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1 Introduction 

At present, there are about 600 microbial genomes had been sequenced, and 288 undergoing 

or nearly finished genome projects are processing around the world 

(http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html). This escalating 

condition has turned to be the driving force of new bioinformatics methods and algorisms 

served for the data-mining requirements in post-genomic era. With more accurate genome 

annotation and more complete pathway information, promising achievements had been made 

on in silico metabolic network reconstruction (Van Dien and Lidstrom 2002), and noted that 

one of the most comprehensive stoichiometric models built upon the genome of E. coli had 

been available (Reed and Palsson 2003). Based on these genome-scale metabolic networks, a 

few bio-engineering applications had be proposed, and one new emerging study is aiming at 

computationally predict the probability and possibility of overproduction of particular 

chemical and biochemical compounds, diversely range from industrial interests to 

environmental usages, through metabolic modification. The outcomes of some positive 

experimental verification of these microorganism redesigns bring light on their potential 

engineering application in the future. 

2 OptStrain 

OptStrain (Pharkya et al. 2003) is newly developed hierarchical computational framework, 

which could be used as a statistical model for microorganism strain redesign through 

recombination of available digitalized pathways, its aim is to not only find a proper set of 

non-native pathways whose combining could lead to desired extrinsic compound production 

but also figure out possible ways of pathway deletion using OptKnock (Burgard et al. 2003; 

Pharkya et al. 2003) so as to obtain the maximum output of target compound. The workflow 

of OptStrain is illustrated in Figure 1. Its procedures include four steps described as follow. 

 
2.1 Curation of the database 

Firstly, a Universal database was constructed by collecting curated biotransformation data 

form public domains, such as KEGG (Kanehisa et al. 2004) and in silico E. coli model (Reed 

and Palsson 2003), which laid very important foundation for later studies. Then those 

downloaded reactions were checked by pre-programmed scripts for automatically parsing and  
 



 

Figure 1. Flowchart of OptStrain procedure. Step 1 Curation of database(s) of reactions to 

compile the Universal database, only elementally balanced reactions included. Step 2 

identifies a maximum-yield path enabling the desired biotransformations from a substrate to 

product, the white arrows represent native reactions of the host and the yellow arrows denote 

non-native reactions. Step 3 minimizes the reliance on non-native reactions, and Step 4 

incorporates the non-native functionalities into the microbial host's stoichiometric model and 

applies the OptKnock framework to identify and eliminate reactions competing with the 

targeted product. (Pharkya et al., 2003). 



elementally balancing check before entering the database. The metabolite set N was 

comprised  of ～4800 metabolites, and the reaction set M consisted of >5700 reactions. 

Moreover, compounds with an unspecified number of repeat units [e.g., trans-2-Enoyl-CoA 

represented by C25H39N7O17P3S(CH2)n] or unspecified alkyl groups R in their chemical 

formulas are removed. A few Perl (Brown 1999) scripts were developed to automatically 

process this task routinely. 
 
2.2 Determination of the maximum yield 

With the elementally balanced datasets of functionalities obtained from previous step, 

theoretical maximum yields of the target product P are calculated by maximizing the sum of 

all reaction fluxes producing minus those consuming the target metabolite, weighted by the 

stoichiometric coefficient of the target metabolite in all reactions within the database, which 

comprised of a set N = {1,..., N} of metabolites (~4800) and a set M = {1,..., M} of reactions 

(>5700). The uptake rate of substrate is set to pre-defined value (default is 1 unit of substrate). 

This calculation could be simulated as a linear programming (LP) problem as following 

equations, which now could be analyzed in a large scale and solved very well.  

 

 
 

where MWi is the molecular weight of metabolite i, vj is the molar flux of reaction j (can 

either be irreversible or reversible), and Sij is the stoichiometric coefficient of metabolite i in 

reaction j. The inequality in constraint (1) allows only for secretion and prevents the uptake of 

all metabolites in the network other than the substrates in R. Constraint (2) scales the results 

for a total substrate uptake flux of one unit of mass. Solutions of these equations could be the 

initial values used in later calculations. 
 

2.3 Identification of the minimum number of non-native reactions for a host 

organism 
One key purpose of strain engineering is to endow microbial hosts with function of producing 



additional compounds with economical or environmental interests. In this step, OptStrain is 

trying to determine the minimum number of non-native functionalities or reactions, that are 

absent in the examined microbial host’s metabolic model and needed to be combined into the 

original network. The simulation of this step could be achieved through adding heterologous 

fluxes as following equations: 

 
The set Mnon-native comprises the non-native reactions for the examined host, and (1) and (2) 

are identical to those in step 2. (3) ensures that the product yield meets the maximum 

theoretical yield calculated in Step 2. The binary variable yj is a set of binary values (1 or 0) 

for turning the responding reactions on or off, and this constraint is imposed only on reactions 

associated with genes heterologous to the specified production host. The parameters vj
min and 

vj
max can either be assumed values or calculated by minimizing and maximizing every 

reaction flux vj subject to stoichiometric constraints. The addition of constraints derived from 

binary controls turned such a case into solving a simulation problem of Mixed Integer Linear 

Programming (MILP) model; its solution is a set of non-native pathways, which are obtained 

through balancing between minimizing numbers of heterologous genes and maximizing 

theoretical product yield. 

 

2.4 OptKnock: pruning of the host organism's stoichiometric model in order to 
achieve highest production of compounds (bi-level computational framework) 
Even addition of optimal set(s) of non-native biotransformations would lead to production of 

desired compounds; it would not guarantee an overproduction of this compound. In order to 

maximize this output, another computational framework, OptKnock (Burgard et al. 2003; 



Pharkya et al. 2003) was used to modulate the flux distribution toward specific orientation by 

containing other competing reactions and byproducts. 
 

This framework is aim to optimize a bilevel problem, that is balancing between two 

competing optimal strategists (cellular objective and chemical production). As one promising 

achievement from the same group of OptStrain, OptKnock also utilize genome-scale 

metabolic models as stoichiometric basis and flux balance analysis (FBA), then maximization 

of biomass formation (cellular objective), optimization of target chemical or biochemical 

compounds (chemical production), and candidate gene deletions are set as additional 

constraints in looking for a likely flux distribution. Optimal solutions after overall 

considering all alternative solutions would give out suggested genes for knocking out. It 

should be noted that OptKnock’s results from testing a wide range of products (succinate, 

lactate, 1,3-propanediol, glutamate, alanine, hydrogen, vanillin) showed good congruence 

with the experimental data published in literatures. 

 
3. Case studies results from OptStrain 

To verify the effectiveness of OptStrain, two diversified compounds, hydrogen and vanillin, 

are selected as test examples of in silico strain design. In the case of hydrogen production, 

three different hosts are used, and a few substrates are screened. As for the case of vanillin, 

minimum set of non-native reactions required for compound production was identified, and 

this highlights the outcome of OptStrain. Nevertheless, the suggestions of reshaping strain 

made by this framework look like only are in silico predictions, and have little support form 

existing experimental data. Hence, the results of implementation of those suggestions are 

really expected, not only for model validation but also for preliminary engineering trial. 

3.1 Hydrogen production 
The result of LP formulation (step 2) among many substrates shows that methanol turned to 

be the most efficient ‘raw material’ for hydrogen production, and glucose also selected for 

further test owning to its economic availability. Three strains are used for analysis: 1). E. coli, 

2). C. acetobutylicum, 3). M. extorquens. 

3.1.1 glucose substrate in E. coli 



 
Table 1. Deletion mutants for enhanced hydrogen production in E. coli 
 

For this case, OptStrain doesn’t find any non-native reaction needed for hydrogen producing. 

But OptKnock (step 4) identified two sets of reactions (shown in Table 1), whose deletions 

would decrease competition with hydrogen production at most degrees. 

3.1.2 glucose substrate in C. acetobutylicum 

C. acetobutylicum had been intensively studied as a model organism of hydrogen production 

(Chin et al. 2003), and OptStrain also does not find any non-native reactions are needed. 

Importantly, the output of OptKnock’s two knockout candidates is highly congruent with 

experimental data. 

3.1.2 methanol substrate in M. extorquens AM1 

M. extorquens AM1 could live on methanol as solely carbon source, therefore, also been 

thoroughly studied (Van Dien et al. 2003; Chistoserdova et al. 2004), even a stoichiometric 

model of central metabolism had been established (Van Dien and Lidstrom 2002). Single 

non-native reaction was identified by OptStrain to enable hydrogen ability on this host; this 

might be the reason why M. extorquens AM1 can not produce hydrogen originally. 

3.2 Vanillin production 
There is constant demand for overproduction of vanillin in case of its limited natural yields 

and economical value. So initially OptStrain was used to figure out the maximum theoretical 

yields and minimum set of non-native reactions required for strain redesign of E. coli. Based 

on a maximum theoretical yield of glucose at 0.63 g/g, OptKnock was used again for 

overproduction optimization in such an augmented genome-scale model with three non-native 

bioconversions, and many alternative pathways were found that their deletions could meet the 

criteria of maximum vanillin production. Finally the author look like choose the three cases 

which have experimental data support to be further discussed in the paper. They are one 

deletion (removal of acetaldehyde dehydrogenase, EC 1.2.1.10), double deletion (with 



 

Figure 2. Calculated flux distributions at the maximum growth rates in the (A) one, (B) two, 

and (C) four deletion E. coli mutant networks for overproducing vanillin. Non-native 

reactions are denoted by the thicker gray arrows. A basic glucose uptake rate of 10 

mmol/gDW per hour was assumed. 

 

 

 



additional removal of glucose -6-phophate isomerase EC 5.3.1.9), and four-reaction deletion 

(with deletion of acetate kinase EC 2.7.2.1, pyruvate kinase EC 2.7.1.40, the PTS transport 

mechanism, and fructose 6-phosphate aldolase). These modifications on flux distribution 

network (shown in Figure 2) presume higher vanillin production level under all culture 

conditions. 

4 OptReg 

As an upgraded version of OptKnock, OptReg (Pharkya and Maranas, 2006) was developed 

to maximize the production of desired compound through modulation on pathways by up- or 

down-regulating reactions besides knocking them out. However, since this extended 

computational framework take into account much complex conditions than the former one did, 

its computational complexity is magnified. 

OptReg still applied Mixed Integer Linear Programming (MILP) simulation to solve the 

optimization problem in this framework. In this case, regulation strength parameter C (Figure 

3) was introduced into the framework to simulate the conditions of up- and down-regulation, 

so there are actually three states (up/down-regulating and knocking out) for any reaction in 

the model for optimal secreening. In present paper (Pharkya and Maranas, 2006) all results 

were calculated while fixing the value of C as 0.5, however they might be completely 

different if C were assigned to another value; and this might be a potential drawback of 

OptReg. 
 

It is still unrealistic to check those predictions by present experimental techniques, therefore, 

another computational criterion for anticipating microbial systems, MOMA (Segre et al., 

2002), was applied to evaluate OptReg’s performance. Anyway, even the authors agree that a 

similar conclusion from both statistical methods could not make confirmative remarks on 

OptReg. 
 



 
Figure 3: A pictorial overview of the definitions of up/down regulations and deletions. 0≤C

≤1, The lower bound vj min for a flux j may be greater than zero if it is required for biomass 

formation, and the reaction cannot be knocked out. 
 
5 Calculation and Software 

All the optimization problems above were solved using CPLEX 7.0 accessed via the GAMS 

(Brooke et al. 1998) modeling environment on an IBM RS6000-270 workstation. 

 
6 Conclusions  

Such a series of frameworks (OptKnock, OptStrain and OptReg) highlighted continuous 

efforts laid on the advancement of metabolic engineering modification from this group in 

Pennsylvania State University (PSU). Their studies would be essentially helpful in improving 

the application of biotechnology in industry innovations, and also paved solid basis for more 

comprehensive understanding on this leading edge field as well. Admittedly, some of the 

examples discussed in their papers are in good agreement with experimental data in published 

literatures. But this could not provide us enough confidence on their performance due to only 

a limited number of experimental test results could be available until now. As we known, 

The stoichiometry models used in metabolic engineering study could have alternative 

solutions because only extracellular parameters could be accurately measured, thus 

intracellular information is required in order to obtain better predictions from present highly 

redundant models. Consequently, more accurate data from intracellular conditions would be 

tremendous helpful in polishing these frameworks, and new techniques (e.g. NMR, mass 

spectrometry, and isotopic atoms labeling etc.) that could intensively measure those 

intracellular parameters would provide more precise and stringent constraints over those 

optimization models, therefore, could make significant advancement for the frameworks. 
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