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1. Introduction 
 
Elucidating biological networks between proteins appears nowadays as one of the most 
important challenge in systems biology. Computational approaches to this problem are 
important complement experimental technologies and to help biologists in designing 
new experiments. [1] 
 
We know some interactions in a group of proteins, and we put an edge between these 
two proteins if there is a interaction between them. In this way we can form a protein-
protein interaction network. 
 
The problem we are facing is how to predicate whether two new proteins will interact 
with each other from the protein-protein interaction network we know. Fig-0 is a simple 
protein-protein interaction network, where points denote proteins and edges denote 
interaction between those two proteins. From the network, we want to predicate whether 
protein 4 and 5 will interact with each other. 
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Here I will introduce using output kernel tree method [2] to perform an experiment on a 
network of protein-protein interactions.  
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2. Supervised network inference 
 
In this section we will introduce some basic things about protein-protein network, such 
as symbolization of the network, concept of kernel and diffusion kernel. With these 
knowledge, it is possible for us to find some function to predicate the possibility of an 
interaction between two proteins. 
 
Let G = (V,E) be an undirected graph with vertices V and edges E V V⊂ × . | |V m=  is the 
number of nodes in the graph. Each vertex means a protein and an edge means there is a 
interaction between those two proteins.  
 
Let x(v) denotes the feature vector for the vertex in some feature space. So x(v) tell us 
all the features of protein v. 
 
The goal of the graph inference is to determine from the knowledge of  G a function 

( ( ), ( ')) : {0,1}e x v x v V V× → , ideally such that ( ( ), ( ')) 1 ( , ')e x v x v v v E= ⇔ ∈ , where v and 
v’ are two arbitrary vertices.   
 
To solve this problem let us know something about kernel. A kernel is defined as a 
function :k V V R× →  which induces some feature map φ  into some Hilbert Space H, 
i.e. some function space, such that ( , ') ( ), ( ')k v v v vφ φ=< > , where < , >  means inner 
product.  

To find the function e(x(v),x(v’)) we define a kernel k(v, v’) such that adjacent vertices 
lead to high values of k and non-adjacent ones lead to smaller ones. Here we use the 
diffusion kernel proposed in [3].  

Diffusion kernel is K = exp(-βL), where L = D – A is the Laplacian matrix of the graph, 
with D the diagonal matrix of node connectivity and A the adjacency matrix, and β is a 
user-defined parameter that controls the degree of smoothness of the kernel. Then we 
need to normalize the kernel matrix in order to make each kernel value in the matrix 
vary between 0 and 1. 
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Here is a simple example for calculating the diffusion kernel in the network in Fig-0. 
3 0 1 1 1 3 1 1 1

2 1 0 0 1 1 2 0 1
2 1 0 0 1 1 0 2 1

4 1 1 1 0 1 1 1 4

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

D A L  
Then we can use L to compute K, noticing that we should use matrix exponentiation.  
 
Now if we want to predicate whether protein i will interact with a new protein j, we need 
to find an approximation of the kernel values between them by exploring their feature 
vector values.  
 
Once we got the kernel value between two proteins, we can begin our prediction. If it is 
greater than some threshold, we predicate that these two protein will interact with each 
other, else we think they will not interact.  
 
Fig-1 is based on the network of Fig-0. Assuming we manage to calculate the kernel 
value between protein 4 and 5, it says that if the kernel value is greater than the 
threshold we set, they will interact with each other. 
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3. Output kernel trees 
 
Output kernel trees (OK3, [4]) are a transformation of standard classification and 
classification and regression trees [5] that can handle any output space over which a 
kernel may be defined. 
 
The idea of output kernel trees is to use the known proteins to construct a classification 
and regression tree. Using this tree, we can find the group for a new protein. Therefore 
we can use this group to estimate the behaviors of the new protein for the reason that 
they are similar. 
 
3.1 Learning stage 
 
We use CART algorithm [5] to construct the classification and regression tree. 
 
The basic idea of CART is to recursively split the learning sample with binary tests on 
some feature of the protein, trying at each split to reduce as much as possible the 
variance of the output feature vector in the left and right subsamples of the learning 
cases corresponding to that split. The output feature vector is the function ( )vφ  
mentioned in section 2, here we use the output y to represent it.  
More specifically, we can formulate it as follows: 

( , ) var{ | } var{ | } var{ | }l r
l r

N NScore T S y S y S y S
N N

= − −     (3-1) 

Where T is the split based on some feature of the proteins, S is the local learning sample 
of size N at the node to split, lS  and rS  is are its left and right child of size lN  and rN  
after the split. var{ | }y S  denotes the empirical variance of the output feature vector in the 
subset S:  

2

1 1

1 1var{ | } ( )
n n

i i
i i

y S y y
N N= =

= −∑ ∑                    (3-2) 

 
So at each step, we can calculate a score for each feature test. For example, if it is a 
boolean variable, we choose the feature test by check whether this variable is true; if it is 
a numerical variable, we choose all possible feature tests by varying the threshold. Then 
we choose the feature test which leads to the highest score. In this way we split the left 
subsample and right subsample until some stopping criteria is met. (e.g. the size of the 
local sample is lower than some threshold or all possible splits cause no significant 
variance reduction. 
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Once we managed to construct the tree, each leaf is labeled with a prediction 
ˆLy computed as:  

1

1ˆ
LN

L i
iL

y y
N =

= ∑           (3-3) 

Where LN  is the number of proteins that reach this leaf. 
 
Here is a simple classification and regression tree: 

 

 
 
In fact we can not use the Equations (3-1), (3-2) and (3-3) because we do not know what 
the functionφ  is. However we can use kernel values to compute Equation (3-2), which 
makes us be able to construct the tree but fail to make the predicate like Equation (3-3). 
To make the variance more general, we rewrite Equation (3-2) in n-dimensional space: 

2

1 1

1 1var{ | } || ||
n n

i i
i i

y S y y
N N= =

= −∑ ∑      (3-4) 

We can use kernel trick, i.e., some kind of mathematical transformation, to compute 
Equation (3-4) as follows: 

2
2

1 1 1 , 1

1 1 1 1var{ | } || || ( , ) ( , )
N N N N

i i i i i j
i i i i j

y S y y k v v k v v
N N N N= = = =

= − = −∑ ∑ ∑ ∑      (3-5) 

（1  2  3  4）

（1，2） （3，4）

1 2 3 4

Feature1 = 0 Feature1 = 1

Feature2 < 0.7
Feature2 >=0.7

Feature8 < 0.3

Feature8 >= 0.3

Feature1 = 0 get 
the max score

Fig-2
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3.2 Prediction stage 
 
As we have mentioned in the former section, we can not simply use Equation (3-3) to 
make a prediction for we do not know what the output feature function is. 
 
However, our final goal is to calculate the kernel value between two proteins which are 
described by their feature vectors ( )x v  and ( ')x v  separately. 
 
Let us assume protein 1v  reaches leaf 1L , which contains vertices 

1

1 1
1{ ,......, }Nv v , and 

protein 2v  reaches leaf 2L , which contains vertices 2

2 2
1{ ,......, }Nv v . Again we will use 

this kernel trick to calculate the kernel value between 1v  and 2v  as follows: 
1 2 1 2

1 2 1 2
1 2

1 1 1 11 2 1 2

1 1ˆ ˆ ˆ( , ') , ( ), ( ) ( , )
N N N N

i j i j
i j i j

k v v v v k v v
N N N N

φ φ φ φ
= = = =

=< >= < >=∑∑ ∑∑    (3-6) 

 
As we can see from (3-6), we are able to compute ˆ( , ')k v v  only using the kernel values 
between those proteins we know. And this kernel value prediction is what we want to 
find in section 2.  
 
Here is the example for the network in Fig-0. Suppose 5 belongs to the leaf (1,2), 4 
reaches the leaf (3,4), then we compute the kernel value between 5 and 4 as follows: 
 

5

4

(1,2)

(3,4)

1 1 (k(1,3) k(1,4) k(2,3) k(2,4))
2 2
× × + + +
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4 results and discussion 
 
4.1 Data 
I carry out experiments on a protein-protein interaction network in the yeast S.erevisiae, 
using the method introduced in the former sections. This network is borrowed from [6] 
that consists of the high confidence interactions highlighted in [7]. There are 984 
proteins and 2438 interactions in the network.  
 
This network is smoothed by a diffusion kernel, where we set the parameter βof the 
diffusion kernel to 3.0. 
 
4.2 Input features 
Expression data (expr): 1 77×  numerical vector from [8] for each protein. 
Phylogenetic profiles (phy): 1 145×  boolean vector from [9] for each protein. 
Localization data (loc): 1 23×  Boolean vector from [10]. 
 
4.3 ROC analysis 
ROC, Receiver Operating Characteristic, is a graphical plot of the sensitivity vs. (1 - 
specificity) for a binary classifier system as its discrimination threshold is varied. The 
ROC can also be represented equivalently by plotting the fraction of true positives (TP) 
vs. the fraction of false positives (FP). [11] 
 
We can gain a simple impression from Fig-4 about ROC. TP means the number of 
predictions which are true and positive; FP means false and positive, FN means false 
and negative, TN means true and negative.  

                           
( ) TPP TP

TP FN
=

+                
( ) FPP FP

FP TN
=

+  
 
We can use AUC to judge our prediction. AUC is the area under the ROC curve. The 
bigger AUC is, the better our prediction is. For example, if AUC=1, it means all our 
prediction are correct. 
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                                            Fig-4 
 
4.4 Results 
 
Here we use ten-fold cross-validation. That is to say, split the whole sample in 10 fold, 
use 9 fold as training dataset and the remaining one as test dataset, and we do it 10 times 
by choosing different fold as test dataset.  
 
Fig-5 are two ROC curves I produced, one using fold-4 and the other using fold-9. 



 9

 
                                                              Fig-5 
As we can see from the Fig-4, the result of fold-9 tell us our prediction is good in some 
sense, but the result of fold-4 gives us little information for half of the predictions are 
correct and half are wrong. 
 
We can find that in the beginning and ending parts of the curves there are not so many 
points. That is because there are too many kernel values are 0. Imagine an extreme case 
where we have 9999 zeros and only 1 one in the adjacent matrix. The consequence is 
that even after diffusion a large number of points still have the same value in the 
diffusion kernel. 
 
4.4 Further development 
 
The prediction based on a single tree did not give very good result. A better method is to 
use ensemble trees to make the prediction. Then we need to construct many trees and 
assign a weight to each tree we use. For more information, please consult [1]. 
 
In this method each tree can be constructed using OK3 described in section 3, while 
randomizing the choice of the split at each node. To tree weight assigning, we can 
simply treat each tree with the same weight. More information about this method can be 
found in [12]. 
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