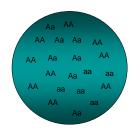
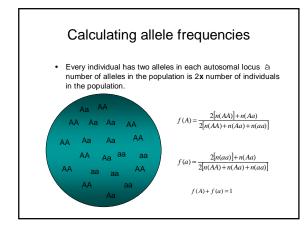


BfMS, Genetics module PO



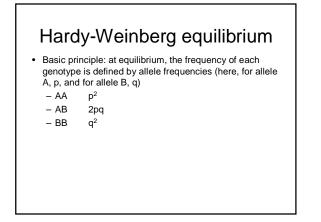
- **Population** = collection of people, or organisms of a particular species, living in a given geographic area
- Gene pool = The gene pool is the complete set of alleles (in a locus) found in every living member of that species or population.
- Allele frequency = frequency of an allele in a genetic locus in a given population
- Genotype frequency= frequency of a genotype in a genetic locus in a given population

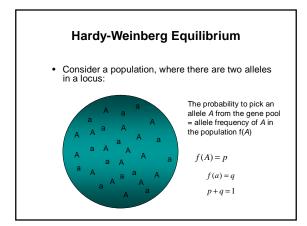
• Locus where we have alleles A and a

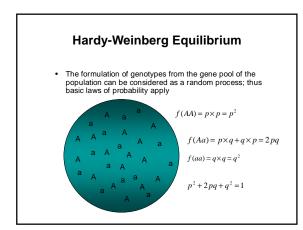


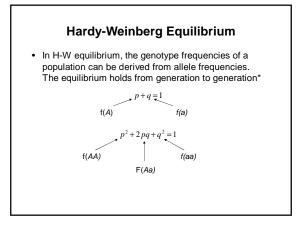
 $f(Aa) = \frac{n(Aa)}{n(AA) + n(Aa) + n(aa)}$

 $f(aa) = \frac{n(aa)}{n(AA) + n(Aa) + n(aa)}$

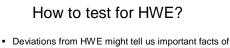

f(Aa) + f(Aa) + f(aa) = 1

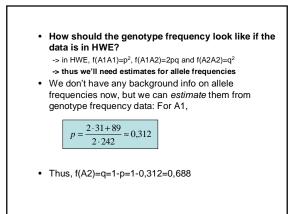



Statistical analyses: Genotype data


Standard checks:

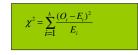
- Hardy-Weinberg equilibrium are the alleles distributed in genotypes randomly, as they should, or are some genotypes overrepresented at some loci? → Indicates a problem with genotyping, or in the sampling of individuals
- In case you've got families etc. (related individuals) Mendelian inheritance of each and every marker! E.g. with program "pedcheck"

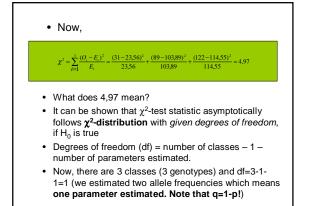


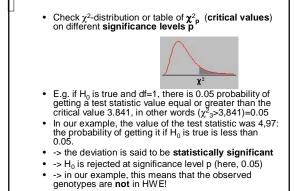

HWE applies when there is

- Random mating
- No mutations
 No natural selection
- No natural selection
- No migration
- Big population size
- In real world, no population strictly follows these conditions, though
- ...vast majority of natural populations can be found to be in or very near to HWE
- HWE is utilized in various research purposes: from validation of genetic markers (to be used in genotyping) to ecological and evolutionary research questions

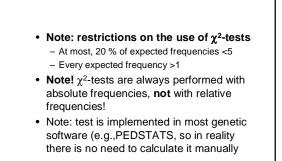
- the population, such as
 - Genotyping problems
 - Population substructure
 - Natural selection functioning on the locus
 - We are at or very near to a disease gene which has strong effect on disease susceptibility
- Thus, very important to TEST for HWE in population samples!
- The simplest test type is χ^2 –contingency test
- Here, we are not making tests with pen-and-paper, but it's still useful to know/remember that...

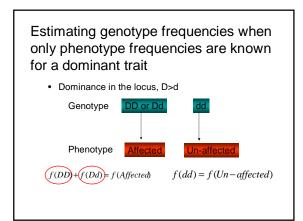

χ^2 -contingency test							
A sample of individuals from a population ha been genotyped. Is the population in HWE concerning the locus in question?							
been geno	typed.	ls the pop					
been geno	typed.	ls the pop					

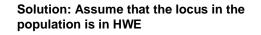

Thus in HWE, the following numbers of each genotype are expected:
AA: p².N = 0,312²·242 = 23,56
Aa: 2pq.N = 2.0,312.0,688.242 = 103,89
aa: q².N = 0,688².242 = 114,55
This is called the null hypothesis, H₀ distribution
Let's compare the expected with the observed ones!


	A1A1	A1A2	A2A2	Sum
Observed	31	89	122	242
Expected	23,56	103,89	114,55	242,00

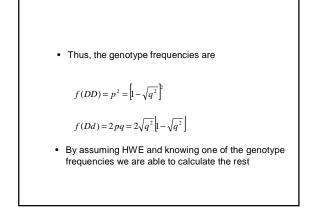
- Do the observed numbers coincide with the expected *well enough*?
- The correspondence is evaluated with a **test statistic,** here with
- χ²-contingency test
- The test statistic:




∩Where k is the number of different classes (genotypes)



10	$\chi^2\mbox{-distributions:}$ critical values on varying numbers of degrees of freedom and significance levels								
df	0,995	0,9500	0,100	0.050	0.025	0,010	0,005		
1	0,000	0,004	2,706	3,842	5,024	6,635	7,879		
2	0,010	0,103	4,605	5,992	7,378	9,210	10,597		
3	0,072	0,352	6,251	7,815	9,348	11,345	12,838		
4	0,207	0,711	7,779	9,488	11,143	13,277	14,860		
5	0,412	1,146	9,236	11,071	12,833	15,086	16,750		
6	0,676	1,635	10,645	12,592	14,449	16,812	18,548		
7	0,989	2,167	12,017	14,067	16,013	18,475	20,278		
8	1,344	2,733	13,362	15,507	17,535	20,090	21,955		
9	1,735	3,325	14,684	16,919	19,023	21,666	23,589		
10	2,156	3,940	15,987	18,307	20,483	23,209	25,188		
11	2,603	4,575	17,275	19,675	21,920	24,725	26,757		
12	3,074	5,226	18,549	21,026	23,337	26,217	28,300		
13	3,565	5,892	19,812	22,362	24,736	27,688	29,819		
14	4,075	6,571	21,064	23,685	26,119	29,141	31,319		
15	4,601	7,261	22,307	24,996	27,488	30,578	32,801		



- Note: f(D)=p, f(d)=q
- $f(Un-affected) = f(dd) = q^2$

 $f(d) = q = \sqrt{q^2}$ and because p + q = 1, $p = 1 - \sqrt{q^2}$

