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1 Introduction

The focus in contemporary biological research is on interactions between biological
components. This new approach has been named systems biology. The research
done in this field and the vast amount of data it produces has led to a general en-
tropy of data modelling methods, which in turn introduces incompatibilities between
different datasources. Developed models in old systems generally become inusable
after system support has stopped. Currently system-to-system and model-to-model
importing is error prone because time-consuming programming tasks are required

when comparing existing models from different sources.

The Systems Biology Markup Language (SBML) is "a computer-readable format for
representing models of biochemical reaction networks" [FHLNOG6|. It offers a solution
to data integration and general compatibility issues between varied sources. It is an
XML-based markup language. The motivations for using XML are its portability

and de facto usage as a bioinformatics lingua franca [HFST03].

This report has the following structure. First, XML and its syntax are introduced
in section 1. Then, in section 2, a description of SBML and its uses is given. Finally,

section 3 offers a short discussion and a recap of the topic.

2 XML

The eXtensible Markup Language (XML) is a general purpose markup language de-
rived from the Standard Generalized Markup Language (SGML). One other such
derivative is HTML. By definition XML is an agreed-upon textual format for repre-
senting tree-structured data [W3C06]. The goal and motivation behind developing
XML was that SGML is very extensive and hence not very attractive for e.g. web-
publishing. However, a uniform way to represent structured data is nonetheless

required.

Developers of XML aimed at constucting a simplified version of SGML, while retain-
ing its best characteristics - mainly the demands for well-formedness or validity. A
well-formed document obeys the syntax of XML, while a valid document conforms

to the logical structure defined in a separete schema, such as a DTD.



2.1 Basics of XML

XML documents consist of the document and its document type definition (DTD).
The DTD is used to validate the XML-document. It is a document spesific gram-
mar. Alternatively some other schema language might be used. Technically, DTD
is a simple and rigid implementation of the schema language standard in XML. An-
other popular one is the W3C XML Schema language (XSD), which sports greater
specificity, is namespace aware and supports types (such as boolean, integer etc.).
It has more expression power and is more programmable. As a consequence, it is

harder to learn and less used.

A typical XML file has a tree-like structure of elements identified by tags, such as
those in HI'ML. Unlike its simpler cousin, XML does not allow sloppiness. This is to
say that e.g. end-tags are compulsory and that there is zero tolerance for interlacing
elements. Ambigious element names are disallowed and the names should be self-

describing per normal programming conventions. Here is some hypothetical code.

<?xml version="1.0" encoding="iso-8859-1">
<IDOCTYPE example SYSTEM '"model.dtd">
<experiment>

<specimen>Escherichia Coli</specimen>

<pathway>

<cycle name="TCA" />

</pathway>

</experiment>

Only one root element (experiment in the above example) is allowed, which is due
to the tree-structure. Names of elements are user-defined but must conform to the
DTD or schema. Elementwise attribute values are given inside the start-tag. XML
allows a lot of freedom in data representation: depending on the use, the information
can be contained in the attributes with no free text allowed or alternatively XML

only provides a framework to which the user may "cast" his own content.

For example, if we wanted the above code to be a wordbook type description, then
the name of the specimen ("E. Coli") would be better as an attribute with the

general description written between the tags.



2.2 Usage in bioinformatics

The use of XML in bioinformatics, as put forward by [AVB01], was introduced to aid
interoperability. This is greatly enhanced with SBML, where the system modelled
is a biochemical network or pathway. Normal bioinformatical data is complex and
vast. Also, the amount of available data grows rapidly and complexity increases
with the shift into a systems biological point of view. However, one of the biggest
problems is that current analysis not only produces more data, but also changes our
perception of old data. These put a huge strain on legacy data management (i.e.

updating and reuse of models).

Benefits of XML include its high flexibility. Once a DTD is written, it can also
be easily modified or written anew. Neither XML nor DTD require an interpreter
(that is, they are human-readeble) and thus allow later modifications in a simple but
efficient manner. Being made for the Internet gives XML an edge over its competi-
tors. Especially cross-references between databases are manageable [AVB01]. Its
commoness also guarentees that most people wanting to use it are already at least

relatively familiar with it.

On the downside, XML has no build-in inheritance and no method to update doc-
uments dynamically. This can however be achieved with external programs. XML
does not (as such) support numerical values, tables or matrices, a major drawback

from a systems biology point of view.

3 SBML

Although XML is versatile and easy to use in bioinformatics in general, the inherit
complexity of biochemical network models creates a need for a language of its own.
The Systems biology markup language (SBML) was coined to deal with the same
problems that XML tackles in the general bioinformatical case. Similar XML-based
languages, such as CellML, PSI MI and BioPAX have also been developed but are
not covered here, even though compatibility between CellML and SBML is a goal

in development.

SBML is defined in iterations known as levels, which are again broken down to ver-
sions. The atomicity of the levels makes compatibility issues less likely [HFST03], as
the schema for each level is kept in storage. Every new level addresses some problem

reported by the community. For example as of the current level (level 2), SBML has
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been using MathML to model the complex mathematical formulae required. This
was previously done with ASCII text, which was the standard in databases at that
time. MathML is "an XML application for describing mathematical notation and
capturing both its structure and content” [W3C03]. Details of that language are not

discussed here.

Different modelling tasks that can be tackled with SBML include cell signalling,
metabolism and gene regulation. The ultimate goal of SBML is to unify the pre-
sentation of systems biology models in different databases. Currently, the amount
of time used by researches simply to get data from two different sources and then

unifying them, is huge.

Note that SBML is not meant for biologists (or even bioinformaticians!) to write
by hand. It is meant as an underlying interface to software packages and it sim-
ply guarentees, that different models are universally usable, despite one’s software

preference.

3.1 Basics

SBML is an XML-based markup language so its syntax is that of XML. Every
model definition (i.e. document in XML jargon) starts with the XML declaration
and the location of the XMLSchema that all SBML documents must conform to as
it defines the language. The root element is always sbml. Only ASCII characters
are allowed in attributes. All elements reside in the same namepace. Therefore no
two attributes, compartments or identifiers can share a name. This does not affect
reaction components nor unit identifiers (if the model has unit definitions), since

they form their own private local namespace [FHLNO6].

A model is split into different elements called lists. These lists define the model.
Types of lists include compartments, species, reactions, parameters, unit definitions
and rules. Level 2 adds lists for functions, events and constraints. Normal XML-
data can be added anywhere with a specific <?xml1> declaration and MathML with

a math element containing the MathML schema path and the formulation.

SBML has built in datatypes absent from regular XML. These include, but are not
limited to, integer, double, boolean and so on (for a complete list, see the SBML
specification)|[FHLNO6|. Arrays of objects, say, from an indexed collection of data,

are not yet supported.

<?xml version="1.0" encoding="iso-8859-1">



<sbml xmlns="http://www.sbml.org/sbml/level2"
level="2" version="2">
<model name="my_model">
<list0fCompartments />
<list0fSpecies />
<listOfReactions>
<listOfReactants />
<list0fProducts />
</list0OfReactions>

</model>
</sbml>
A dummy example of raw SBML code is given above. The syntax is explained in the

next section, but we can already see that SBML does not differ much from regular

XML.

3.2 Components

Elements in SBML are called components. Each component contains model data
in attributes. No free text is allowed to be used. In a sense, an SBML document
contains two roots, since model is the top-most structure after sbml, and there can
only be one model definition per document. In fact, all the other elements are

optional.

The highest level component is called a compartment. It represents the boundaries in
which the species -~ SBML jargon for chemical molecules — are contained and where
the reactions take place. In Figure 1 we see two adjacent compartaments with a
third within another. The 1istOfCompartments element also contains the informa-
tion whether the element is within another compartment. The name attribute is
mandatory for unique reference. All compartments can have a CompartmentType
association in order for the user to be able to group several compartments. The

current level offers no functionality yet beyond a unique identity.

The species component contains a unique identifier (name of molecule or metabolite),
the initial amount of the molecule and a compartment pointer. The 1ist0fSpecies
element contains all the chemical substances within a specific compartment. As with
compartments, species can also be grouped together in a SpeciesType element. This

enables the user to differentiate between enzymes and cofactors for example.

Reactions are broken down into 1istOfReactions elements with a subelement for



Figure 1: White circles are compartments, light grey are species and the lines rep-

resent, reactions.

every reactant and product for a given reaction. Every reactant and product must
reference a species by its identifier. Each reaction has a stoichiometry and optionally
a rate equation associated with it. These equations are expressed using MathML
[HFB*04]. Every reaction can be indicated to be reversible or irreversible with a

simple boolean attribute.

<listOfReactions>
<reaction name="R1" reversible="false'>
<listOfReactants>
<speciesReference species="CoA" />
<stoichiometryMath>
<math>
</math>
</stoichiometryMath>
</listO0fReactants>
<1listO0fProducts>
<speciesReference species="Fumarate" />
</1ist0fProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
</math>
</kineticLaw>



</reaction>

</list0fReactions>

The parameter component assigns a fixed floating point value to a parameter. Thus
a parameter can replace the exact value in formulae elsewhere in the document.
Parameters can also be made global to the model by declaring them outside of the

listOfParameters element, normally at the beginning of the model.

<listOfParameters>
<parameter name="Pi" value="3.14159" />
</listO0fParameters>

It is possible for the user to add new units through a list0fUnitDefinitions
element. All of these units must however be derived from the base units that SBML
offers. These standard units are in the SI system and include the likes of liter, joule
and so on. A complete list can be obtained from the website. The user is allowed to
override these explicitly by using a Unit element that specifies the difference from
the base units in SBML. One application of this would be the scaling of a unit, say,
to the power of —1. Unit definitions can reside almost everywhere in the model

structure but the recommended place is on the top of the model definitions.

All use of MathML can be made easier by defining a function. A mathematical
formula defined in the FunctionDefinition component can be referenced from
anywhere in the model. The idea is more or less similar to writing a method that

has to be used repeatedly here and there in software code.

Rules declared in a 1ist0fRules element are mathematical expressions written with
MathML. Their main uses are creating constraints between quantative variables and
to set parameter values using equations. Rules can be either assingments (variable
value setting), rates of change or algebraic, if the first two are not applicable. Rules
should only be used, if the constraints cannot be expressed within the reactions

component or by simple value definitions.

FEvents carry out state changes in the model happening in discrete time steps but in
a discontinuous way. One example would be the halving of one metabolite quantity
when another exceeds a predefined threshold. Effects on the model by events can
also be delayed. An Event element has three compulsory parts: an id, a trigger in
MathML and an EventAssignment that executes the actual changes to the model

attributes. A piece of example code with some MathML is given in Figure 2.
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Figure  2: Event SBML  code created with the SBMLEditor
hitp:/ /www. ebi.ac.uk/compneur-srv/SBMLeditor. html

Initial values can be set in two ways in SBML. The first way is directly to each
component in the model. This is not always sufficient, however. Say we need to
calculate the starting values of metabolite A from the concentrations of metabolites
B and C. Simple value assignment fails to automate this type of assignment; hence,
we use the initial assignment component. Values within the element are written
in MathML expressions and can range from simple (i.e. a = ”17) to complex
calculations. All initial assignments only affect the values before the starting time

point in the model.

Mathematical constraints in MathML on the model values at every relevant point in
time are modelled with a constraints component. Constraints should never be used
to model any dynamic behaviour in the model as this is already done with rules.
A proper use is modelling linear programming constraints in metabolic flux balance

analysis.



3.3 Using the SBML

SBML should always be used through software since it was not intended to be
written by hand. There already exists a plethora of different analysis programmes
capable of interpreting models defined with the language and the number keeps
growing. This is due to the fact that SBML is open-source and the development
group actively participates in creating new software. A list of available software can
be obtained from the project website at http://www.sbml.org. Less than two years
ago the language was supported (used or converted to) by 75 software systems (up
from 60 in 2004) and the number has now grown by almost 50% to more than 110
today [SLO5| [KHK™05].

The similarity of rules, reactions and events makes it hard to quickly grasp, when to
use which. Here is an example that should help understand the difference between
a rate rule and an event. Suppose we have an in-flux of some metabolite A in our
metabolic model happening every other second. This we would model with a rate.
On the other hand, after the amount of A exceeds some threshold, we want to limit
its intake into the cell in order to model inhibition by over-production. For this we

use an event.

Mathematical modelling in SBML has evolved in stretches. Using the MathML
enables complex expressions to be used in a standard way. Currently the rule,
event, function and reaction elements can all include mathematical notations and
level 2 version 2 introduces an additional element — constraint. All in all while vastly
improved from level 1, the different mathematical components could probably be
structured in a more concise and intuitive way. On the other hand, the wide variety
of ways to express something does not restrict the user when constructing a model,
though this hightens the risk of SBML resolving into "XML with some biology" and
hence the much needed unified modelling language for systems biology going down

the drain.

3.4 Beyond SBML

While SBML and other similar tools have developed rapidly and offer huge benefits in
machine-readable network data representation, one overlooked group of stakeholders
are humans. Graphical representation of biological network models needs uniformity
as much as machines do. A vaguely UML like standard named Systems Biology
Graphical Notation (http://www.sbgn.org) aims to codify human-readable network
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models [KFMOO5].

The project is still in beta phase, as the first official version (1.0) is almost ready for
release. The project codifies symbolic notation for molecules as nodes and differents
types of reactions as edges in diagrams. Also a type of logical AND/OR port is
introduced. The general idea is that biologists need to become as acquinted with
these diagrams as engineers have become to electric circuit diagrams and that having
one uniform notation makes the reading and understanding of new network diagrams

a fairly trivial task.

At the heart of the SBGN project lie two pieces: a piece of software called CellDe-
signer (hitp://celldesigner.org) and SBML. Networks created with CellDesigner are
automatically constructed as SBML and all diagrams created with the program are
saved with .xml extension (which is the SBML standard). All kinetics put in to the
model are automatically translated in to MathML. Example diagrams using SBGN

notation are shown in Figure 3.
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Figure 3: Diagrams created with CellDesigner from http://celldesigner.org.

4 Conclusions

One of the biggest contemporary problems in systems biology research is the non-

conformity of different model data sources. This leads to poor efficiency, since inte-
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grating models when conducting research takes up huge amounts of time [HFBT04].
The obvious remedy is uniforming the way models are defined. Standard definitions
in turn simplify coding of software packages and should ideally make importing of

models not only from database-to-database, but also software-to-software trivial.

This report introduced the systems biology markup language, SBML, but by no
means is it the only one of its ilk. However, the number of applications using it
is growing fast and the developers’ goal of a de facto standard in system biological
modelling appears to be a possibility. Other prominent standards include basic
XML, CellML, PSI MI and BioPAX, which all have their respective advantages. A
recent study found SBML especially good for pathway information representation,
while falling short in protein structure representation. It is on the level 3 list of
possible additions, though [SL05].

Since SBML evolves quite fast, it is evident that software developers mainly form
the academic world have a hard time keeping up. While some software use level
2 version 1, some are stuck at level 1. This is a big hinderance, since many of the
essential elements of SBML (such as the use of MathML) have only been introduced

in recent versions.

The development of SBML is already in its third iteration and therefore many of the
most pressing needs of the community have been met. Further levels, as they are
called in SBML jargon, will introduce more advanced but less general features. Some
commercial tools incorporating SBML already exist, but nonetheless the biggest

challenge now is getting users and developers to adopt the standard.
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