Real-Time Systems

Exercise 1/6 (Tue 14.3.2006)

- 1) Which of the following computer systems are real-time systems? Justify your answer in terms of real-time system characteristics [, which include timing constraints, concurrency, reliability, fault tolerance, criticality, testing, certification].
 - a) An automatic teller machine that dispenses cash to credit card and bank customers
 - b) An elevator system that responds to patron requests inside and outside an elevator, controlling the elevator and door operations
 - c) A payroll system that produces employee paychecks every two weeks
 - d) A sports system that registers, maintains, and displays scores during sporting events, such as baseball games or track and field.
 - e) A gate controller at the intersection of railway tracks and a road that controls the opening and closing of a gate, to ensure that the road is blocked whenever a train is in the intersection area.
 - f) A disc controller for a computer system
 - g) The floating point unit for a computer
 - h) A medical record-keeping system that maintains medical histories of patients in a clinic.

2) Consider the real-time program	
described by the pseudocode on	9 AM start; have breakfast and go to office;
the side. Names of the jobs are in	at 10 AM If there is class, <i>teach</i> ; else, <i>help</i> students;
italic.	When <i>teach</i> or <i>help</i> is done, <i>eat_lunch</i> ;
	Until 2 PM <i>sleep</i> ;
a) Draw a task graph to capture	If there is a seminar,
the dependencies among the	If topic is interesting, <i>listen</i> ; else, <i>read</i> ;
jobs.	else <i>write</i> in the office;
b) How many differene possible	When seminar is over, attend social hour;
paths there is in the program?	discuss;
c) Use as many precedence	jog;
graphs as needed to represent	eat_dinner;
all the possible paths of the	<i>work</i> a little more;
program.	end_the_day;
(Liu 3.2)	

- 3) The feasible interval of each job in the precedence graph (Figure on next page) is given next to its name. The execution time of all jobs is equal to 1.
 - a) Find the effective release times and deadlines of the jobs in the precedence graph.
 - b) Find an EDF (Earliest Deadline First) schedule of the jobs.

(Liu 4.1)

- 4) A system consists of three periodic tasks: (3, 1), (5, 2), and (8, 3).
 - a) What is the total utilization?
 - b) Construct an earliest-deadline-first schedule of this system in the interval (0, 32). Label any missed deadlines.
 - c) Construct a rate-monotonic schedule for this system in the interval (0, 32). Label any missed deadlines.
 - d) Suppose we want to reduce the execution time of the task with period 3 in order to make the task system schedulable according to the earliest-deadline-first algorithm. What is the minimum amount of reduction necessary for the system to be schedulable by the earliest-deadline-first algorithm?

Dependence graph for exercise number 3

