
Model-Driven Software Engineering 
using Specialization Patterns

Jukka Viljamaa

Jan 19, 2007
Department of Computer Science

University of Helsinki



2/23

Contents� Part I: Introduction to Model-Driven 
Engineering (MDE)� Part II: Specialization Patterns� Part III: Examples� Part IV: Discussion and Conclusion



3/23

problem space 
(application domain)

solution space
(implementation technology)

� Languages� machine code →
assembly → C → OO� Platforms� OS APIs → middleware and frameworks� Modeling� structured modeling → UML
→ domain-specific modeling languages
→ cross-cutting concerns� Modeling tools� CASE → round-trip engineering → MDE

Introduction to MDE

History of Abstraction and Modeling in SE



4/23

Introduction to MDE

Current Challenges [Schmidt, 2006]� Modeling� Model interchange format standardization� Model evolution� Support for arbitrary application domains� Engineering and implementation� Multiple target platforms & their complexity
and evolution� Deployment and configuration using XML� semantic gap between design intent and language� Round-trip engineering� most code still written manually� model and produced code should be kept in sync



5/23

Introduction to MDE

What Kind of Modeling is MDE?� Modeling is essential in SE, but…� Great variety in what the models 
represent and how they are used� “If I create a visualization of some part of 

a system, am I practicing MDE?”



6/23

Introduction to MDE

Domain-Specific Modeling� Standard specification languages for 
describing the models� Models can be tailored to accurately 
match the domain’s vocabulary� Metamodels� domain concepts and their relationships� semantics and constraints associated 

with the concepts



7/23

Introduction to MDE

MDE Tools� Are a unifying vehicle to document, analyze, and 
transform information systematically at many 
phases� Generate code or a more specific model (semi-) 
automatically from a more abstract model� transformation generators analyze & synthesize models� Impose domain-specific constraints and perform 
checks that can prevent errors early in the lifecycle� Need not be complicated� they target higher-level systems (frameworks) instead of 

lower-level systems as in the past (e.g. OS APIs)



8/23

Introduction to MDE

OMG’s MDA Vocabulary� Four kinds of models� Computation Independent Model (CIM)� Platform Independent Model (PIM)� Platform Specific Model (PSM) described by a Platform 
Model (PM) � Implementation Specific Model (ISM)� Note: “platform” is always relative to a particular 

point of view

Middleware 
PIM

CORBA-specific 
PSM Linux-specific 

PSMOperating 
System PIM



9/23

Specialization Patterns� Descriptions of structural configurations of 
(modeling) elements� Provide a mechanism to implement MDE� can be thought of as catalysts or specifications of 

transformations from a PIM to a PSM� Consist of roles� input roles bound to source model before transformation� output roles depend on input roles and generate the target 
model during the transformation

CA

Abstract

specialize CA

Abstract

specialize

Concrete

task-driven
transformation

“Provide or generate
a concrete subclass”



10/23

Specialization Patterns

Roles, Role Instances, Tasks� Roles are bound to concrete software 
systems (e.g. UML model or source code) 
through role instances� A role has� a type that determines the kind of elements they 

can be bound to (e.g. UML class role or Java 
operation role)� a set of constraints (depending on type), 
constraints can also refer to other roles� a set of scripts to enable code generation� Interactive role binding through tasks� unbound role instances & constraint violations 
generate tasks



11/23

Specialization Patterns

Tool Support: JavaFrames



12/23

Specialization Patterns

Tool Support (cont’d): MADE



13/23

Specialization Patterns

Applications� UML model transformations� from UML to UML & from UML to code� MADE & INARI [Hammouda et al., 2004]� Framework usage� from abstract code (FW) to concrete (app) code� JavaFrames [Hakala et al., 2001], [Viljamaa, 2004 & 
2006]� Design fragments [Fairbanks, Garlan, Scherlis, 2006]� an approach very similar to specialization patterns� Web service development� JavaFrames & MADE [Jiang, Ruokonen, Systä, 2005]



14/23

FW

Example 1 [Viljamaa, 2004] & [Viljamaa, 2005]

Framework-Based SW Development

App

reuse interface = a collection of hot spots or variation 
points that enable specialization of FW, e.g. by 
subclassing (white-box reuse) or by combining and 
customizing ready-made components (black-box reuse)



15/23

Example 1 (cont’d)

Framework Usage Problems� FWs are abstract, complex, large systems� Implementation languages don’t fully support 
FW-based development� Typical FW documentation consists only of
informal descriptions and small sample apps� Locating hot spots & understanding 
dependencies?� Steep learning curve, high training costs



16/23

Example 1 (cont’d)

Task-Driven FW Usage Assistance

TestCase
name: String
run(TestResult)
setUp()
...

junit.frameworkclass TestCase {method setUp {}}class UserTestCase* {inherits TestCase;method setUp {overrides TestCase.setUp;fragment fixtureCreation {sets fixtureAttr;}}field fixtureAttr* {isTypeOf FixtureClass;}}class FixtureClass* {}

specialization pattern UML, Java, etc.

Money

add(Money)
...

Account

deposit(Money)
...

MoneyTest
m: Money
setUp()
testAdd()
...

AccountTest
a: Account
setUp()
testDeposit()
...



17/23

Example 1 (cont’d)

JavaFrames� Provides� context-sensitive and adjusting 
documentation� parameterized code generation� validation of app code against the FW 
requirements� Implemented as an Eclipse 

perspective



18/23

Example 2 [Jiang, Ruokonen, Systä, 2005]

Reuse in Web Service Development� Traditionally� reuse as web service composition
(building services from other services)� e.g. choreography languages� Our approach adds to this� reuse of WSDL descriptions� validation of rules defined for WSDL 
descriptions (e.g. Basic Profile 1.1)� Reuse in service implementations



19/23

Example 2 (cont’d)

Modeling Variation in WS Development
Variation mechanismsVariation points

WSDL
document

• Service name & address
• SOAP action string
• WSDL character encoding
• Namespaces
• Array declarations
• Binding to transportation
• …

WSDL2Code
• Parameterized WSDL template

Code2WSDL
• Parameterized code generation

WSDL2Code
• Managed in WSDL design

Code2WSDL
• Tool guides framework

specialization

Service
endpoint

• Names and types of
operations and their
parameters

Business
logic

• Depends on the service
framework in question

• A framework and tool support
for its specialization



20/23

Example 2 (cont’d)

Solution: Tool-Assisted WS Development� JavaFrames & MADE provide� context-sensitive and adjusting 
documentation� parameterized UML model and Java 
code generation� validation against WSDL &
Basic Profile 1.1 specifications� Integrated to Eclipse, Rational Rose & 

Rational Software Architect



21/23

Conclusion� MDE (automatic model transformations and 
code generation) is becoming increasingly 
important in SE� Specialization patterns provide a viable way 
to implement task-driven transformations� Empirical evidence shows the benefits of tool 
support (at least in the context of framework 
specialization) [Fairbanks, Garlan, Scherlis, 2006]



22/23

Questions?

� Thank you!� http://practise.cs.tut.fi (downloads)



23/23

References� Fairbanks G., Garlan D., Scherlis W., Design Fragments Make Using
Frameworks Easier. In: Proc. OOPSLA 2006.� Hakala M. et al., Annotating Reusable Software Architectures with
Specialization Patterns. In: Proc. WICSA 2001.� Hammouda I. et al., Adaptable Concern-Based Framework
Specialization in UML. In: Proc. ASE 2004.� Jiang J., Ruokonen A., Systä T., Pattern-Based Variability
Management in Web Service Development. In: Proc. ECOWS 2005.� Schmidt D., Model-Driven Engineering. IEEE Computer, Feb 2006.� Viljamaa A., Specifying Reuse Interfaces for Task-Oriented 
Framework Specialization. PhD Thesis, 2006.� Viljamaa J., Applying Formal Concept Analysis to Extract Framework 
Reuse Interface Specifications from Source Code. PhD Thesis, 2004.


