about two years), expensive,
and relatively reliable standardized bioassays on thousands of rodents. The urgent need for
predictive toxicology models that identify hazardous chemical exposures more rapidly and
at lower cost than current procedures is the driving force behind the Predictive Toxicology
Evaluation (PTE) project (Bristol et al, 1996).

Within PTE they have collected and published a database of about 300 classified NTP
chemical carcinogenesis bioassays, and a collection of 30 chemicals whose tests are to
be completed by the end of 1998. The prediction of rodent chemical carcinogenesis
of these compound was launched at IJCAI’97 as a research challenge for artificial in-
telligence (Srinisavan et al, 1997). Rather than competing with expert chemists in clas-
sifying chemicals to carcinogenic or otherwise, our goal was to discover frequent pat-
terns that would aid chemists – and data miners seeking predictive theories – to iden-
tify useful substructures for carcinogenicity research, and so contribute to the scientific
insight. This can be contrasted with previous machine learning research in this appli-
cation, which has mainly concentrated on predicting the toxicity of unknown chemicals
(Srinisavan et al, 1997, Kramer et al, 1997). We believe that a repository of frequent sub-
structures and their frequencies would be valuable for chemical (machine learning) research.
For example, once we knowall frequent substructures, we can make stronger claims about
the (non-)existence of high quality single rules than can usually be done with classifying
approaches based on heuristic search.

The results of this experiment have been previously published in (Dehaspe et al, 1998).
Related problems in structure discovery in molecular biology have been considered, e.g., in
(Wang et al, 1997, Kramer et al, 1997, King et al, 1996, King and Srinivasan, 1996). Sub-
structure discovery and the utilization of background knowledge have been discussed in
(Djoko et al, 1995). Closely related data mining problems have recently arisen also in
schema discovery in semi-structured data (Wang and Liu, 1997).

5.2.1. Database and background knowledgeThe database for the carcinogenesis prob-
lem was taken fromhttp://www.comlab.ox.ac.uk/oucl/groups/machlearn/PTE/. The set we
have used contains 337 compounds, 182 (54%) of which have been classified as carcino-
genic and the remaining 155 (46%) otherwise.

Each compound is basically described as a set of atoms and their bond connectivities, as
proposed in (King et al, 1996). The atoms of a compound are represented asDatalog
facts such asatom(d1,d125,h,1,0.327)← stating that compoundd1contains atomd1 25of
elementhand type1with partial charge0.327. For convenience, we have defined additional
view predicatesatomel, atomty, andatomch; e.g.,atomel(d1,d125,h)←. Bonds between
atoms are defined with facts such asbond(d1,d124,d125,1)←, meaning that in compound
d1 there is a bond between atomsd1 24 andd1 25, and the bond is of type1. There are

28 DEHASPE AND TOIVONEN

roughly 18500 of these atom/bond facts to represent the basic structure of the compounds.
Notice we can define a partition{rk} on these facts such that evaluation of candidates
Qi is done (relatively) efficiently with respect to a single compoundcidk at a time (cf.
Section 3.2.2). For each memberrk of the partition, i.e., each compound, we have added a
factcompid(cidk)←.

In addition, background knowledge contains around 7000 facts and some shortDatalog
programs to define mutagenic compounds, genotoxicity properties of compounds, generic
structural groups such as alcohols, connections between such chemical groups, tests to
verify whether an atom is part of a chemical group, and a family of structural alerts called
Ashbyalerts (Ashby and Tennant, 1991).

We randomly split the set of 337 compounds into 2/3 for the discovery of frequent
substructures, and 1/3 for the validation of derived query extensions about carcinogenicity.

5.2.2. Language bias The most extensive set of language biasWrmode specifications
used in the experiments is:

key =compid(−c)
Atoms =
{atomel(+c,±a,c),. . . ,atomel(+c,±a,h), atomty(+c,±a,1),. . . ,atomty(+c,±a,75),
bond(+c,+a,+a,±btype),eq(+btype,1),. . . ,eq(+btype,7),
carcinogenic(+c),noncarcinogenic(+c),ames(+c),
hasproperty(+c,salmonella,p),. . . ,hasproperty(+c,chromex,n),
alcohol(+c,±struct),methyl(+c,±struct),. . . ,six ring(+c,±struct),
ashbyalert(+c,cyanide,±struct),. . . ,ashbyalert(+c,methanol,±struct),
connected(+c,+struct,+struct),occursin(+c,+a,+struct)}

5.2.3. Results In order to investigate the usefulness of different types of information
in the biochemical database,Warmr’s language bias was varied to produce three sets of
frequent patterns.

• Experiment 1: only atom element, atom type, and bond information. At level 6,
Warmr generates substructure

?- atomel(C,A1,c), bond(C,A1,A2,BT), atomel(C,A2,c), atomty(C,A2,10),
atomel(C,A3,h), bond(C,A2,A3,BT) Freq:0.57

i.e., “a carbon atom bound to a carbon atom of type 10 bound to a hydrogen atom,
where the two bonds are of the same bond type”.

• Experiment 2:everything except the atom/bond information. An example of a sub-
structure discovered at level 4 is

?- six ring(C,S1), alcohol(C,S2), ashbyalert(C,di10,S3), connected(S1,S3)
Freq:0.05

i.e., “an alcohol and a six ring connected to a structure with Ashby alert di10”.

FREQUENT DATALOG PATTERNS 29

• Experiment 3:the full database, except the Ashby alerts. At level 5,Warmr produces
substructure

?- six ring(C,S), atomel(C,A1,h), atomel(C,A2,c), bond(C,A1,A2,X), occurs
in(A2,S) Freq:0.70

i.e., “a hydrogen atom bound to a carbon atom in a six ring”.

5.2.4. Query extensionsAs described in Section 3.3, our repository of frequent sub-
structures can be exploited directly, i.e., without going back to the database, to produce
query extensions about carcinogenicity. For instance, we can combine

?- cytogenca(C,n), sulfide(C,S) Freq:0.07

and

?- noncarcinogenic(C), cytogenca(C,n), sulfide(C,S) Freq:0.06

to generate the query extension

cytogenca(C,n), sulfide(C,S)⇒ non carcinogenic(C)Freq:0.06 ; Conf:0.86

To rank these rules we have applied a simple binomial test that verifies how “surprising” the
confidence of query extensionsubstructure(C)⇒(non)carcinogenic(C)is, i.e., how much
it deviates from the confidence oftrue⇒(non)carcinogenic(C). All rules with significance
below3 ∗ σ were discarded, withσ an estimation of the standard deviation. For instance,
the significance level of the above rule is3.16 ∗ σ. The 215 rules that passed this test were
further annotated with their significance level on the 1/3 validation set, and finally combined
with human domain expertise provided by Ross Donald King (Dehaspe et al, 1998). The
main findings are summarized below.

5.2.5. Discussion In Experiment 1, only using atom-bond information, no substructure
described with less than 7 logical atoms is found to be related to carcinogenicity. This places
a lower limit on the complexity of rules that are based exclusively on chemical structure.

For Experiments 2 and 3, validation on an independent test set showed that the rules
identified as interesting in the training set were clearly useful in prediction: the estimated
accuracies of the rules from the training data were optimistically biased, as expected.

The rules found in Experiments 2 and 3 are dominated by biological tests for carcino-
genicity. It is very interesting that these tests appear broadly independent of each other, so
that if a chemical is identified as a possible carcinogen by several of these tests, it is possible
to predict with high probability that it is a carcinogen; unfortunately, such compounds are
rare.

Inspection of the rules from Experiment 2 revealed that the Ashby alerts were not used by
any rules. We believe this reflects the difficulty humans and machine have in discovering
general chemical substructures associated with carcinogenicity. However, it is possible that
the intuitive alerts used by Ashby were incorrectly interpreted and encoded inProlog
by (King and Srinivasan, 1996).

30 DEHASPE AND TOIVONEN

Inspection of the rules from Experiment 3 revealed no interesting substantial chemical
substructures (atoms connected by bonds) in the rules found.

Two particularly interesting rules that combine biological tests with chemical attributes
were found. It is difficult to compare these directly with existing knowledge, because
most work on identifying structural alerts has been based on alerts for carcinogenic-
ity, while both rules identify alerts for non-carcinogenicity. It is reasonable to search
for non-carcinogenicity alerts as there can be specific chemical mechanisms for this,
e.g. cytochromes specifically neutralize harmful chemicals. The rule?- cytogenca(C,n),
ring(sulfide,A,B)for identifying non-carcinogenic compounds is interesting. The combina-
tion of conditions in the rule seems to be crucial: the cytogen and sulfide tests in isolation
seem to do worse. Within rule?- atomch(C,A,X), X≤ -0.215, salmonella(C,n)the addition
of the chemical test makes the biological test more accurate at the expense of less coverage.
As the rule refers to charge this rule may be connected to transport across cell membranes.

It is interesting and significant that no atom-bond substructures described with less than
7 conditions were found to be related to carcinogenicity. This result is not inconsistent
with the results obtained by (King and Srinivasan, 1996) and (Srinivasan et al, 1997) using
Progol because most of the substructures there involve partial charges, and the rest do
not meet the coverage requirements in Experiment 1.

Although the lack of significant atom-bond substructures found in Experiment 1 is dis-
appointing, it is perhaps not too surprising. The causation of chemical carcinogenesis is
highly complex with many separate mechanisms involved. Therefore predicting carcino-
genicity differs from standard drug design problems, where there is normally only a single
well defined mechanism. We consider that it is probable that the current database is not
yet large enough to provide the necessary statistical evidence required to easily identify
chemical mechanisms. Biological tests avoid this problem because they detect multiple
molecular mechanisms; e.g., the Ames test for mutagenesis detects many different ways
chemicals can interact with DNA and cause mutations; biological tests also detect whether
the compound can cross cell membranes and not be destroyed before reaching DNA.

The ultimate goal of the work in predictive toxicology is to produce a program that
can predict carcinogenicityin humansfrom just input chemical structure. Such a system
would allow chemicals to be quickly and cheaply tested without harm to any animals.
This goal is still distant. Our results suggest that an intermediate goal for data mining
in this predictive toxicology problem is to identify the combinations of biological tests
and chemical substructures that provides the most cost-effective tests for testing chemical
carcinogenesis.

6. Related work

We restrict the discussion of related work to research not explicitly addressed elsewhere
in the paper. For an overview of inductive logic programming work in the context of
knowledge discovery in databases, we refer to (Dˇzeroski, 1996).

FREQUENT DATALOG PATTERNS 31

6.1. Logical paradigm: learning from interpretations

The definition of frequent query discovery and the relatively efficient candidate evaluation in
Warmr is rooted in thelearning from interpretationsparadigm, introduced by De Raedt and
Džeroski (De Raedt and Dˇzeroski, 1994) and related to other inductive logic programming
settings in (De Raedt, 1996). Indeed, subset{rk} of databaser (see Section 3.2.2) can be
formalized in first-order logic as aHerbrand interpretation. Every rk in which a query
succeeds is then aHerbrand modelof that query.

The learning from interpretations paradigm has proven to be particularly suitable for
the design of upgrades to popular attribute-value learning techniques. In that respect,
Apriori - Warmr is only one of the more recent additions to a sequence of simi-
lar upgrades (De Raedt et al, 1998):Explora(Kl ösgen, 1996)–Claudien (De Raedt
and Dehaspe, 1997), CN2 (Clark and Niblett, 1989)–ICL (De Raedt and Van Laer, 1995),
C4.5 (Quinlan, 1986)–Tilde (Blockeel and De Raedt, 1998, Blockeel et al, 1998a), hier-
archical clustering (Langley, 1996)-(Blockeel et al, 1998b), and reinforcement learning
(Džeroski et al, 1998).

6.2. Clausal discovery

Warmr is the first algorithm that addresses the frequent query discovery task, but the query
extensions derived from its output (see Section 3.3) can also be obtained via algorithms that
search for good quality rules directly. The discovery of clauses is handled for instance by
Knowledge Miner (Shen et al, 1996),Claudien (De Raedt and Dehaspe, 1997),Mi-
dos (Wrobel, 1997), RDT (Kietz and Wrobel, 1992),Mobal (Lindner and Morik, 1995),
Laurel (Weber, 1997, Weber, 1998), andProgol in learning from positives only mode
(Muggleton, 1996). We first clarify the link between query extensions and clauses and next
relateWarmr to clausal discovery algorithms.

The frequency of a clauseH←B, where headH is a disjunction and bodyBa conjunction
of atoms, can be defined in our framework asfrc (H ← B, r, key) =

|{θk ∈ answerset(?- key,r) | (?-B)θk succeeds and (?-B,¬H)θk fails w.r.t. r}|
|{θk ∈ answerset(?- key,r)}

i.e., the fraction of substitutions of the key variables with which the body of the clause is
true while there is no way to make the body true and the head false, or, the fraction of
examples in which the clause non-trivially holds (cf.global coveragein Claudien). The
confidence of a clauseH ← B can then be defined as the frequency of the whole clause
frc (H ← B, r, key) divided by the frequency of the bodyfrq (?-B, r, key) (cf. global
accuracyin Claudien). By definition offrq andfrc the following properties hold:

frq ((?-¬B), r, key) + frq ((?-B,¬H), r, key) + frc (H ← B, r, key) = 1
confidence(B ⇒ H) + confidence(¬H ← B) = 1

These properties allow us to translate query extensionsB ⇒ H to clauses¬H ← B and
back. For a more detailed account of the relation between clauses and query extensions,
we refer to (Dehaspe, 1998).

32 DEHASPE AND TOIVONEN

The key differences betweenWarmr and clausal discovery algorithms have to do with
the logical expressions in the respective search spaces: queries vs. clauses. The efficient
levelwise method for traversing the search space is not directly applicable to clausal dis-
covery. For levelwise search, a quality criterion is required that is monotone with respect
to the specialization relation, cf. (Mannila and Toivonen, 1997). In a space of queries,
frequency is such a monotone quality criterion. In a space of clauses, neither confidence
nor frequency qualifies directly, and pruning is often based on the frequency of clause
bodies, which is again monotone w.r.t. generality. Moreover, clausal discovery engines
often have an any-time character and typically incorporate heuristics to direct the search
immediately to regions where highly confident and frequent rules can be expected. In that
sense clausal discovery engines are complementary toWarmr, which performs a more
exhaustive breadth first search for frequent queries, and only in a post-processing step can
discover query extensions that meet both the frequency and the confidence standards.

7. Conclusions

We have presented a generalDatalog formulation of the frequent pattern discovery prob-
lem: given a setL of Datalog queries, find out which queries succeed frequently in a
given database. We outlinedWrmode, a declarative formalism for specifying the language
bias, i.e., the search spaceL of admissible or potentially interestingDatalog queries. We
also gave an algorithm,Warmr, for solving such tasks.

We have demonstrated the use ofWarmr andWrmode in practical tasks in the domains
of telecommunication alarm analysis and chemical toxicology. We have given examples of
how to use the presented methods in useful novel settings.

Warmr, which is available for academic purposes upon request, is a flexible tool that
can be used by both users and developers as an explorative data mining tool: pattern types
can be modified in a flexible way, and thus a number of settings can be easily experimented
with without changes in the implementation.

Possible directions for future research on frequent query discovery include at least the
following. First, an efficient general method could be developed for query reorganisation
to minimize backtracking during query evaluation (cf. Section 3.2.2) and facilitate pruning
during query generation (cf. Section 3.2.3). Second, in the spirit of Tables 2 and Table 3, a
user-friendly generic system could be developed that automatically selects the most efficient
algorithm available. This could be done on the basis of an analysis of the user inputs, i.e.
the database and the language bias. Fourth, Table 2 uncovers a number of “gaps” that
could be filled with some useful specialized algorithms. Fifth, many optimizations and
techniques for mining and postprocessing frequent patterns and association rules have been
proposed. Some of these, such as the sampling techniques described in (Toivonen, 1996),
could probably be plugged intoWarmr.

Acknowledgments

Luc Dehaspe is supported by ESPRIT Long Term Research Project No 20237, ILP2. Hannu
Toivonen is supported by the Academy of Finland. This paper was conceived while Hannu

FREQUENT DATALOG PATTERNS 33

Toivonen was visiting the Department of Computer Science, Katholieke Universiteit Leu-
ven.

The authors are grateful to Luc De Raedt and Heikki Mannila for comments on the paper
and for many fundamental ideas and discussions, to Hendrik Blockeel, Bart Demoen, and
Wim Van Laer for their share in the implementation ofWarmr, and to Hendrik Blockeel,
Wim Van Laer, and H´elène Legras for proofreading. Data for the telecommunication alarm
sequence analysis experiments is provided by Juha Leino from Nokia Telecommunications.
The PTE data were made available by Ashwin Srinivasan and Ross King. Ross King also
provided the evaluation of patterns in the PTE experiment.

Profound comments from anonymous reviewers and Saˇso Džerodski are gratefully ac-
knowledged.

References

Adé, H., De Raedt, L. and Bruynooghe, M. 1995. Declarative Bias for Specific-to-General ILP Systems. Machine
Learning 20:119 – 154.

Agrawal, R. and Srikant, R. 1995. Mining sequential patterns. Proceedings of the Eleventh International
Conference on Data Engineering (ICDE’95), pp. 3 – 14.

Agrawal, R., Imielinski, T. and Swami, A. 1993. Mining association rules between sets of items in large databases.
Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD’93). ACM, Washington, D.C.,
pp. 207 – 216.

Agrawal, R. Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A. I. 1996. Fast discovery of association rules.
Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, pp. 307 – 328.

Ashby, J. and Tennant, R. W. 1991. Definitive relationships among chemical structure, carcinogenicity and
mutagenicity for 301 chemicals tested by the U.S. NTP. Mutation Research, 257:229–306.

Bettini, C., Wang, X. S. and Jajodia, S. 1996. Testing complex temporal relationships involving multiple
granularities and its application to data mining. Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’96), pp. 68 – 78.

Blockeel, H. and De Raedt, L. 1996. Relational knowledge discovery in databases. Proceedings of the 6th
International Workshop on Inductive Logic Programming. Lecture Notes in Artificial Intelligence, Springer-
Verlag, 1314, pp. 199–212.

Blockeel, H. and De Raedt, L. 1998. Top-down induction of first order logical decision trees. Artificial
Intelligence, 101:285–297.

Blockeel, H., De Raedt, L., Jacobs, N. and Demoen, B. 1998a. Scaling up ILP by learning from interpretations.
This volume.

Blockeel, H., De Raedt, L. and Ramon, J. 1998b. Top-down induction of clustering trees. InProceedings of the
15th International Conference on Machine Learning, 55–63. Morgan Kaufmann.

Bristol, D., Wachsman, J. and Greenwell, A. 1996. The NIEHS predictive-toxicology evaluation project.
Environmental Health PerspectivesSupplement 3:1001–1010.

Clark, P. and Niblett, T. 1989. The CN2 algorithm.Machine Learning3(4):261–284.
De Raedt, L. and Dehaspe, L. 1997. Clausal discovery.Machine Learning26:99–146.
De Raedt, L. and Dˇzeroski, S. 1994. First orderjk-clausal theories are PAC-learnable.Artificial Intelligence

70:375–392.
De Raedt, L. and Van Laer, W. 1995. Inductive constraint logic. In Jantke, K. P.; Shinohara, T.; and Zeugmann,

T., eds.,Proceedings of the 6th International Workshop on Algorithmic Learning Theory, volume 997 ofLecture
Notes in Artificial Intelligence, 80–94. Springer-Verlag.

De Raedt, L., Blockeel, H., Dehaspe, L. and Van Laer, W. 1998. Three companions for first order data mining.
In Džeroski, S., and Lavraˇc, N., eds.,Inductive Logic Programming for Knowledge Discovery in Databases,
Lecture Notes in Artificial Intelligence. Springer-Verlag. To appear.

De Raedt, L. 1996. Induction in logic. In Michalski, R., and J., W., eds.,Proceedings of the 3rd International
Workshop on Multistrategy Learning, 29–38.

34 DEHASPE AND TOIVONEN

Dehaspe, L. and De Raedt, L. 1996. DLAB: A declarative language bias formalism. InProceedings of the
International Symposium on Methodologies for Intelligent Systems (ISMIS96), volume 1079 ofLecture Notes
in Artificial Intelligence, 613–622. Springer-Verlag.

Dehaspe, L. and De Raedt, L. 1997. Mining association rules in multiple relations. InProceedings of
the 7th International Workshop on Inductive Logic Programming, volume 1297 ofLecture Notes in Artificial
Intelligence, 125–132. Springer-Verlag.

Dehaspe, L., Toivonen, H. and King, R. 1998. Finding frequent substructures in chemical compounds. In
Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD’98),
30 – 36. AAAI Press.

Dehaspe, L. 1998.Frequent pattern discovery in first-order logic. Ph.D. Dissertation, K.U.Leuven.
Dietterich, T. G., Lathrop, R. H. and Lozano-P´erez, T. 1997. Solving the multiple-instance problem with

axis-parallel rectangles.Artificial Intelligence89(1-2):31–71.
Djoko, S., Cook, D. J. and Holder, L. B. 1995. Analyzing the benefits of domain knowledge in substructure

discovery. InProceedings of the First International Conference on Knowledge Discovery and Data Mining
(KDD’95), 75 – 80.

Dousson, C., Gaborit, P. and Ghallab, M. 1993. Situation recognition: Representation and algorithms. In
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), 166 – 172.

Džeroski, S., De Raedt, L. and Blockeel, H. 1998. Relational reinforcement learning. InProceedings of the 15th
International Conference on Machine Learning. Morgan Kaufmann.

Džeroski, S. 1996. Inductive logic programming and knowledge discovery in databases. In Fayyad, U.; Piatetsky-
Shapiro, G.; Smyth, P.; and Uthurusamy, R., eds.,Advances in Knowledge Discovery and Data Mining. MIT
Press. 118–152.

Goodman, R. M. and Latin, H. 1991. Automated knowledge acquisition from network management databases. In
Krishnan, I., and Zimmer, W., eds.,Integrated Network Management, II. Amsterdam, The Netherlands: Elsevier
Science Publishers B.V (North-Holland). 541 – 549.

Han, J. and Fu, Y. 1995. Discovery of multiple-level association rules from large databases. InProceedings of
the 21st International Conference on Very Large Data Bases (VLDB’95), 420 – 431.

Hätönen, K.; Klemettinen, M.; Mannila, H.; Ronkainen, P.; and Toivonen, H. 1996. Knowledge discovery from
telecommunication network alarm databases. InProceedings of the 12th International Conference on Data
Engineering (ICDE’96), 115 – 122. New Orleans, Louisiana: IEEE Computer Society Press.

Holsheimer, M., Kersten, M., Mannila, H. and Toivonen, H. 1995. A perspective on databases and data mining.
In Proceedings of the First International Conference on Knowledge Discovery and Data Mining (KDD’95),
150 – 155. Montreal, Canada: AAAI Press.

Kietz, J. and L¨ubbe, M. 1994. An efficient subsumption algorithm for inductive logic programming. In
Proceedings of the 11th International Conference on Machine Learning. Morgan Kaufmann.

Kietz, J.-U. and Wrobel, S. 1992. Controlling the complexity of learning in logic through syntactic and task-
oriented models. In Muggleton, S., ed.,Inductive logic programming. Academic Press. 335–359.

King, R. and Srinivasan, A. 1996. Prediction of rodent carcinogenicity bioassays from molecular structure using
inductive logic programming.Environmental Health Perspectives104(5):1031–1040.

King, R., Muggleton, S., Srinivasan, A. and Sternberg, M. 1996. Structure-activity relationships derived by
machine learning: The use of atoms and their bond connectivities to predict mutagenicity by inductive logic
programming.Proceedings of the National Academy of Sciences93:438–442.

Klemettinen, M., Mannila, H. and Toivonen, H. 1998. Rule discovery in telecommunication alarm data.Journal
of Network and Systems Management.

Kl ösgen, W. 1996. Explora: A multipattern and multistrategy discovery assistant. In Fayyad, U.; Piatetsky-
Shapiro, G.; Smyth, P.; and Uthurusamy, R., eds.,Advances in Knowledge Discovery and Data Mining. MIT
Press.

Kramer, S., Pfahringer, B. and Helma, C. 1997. Mining for causes of cancer: machine learning experiments at
various levels of detail. InProceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD’97), 223 – 226.

Langley, P. 1996.Elements of Machine Learning. San Mateo, CA: Morgan Kaufmann.
Lindner, G. and Morik, K. 1995. Coupling a relational learning algorithm with a database system. In Kodratoff,

Y.; Nakhaeizadeh, G.; and Taylor, G., eds.,Proceedings of the MLnet Familiarization Workshop on Statistics,
Machine Learning and Knowledge Discovery in Databases.

Lu, H., Setiono, R., and Liu, H. 1995. Neurorule: A connectionist approach to data mining. InProceedings of
the 21st International Conference on Very Large Data Bases (VLDB’95), 478 – 489.

FREQUENT DATALOG PATTERNS 35

Mannila, H. and Toivonen, H. 1996. Discovering generalized episodes using minimal occurrences. InProceedings
of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96), 146 – 151.
Portland, Oregon: AAAI Press.

Mannila, H. and Toivonen, H. 1997. Levelwise search and borders of theories in knowledge discovery.Data
Mining and Knowledge Discovery1(3):241 – 258.

Mannila, H., Toivonen, H. and Verkamo, A. I. 1997. Discovery of frequent episodes in event sequences.Data
Mining and Knowledge Discovery1(3):259 – 289.

Mitchell, T. 1982. Generalization as search.Artificial Intelligence18:203–226.
Morris, R. A., Khatib, L. and Ligozat, G. 1995. Generating scenarios from specifications of repeating events. In

Second International Workshop on Temporal Representation and Reasoning (TIME-95).
Muggleton, S. and De Raedt, L. 1994. Inductive logic programming : Theory and methods.Journal of Logic

Programming19,20:629–679.
Muggleton, S. 1995. Inverse entailment and Progol.New Generation Computing13.
Muggleton, S. 1996. Learning from positive data. In Muggleton, S., ed.,Proceedings of the 6th International

Workshop on Inductive Logic Programming, 225–244. Stockholm University, Royal Institute of Technology.
Nédellec, C., Ad´e, H., Bergadano, F. and Tausend, B. 1996. Declarative bias in ILP. In De Raedt, L., ed.,

Advances in Inductive Logic Programming, volume 32 ofFrontiers in Artificial Intelligence and Applications.
IOS Press. 82–103.

Oates, T. and Cohen, P. R. 1996. Searching for structure in multiple streams of data. InProceedings of the
Thirteenth International Conference on Machine Learning (ICML’96), 346 – 354. San Francisco, CA: Morgan
Kaufmann.

Padmanabhan, B. and Tuzhilin, A. 1996. Pattern discovery in temporal databases: A temporal logic approach.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD’96),
351–354.

Plotkin, G. 1970. A note on inductive generalization. InMachine Intelligence, volume 5. Edinburgh University
Press. 153–163.

Quinlan, J. 1986. Induction of decision trees.Machine Learning1:81–106.
Sasisekharan, R., Seshadri, V. and Weiss, S. M. 1996. Data mining and forecasting in large-scale telecommuni-

cation networks.IEEE Expert, Intelligent Systems & Their Applications11(1):37 – 43.
Savasere, A., Omiecinski, E. and Navathe, S. 1995. An efficient algorithm for mining association rules in

large databases. InProceedings of the 21st International Conference on Very Large Data Bases (VLDB’95),
432 – 444.

Shen, W., Ong, K., Mitbander, B. and Zaniolo, C. 1996. Metaqueries for data mining. In Fayyad, U.; Piatetsky-
Shapiro, G.; Smyth, P.; and Uthurusamy, R., eds.,Advances in Knowledge Discovery and Data Mining. MIT
Press. 375–398.

Srikant, R. and Agrawal, R. 1995. Mining generalized association rules. In Dayal, U., Gray, P. M. D. and Nishio,
S., eds.,Proceedings of the 21st International Conference on Very Large Data Bases (VLDB’95), 407 – 419.
Zürich, Switzerland: Morgan Kaufmann.

Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and performance improve-
ments. InAdvances in Database Technology—5th International Conference on Extending Database Technology
(EDBT’96), 3 – 17.

Srikant, R., Vu, Q. and Agrawal, R. 1997. Mining association rules with item constraints. In Heckerman, D.,
Mannila, H., Pregibon, D., and Uthurusamy, R., eds.,Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining (KDD’97), 67 – 73. AAAI Press.

Srinisavan, A., King, R. D., Muggleton, S. H. and Sternberg, M. J. E. 1997. The predictive toxicology evaluation
challenge. InProceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97).
Morgan Kaufmann.

Srinivasan, A., King, R., Muggleton, S., and Sternberg, M. 1997. Carcinogenesis predictions using ILP. In
Proceedings of the 7th International Workshop on Inductive Logic Programming, Lecture Notes in Artificial
Intelligence, 273–287. Springer-Verlag.

Toivonen, H. 1996. Sampling large databases for association rules. InProceedings of the 22nd International
Conference on Very Large Data Bases (VLDB’96), 134 – 145. Mumbay, India: Morgan Kaufmann.

Ullman, J. D. 1988.Principles of Database and Knowledge-Base Systems, volume I. Rockville, MD: Computer
Science Press.

Wang, K. and Liu, H. 1997. Schema discovery for semistructured data. InProceedings of the Third International
Conference on Knowledge Discovery and Data Mining (KDD’97), 271 – 274.

36 DEHASPE AND TOIVONEN

Wang, J. T.-L., Chirn, G.-W., Marr, T. G., Shapiro, B., Shasha, D. and Zhang, K. 1994. Combinatorial pattern
discovery for scientific data: Some preliminary results. In Snodgrass, R., and Winslett, M., eds.,Proceedings
of ACM SIGMOD Conference on Management of Data (SIGMOD’94), 115 – 125. Minneapolis, MI: ACM.

Wang, X., Wang, J. T. L., Shasha, D., Shapiro, B., Dikshitulu, S., Rigoutsos, I. and Zhang, K. 1997. Automated
discovery of active motifs in three dimensional molecules. InProceedings of the Third International Conference
on Knowledge Discovery and Data Mining (KDD’97), 89 – 95.

Weber, I. 1997. Discovery of first-order regularities in a relational database using offline candidate determination.
Proceedings of the 7th International Workshop on Inductive Logic Programming. Lecture Notes in Artificial
Intelligence, Springer-Verlag, 1297, pp. 288–295.

Weber, I. 1998. A declarative language bias for levelwise search of first-order regularities. Proc. Fach-
gruppentreffen Maschinelles Lernen (FGML-98). Techn. Univ. Berlin, Technischer Bericht 98/11. http:
//www.informatik.uni-stuttgart.de/ifi/is/Pers onen/Irene/fgml98.ps.gz.

Wrobel, S. 1997. An algorithm for multi-relational discovery of subgroups. Proceedings of the First European
Symposium on Principles of Data Mining and Knowledge Discovery (PKDD ’97). Springer-Verlag, pp. 78 –
87.

Luc Dehaspereceived a Masters degree in Philology and a Masters degree in Computer Science from the University
of Leuven. He obtained his Ph.D. in Computer Science from that same university in December 1998, with a thesis
on frequent pattern discovery in a first-order logic framework. He is currently a member of the data mining and
inductive logic programming research group at the Department of Computer Science. His research mainly focuses
on the development and application of data mining tools that use first-order logic as the language to represent data
and patterns.

Hannu Toivonen leads a data analysis and mining team at Rolf Nevanlinna Institute, University of Helsinki. He
also holds an assistant professorship at the Department of Computer Science, where he earned his Ph.D. in 1996
with a thesis on the discovery of frequent patterns. Prior to joining the university Hannu Toivonnen was a research
engineer at Nokia Research Center and at Nokia Telecommunications. His current research interests include, in
addition to data mining, the use of Markov chain Monte Carlo methods for data analysis.

