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1 Introduction

The focus of biological research has shifted from the study of individual biological

components, such as a single gene or enzyme, to systems of interacting components.

The term systems biology has been coined to describe the new field. In systems

biology, the goal is to reveal interactions between biological components of interest

and to construct a model of components and interactions to analyse, interpret and

predict experimental outcomes [10].

Systems biology is sometimes also called “biology of networks”, because a typical

system studied by the discipline can be naturally seen as a network of components

connected together by different types of interactions. Consequently, computational

systems biology often makes use of graphs to model the phenomenon under study.

In a recent survey, Florence d’Alché-Buc and Vincent Schachter discuss modeling

frameworks that are available for modeling of different biological systems [4]. This

study follows roughly the same structure as theirs. First, in section 2 transcriptional

regulation and metabolism are introduced as examples of biological systems of net-

works. Then, in section 3, modeling frameworks for systems biology are discussed.

2 Biological networks

Systems biology deals with various types of biological systems, which can be seen as

networks. These systems include protein-protein interactions, signaling networks,

regulation of gene expression at different levels and metabolism, for example. The

last two types of networks are discussed in more detail. Figure 1 illustrates the

connections between transcriptional regulation, signal transduction and metabolism

at an abstract level.

2.1 Transcriptional regulation

Cells adapt to changes in the environment by adjusting the activity of processes

which turn DNA into proteins. For instance, depletion of some nutrient might

trigger the expression of certain genes to initiate the uptake of another nutrient.

These processes include transcription of DNA into mRNA, translation of mRNA

into protein and post-translational modification of proteins.

Transcriptional regulation is the process by which genes regulate the transcription



2

Figure 1: Transcriptional regulation, signal transduction and metabolism illustrated

in a simple example system. The lower part of the figure depicts four genes (green

boxes) with associated regulatory regions (blue boxes). Protein (orange circles) from

the first gene on the sequence (from left to right) participates in signal transduction,

while the product of the last gene is an enzyme. Gene products from the middle

genes are transcription factors to the first and third gene. The top right part has

four enzymes (red circles) with metabolites (small green circles). Finally, the top

left part shows a signalling cascade of three proteins. The signal molecule (small

blue circle) originating from the signal receptor in the cell wall activates the first

protein in the cascade. This protein then activates the second protein, which in

turn activates the third. The third protein acts as an enzyme participating in the

example metabolic network.
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of other genes. Genes have regulatory effect on other genes via their gene products,

or proteins. In direct regulation, the gene product of gene A binds to a regulatory

region of gene B. The binding can have either activating or inhibiting effect on the

transcription of gene. The protein acts as a repressor if it binds to a DNA region

close to the gene blocking the function of the RNA polymerase, which is the cellular

machine responsible for transcription. This results in inhibition of transcription. It

is also possible for the protein to alter the specificity of the RNA polymerase to

either activate or inhibit transcription.

The lower part of figure 1 depicts four genes (green boxes) with associated regulatory

regions (blue boxes). Protein from the first gene on the sequence (from left to right)

participates in signal transduction, while the product of the last gene is an enzyme.

Gene products from the middle genes are transcription factors to the first and third

gene.

Regulation can also be indirect : gene A can regulate gene B which regulates gene

C. Moreover, two or more genes may have a more complex regulatory effect on some

gene than just a simple linear additive relationship. The activation of the gene may

require the presence of proteins from two genes at the same time, for instance. Such

arrangement can be seen to implement an AND logic gate.

Transcriptional regulation can be measured using many different technologies. Some

of the methods can be considered to be high-throughput in the sense of being able

to produce data from a large number of genes at a time. The main high-throughput

measurement technology is the DNA chip, or DNA microarray, which measures the

concentrations of mRNAs corresponding to the set of genes under study. A single

microarray can cover all genes of an organism providing a snapshot of genome-wide

gene expression at a specific time point. Furthermore, microarray experiments in

sequence can be used provide a time series of expression measurements.

Microarray measurements can thus be used to give a “snapshot” of the state of

the transcriptional regulation system. Nevertheless, it should be noted that it is

usually not feasible, economically or otherwise, to perform more than tens of mi-

croarray measurements in a study. This has important implications by restricting

the modeling frameworks feasible for the modeling task at hand.

Another technology which can be used to provide information on transcriptional

regulation is chromatin immunoprecipitation (ChIP). A ChIP-chip assay identifies

the binding of a protein to a DNA sequence. This allows detection of regulatory

relationships by identifying proteins binding to the regulatory regions of a gene.
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2.2 Metabolism

Metabolism is the set of cellular processes which transform nutrients into energy and

precursor molecules, which are in turn converted into more complex biomolecules

such as amino acids and lipids. Metabolism can be seen as an assembly line: small

biomolecules, or metabolites, are processed along a series of enzymes, which catalyse

the biochemical reactions transforming the metabolites. The cell is able to regulate

metabolism at a detailed level, because enzymes are very specific. An enzyme usu-

ally catalyses only a single reaction or a small number of related reactions. By

adjusting the concentration of an enzyme, or altering its enzymatic activity, the cell

can activate or disable metabolic capabilities.

In Figure 1, the top right part shows four enzymes (large red circles) with metabolites

(small green circles).

3 Modeling biological networks

Graphs are natural models for systems described above. At the simplest level, a

graph can be used to model static relationships between biological components. The

graph can then be either undirected or directed, depending on whether the relation

is symmetric or not. For instance, graphs modeling protein-protein interactions

are undirected, because the actual physical mechanism, protein binding to another

protein, is symmetric. Directionality of graph edges may be used to encode different

properties, such as causal relations.

This section divides the models discussed with respect to two attributes. First,

whether the model includes discrete or continuous variables, and second, whether

the model deals with the notion of time. Models taking time into account are called

dynamic, and static otherwise. The modeling frameworks discussed in this study

are shown in Figure 2 in terms of this two-way division.

Typical use for both undirected and directed graphs is to answer questions about

static network structure. Consider the following graph model for transcriptional

regulation. A gene regulatory network is a directed graph, where vertices represent

genes and edges regulatory interactions. Since regulatory interactions can be either

activating or inhibiting, the graph is enriched by labeling the edges to distinguish

between the two cases. Such model could then be used to find nodes with a high

out-degree corresponding to genes regulating many other genes. Figure 3 shows an
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Figure 2: Modeling frameworks discussed in this study divided into static and

dynamic models, and models including discrete and continuous variables.

example of a gene regulatory network.

In general, the vertices or edges of the model can be enriched to encode relevant

properties of the system. To construct a model of metabolism, one could use a

bipartite directed graph, where both reactions and metabolites are nodes of the

graph. Edges would then correspond to the consumption and production relations

between reactions and metabolites. Again, it would be easy to find high degree

metabolite nodes. These hub nodes correspond to reactants that participate in

many reactions. We could then argue that these metabolites might have a central

role in metabolism [8]. Figure 4 shows an example of a metabolic network.

3.1 Dynamic models

Often biological questions concern the dynamics of the system under study. In other

words, we would like to find out the system behaviour over some time period. For in-

stance, we could ask how the concentrations of regulatory proteins in transcriptional

regulation or metabolites in metabolism fluctuate in given conditions.

To answer these questions, the model has to deal with the change of molecular
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Figure 3: Example gene regulatory network (a simplified part of cell cycle regula-

tion) [12]. Arrows represent activation, lines with bar represent inhibition.

Figure 4: Example metabolic network (a part of glycolysis in S. cerevisiae). Ellipses

represent metabolites, boxes represent reactions. Nodes for ATP and ADP have been

duplicated to increase readibility.

concentrations over time, either in continuous or discrete manner. This allows sim-

ulating the model and experimenting with different model parameters. A dynamic

model can be used to either explain observed system behaviour or predict behaviour

in conditions from which no experimental data available.

The most common approach to model a dynamical system of biomolecules is to

use differential equations. In a differential equation model, variables correspond to

the concentrations of biological molecules. In general, the model consists of rate

equations

dxi

dt
= fi(x), 1 ≤ i ≤ n,

where x = (x1, . . . , xn) is the vector of concentrations and fi is an arbitrary function.

The crucial step in building the model is choosing appropriate functions fi, balancing

the level of detail and complexity. A complex model might be necessary to correctly

describe the interactions in the system. However, the number of parameters needed

to specify the model grows with the level of detail. It is often difficult to obtain data

to estimate parameters for a large model with the current measurement technology.
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Finally, analytical solutions for differential equation models are not known in the

general case and we have to resort to simulation to solve the model.

In a gene regulation network, we could have xi represent the concentrations of

mRNAs and proteins. The available knowledge on reaction mechanisms between

molecules is then encoded into functions fi. The level of detail can be adjusted for

example by simplifying the reaction mechanisms (e.g., whether to include mRNA

and protein degradation), or taking into account the time delays associated with

processes.

In a metabolic network, we usually consider the concentrations of metabolites and

enzymes as variables xi. The rate of a reaction depends both on the concentration

of reactant metabolites and the enzyme catalysing the reaction. The rate functions

are derived from enzyme kinetics [1]. For instance, consider the following reaction

equation,

E + S
k1



k′
1

ES
k2→ E + P,

specifying a reaction where enzyme E and metabolite S first bind together and

form the complex ES. Then, the metabolite S either is transformed into product

metabolite P or the complex ES reverts back to the original, unbound state. Con-

stants k1, k
′
1 and k2 indicate maximum reaction rates in arrow directions. The rate

function corresponding to this mechanism, called Michaelis-Menten equation, can

be shown to be

f =
Vmax[S]

KM + [S]
,

where [S] is the concentration of S, Vmax is the maximum reaction rate and KM =
k′
1+k2

k1
is the Michaelis-Menten constant. Constants Vmax and KM need to be mea-

sured experimentally for the enzyme in question. While for this particular reac-

tion mechanism the number of parameters is two, a function for a more complex

mechanism might need 10-20 parameters. Hence, the construction of a reasonable

differential equation model is sometimes prohibitive, particularly when dealing with

very large models and/or incomplete data.

We encounter another problem with differential equation models if we try to model

concentrations of molecules present in the cell in very low quantities with continuous

variables. For instance, in a signaling network there might be only a couple of some

molecular species (i.e., a type of molecule) present at any given time. A possible

alternative approach is to use stochastic modeling, where the fate of individual

molecules is decided stochastically [9].
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The general differential equation modeling approach can be simplified by restricting

the choice of rate functions appropriately. One option is to use piecewise-linear dif-

ferential functions. This approach has been utilised in modeling both gene regulation

[5] and metabolism [6].

Another framework which restricts the class of reaction rate functions is Biochemical

Systems Theory [11], where the functions fi are expressed in a power-law form,

dxi

dt
= αi

n∏
j=1

x
gij

j ,

where αi is the rate constant for metabolite i and gij is a kinetic constant for

the metabolite-reaction pair (i, j). The power-law representation approximates the

kinetic system while requiring smaller number of parameters.

3.2 Static models

If the model is overly complex with respect to the available data, we can try to

simplify it by giving up the dynamics. This section discusses options available if we

are content with static models that cannot reveal or predict dynamic behaviour of

the system, but can still perhaps reveal useful information about the system in a

fixed state.

A popular approach in metabolic modeling is to study the system in or in the vicinity

of a steady-state, where the concentrations of molecules do not change over time,

dxi

dt
= 0.

In many cases, this assumption turns the model into a form which is easier to solve

and analyse than the original form. For instance, it can be shown that in Biochemical

Systems Theory, by assuming steady-state, analytical solutions can be derived to the

rate functions. The steady-state approach is less useful in transcriptional regulation

and signaling models, where the change of concentrations in response to stimuli is

of essence.

In metabolic modeling, other steady-state simplifications of the kinetic framework

include Metabolic Control Analysis and constraint-based modeling.

Metabolic Control Analysis (MCA) approximates the differential equation system in

the neighborhood of steady-state [14]. In MCA, one is interested in the sensitivity

of different parameters and variables to perturbations. For instance, the question
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“how much would the metabolite concentrations xi be changed, if the activity of

enzyme A was increased by 5%” could be tackled with the approach.

Constraint-based modeling is a linear framework, where metabolic processes are mod-

elled in steady-state [13]. In contrast to MCA, where the effect of perturbations

on metabolite concentrations and reaction rates is investigated, constraint-based

modeling focuses on steady-state reaction rates, or fluxes. The metabolic model is

usually represented by a stoichiometric matrix S with a row for each metabolite

and a column for each reaction in the system. Stoichiometric coefficient Sij then is

the number of metabolites i produced in reaction j in a time unit, with Sij < 0, if

metabolites i are consumed by the reaction.

In terms of graphs, it is intuitive to enrich the edges of a metabolic network with

coefficients Sij: each edge from reaction j to metabolite i is given label Sij, and edge

from metabolite i to reaction j label −Sij to keep the labels positive.

One of the basic questions in constraint-based modeling is to characterise solutions

to the equation

Sv = 0,

where v is the vector of fluxes. The equation states the steady-state condition in

matrix form. In other words, the net production of each metabolite is zero. The

equation system can be constrained further, if additional data is available.

Because no parameters besides stoichiometric coefficients is required, it is possible

to build genome-scale constraint-based models. The major drawback is that the

model is restricted to steady-state, which is not always a realistic assumption.

3.3 Discrete models

Modeling frameworks discussed above, with the exception of directed graphs, were

examples of frameworks including continuous variables. Discrete frameworks have

been proposed for modeling biological networks as well, especially transcriptional

regulation. Examples of numerous discrete frameworks include boolean networks,

generalized logical networks, petri-nets, process algebrae and rule-based formalisms.

This section discusses two continuous frameworks, Boolean networks and Bayesian

networks.

Boolean networks have been widely used in modeling gene regulation. The cell

exhibits switch-like behaviour during regulation, and this behaviour is more or less
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Figure 5: A logic diagram corresponding to the gene regulation network in Figure

3. Triangle is a NOT gate and pentagons are AND gates.

naturally modelled using boolean networks [12]. A boolean network G(V, F ) is

defined by a set of nodes V = {x1, . . . , xn} and a list of Boolean functions F =

(f1, . . . , fn). A Boolean function fi(x1, . . . , xn) is assigned to node xi.

In gene regulation, each node xi corresponds to the state of gene i. If xi = 1, gene

i is active, or expressed, and if xi = 0 the gene is not active. Boolean functions

represent the regulatory interactions between genes.

Dynamic behaviour can be simulated with Boolean networks by considering the

transition between two consequtive time steps. In the first step, the system is in a

state defined by nodes x1, . . . , xn. Next, the Boolean function fi for each node is

evaluated with x1, . . . , xn. The resulting values are then assigned as x1, . . . , xn of the

second time step. Because Boolean functions are deterministic, also the dynamic

behaviour in Boolean networks is deterministic: the initial state of the model com-

pletely determines the end state. Figure 5 depicts a logic diagram corresponding to

the gene regulation network in Figure 3.

Although Boolean models are simple to understand and they can be inferred from

data effectively in some problem settings [12], the model framework has serious

limitations. First, a Boolean variable having only two possible states is not a realistic

way to model many biological properties. Second, a deterministic Boolean model

does not cope well with noisy or missing data. Even though there is the “correct”

Boolean function for some variable, noise in the data might make it impossible to

infer it without probabilistic considerations. Third, specifying large Boolean models

requires a lot of data which may not be available. This is particularly true with

gene regulation networks.
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Many probabilistic discrete modeling frameworks have been developed, which can

be used to alleviate problems encountered with Boolean networks and real-world

modeling situations.

Probalistic Boolean networks extend Boolean networks by accomodating more than

one possible function for each node [12]. In addition, each node is given a probability

distribution over the possible functions. The dynamics of the probabilistic Boolean

network are same as for Boolean networks, except when determining the next value

for a variable, the function is chosen randomly from the possible functions according

to the associated probability distribution.

As in Boolean networks, the complexity of individual Boolean functions can be

limited. For instance, the maximum number of variables affecting the outcome

could be set to some small number. In addition, in probabalistic Boolean network,

one has to choose the number of possible functions for each variable. This choice

increases both flexibility and the danger of overfitting the model to data. Ideally,

these choices should reflect the amount of data available.

Bayesian networks has been a popular tool in gene regulation network analysis [7].

A Bayesian network is a directed acyclic graph which encodes the joint probabil-

ity distribution over a set of random variables x1, . . . , xn. The joint probability

distribution can be expressed as

P (x1, . . . , xn) =
n∏

i=1

P (xi | pa[xi]),

where pa[xi] is the set of parent variables of xi in the graph. This decomposition gives

a space-efficient method of representing the joint probability distribution compared

to the general case.

To study system dynamics, one can extend Bayesian networks by “unfolding” the

graph structure [7]. For each time point under consideration, a nodes of the Bayesian

network are duplicated. The probability distribution for a variable in time step

t + 1 is then given in terms of its parents in time step t. The resulting graph is

also a Bayesian network, and it can be used to make inferences involving dynamic

behaviour of the variables.

Bayesian networks can be learned from data. Unfortunately, learning the network

structure is computationally hard [2]. Therefore, simulation methods are usually

used to infer the structure. The methods are also suspectible to the choice of prior

probability distributions given to variables with no parents in the graph. Intuitively,
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as with other frameworks, finding the correct model from the data gets more difficult

as the amount and quality of data decrease.

4 Conclusion

Graphical modeling frameworks are useful tools for systems biology. Many ap-

proaches have been developed in the recent years to deal specifically with problems

rising from the domain of systems biology. In particular, one of the most promi-

nent questions is how to deal with the lack and uncertainty of data. Choosing an

appropriate modeling framework is an important part of the answer.

Related to the two systems discussed here, transcriptional regulation and metabolism,

an interesting research direction is building a model combining the two systems [3].

A central issue would be how to integrate in the same model aspects from logic-

oriented discrete gene regulation networks and perhaps constraints-based continuous

metabolic networks, and from different time scales.
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