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1 Introduction

Because rather simple model organisms have contributed in our knowledge of func-
tion of human genes, it is assumed that model organisms can be utilized on research
of genetic interactions too [GHHO1|. Yeast is an important model organism when
we want to achieve knowledge of conserved biochemical processes [FiT03]|. Also in-
formation about yest genes working together may shed some light on human genetic

variation.

Sequence based comparison between species is already common procedure |ShI06].
Next step is to compare biological networks. This kind of comparison could be used
to predict new protein functions and maybe this knowledge will tell us something
more about evolution of proteins and species. Because different kind of biological
networks concentrate on different aspects of networks it might be useful to combine

these different data sources to get new picture about interactions within a cell.

If two genes together causes lethal phenotype, this genetic interaction is called
synthetic-lethal [GHHO1|. Physical interpretation of synthetic-lethal genetic interac-
tions could reveal the functional meaning behind these genetic interactions [IdK05].

Synthetic-lethal interactions can be extracted from yeast quite easily.

Mapping of synthetic-lethal interactions in yeast is fast process because methods like
SGA and SLAM have automated it [[dK05|. But determining functional significance
of these interactions is still very slow. Ideker and Kelley [IdK05]| suggest that these
synthetic-lethal interactions could be combined with physical interactions in order
to interpret functionality behind synthetic-lethal interactions. They have built a
framework that assembly genetic interactions and physical interactions of yeast into

models.

Basis of this seminar report is Ideker and Kelleys paper Systematic interpre-
tation of genetic interactions using protein networks [IdK05|. At the end
of this report I represent their framework. First chapters describe synthetic-lethal

interactions and models generalized from these interactions.

2 Synthetic-lethal genetic interactions

In many processes one defect doesn’t effect on the outcome of the process. Only

when defects cumulate on some functionality, whole process will fail. For instance
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if one rung in your ladder is broken, you probably still can use the ladder. If you
brake another rung beside the first broken one, ladder becomes useless. This analogy
applies on genetic background of variation in phenotype |GHHO1|. If one gene is
deleted cell may function correctly if some other gene is still working fine. Only
after both genes are not working, cell expresses lethal phenotype. If mutations in
two different proteins cause a disease, this relation is called synthetic-lethal genetic
interaction. In many cases one gene alone doesn’t affect on phenotype because
functionality of genes is buffered with other genes. In interaction network of cell
there seems to exist buffering in genetic variation [GHHO1|. One gene may buffer
variation in an another gene. Identical mutation may produce different phenotypes
in different individuals. If gene A buffers variation of gene B, there is at least one
allele of gene A that causes gene A to lose it’s capability to buffer variation in gene
B. This buffering may cause synthetic-lethal relation of two genes if gene A buffers

otherwise lethal variation in gene B.

There already are methods for detecting these synthetic-lethal interactions in yeast
automatically. One method is synthetic genetic arrays (SGA) [Ton01|. In this
method there is an array with approximately 4700 plates that each contain different
yeast knockout. Cells on each plate are still viable. Then studied query mutation
is inserted to each plate. If cells on the plate stop growing or they die, combina-
tion of knockout originally on the plate and inserted mutation is synthetic-lethal or

synthetic-sick. Growth of mutants is monitored with automated image analysis.

Other method is synthetic lethal analysis of microarrays (SLAM) [OSB03]. This
method is similar to SGA, but mutants are grown in pools. In one pool there
are only these 4700 viable knockouts and in the another pool there are the same
knockouts with query mutation. Every deletion has unique sequence flanking and
this can be used in analysis. After cells are grown in the pools controls and mutants
are hybridized in a microarray and differences in intensities describe which mutants

have grown and which have died.

3 Physical interpretations

Synthetic-lethal interactions has been mapped into three kind of interpretations:
between pathway-models, within-pathway models [GHHO1|, [IdK05] and indirect
effects [FiTO03].

Between-pathway model describes process where two genes in different pathways
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conducts complementary or redundant tasks. These tasks may be biochemically
distinct but interpreted functionally, tasks are the same. One example of between-
pathway interpretations is DNA repair. There are several mechanisms how DNA is
repaired and mutation at the same time in different mechanisms causes DNA repair
to fail. In the figure 1 is represented between-pathway interpretation of genetic
interactions. In this figure, there are physical pathways that are connected with

several genetic interactions.

Within-pathway models are derived genes working in a same pathway or process.
In the figure 2 is represented within-pathway interpretation of genetic interactions.
In this model genetic interactions occur within a specific pathway. Although these
interactions seem to be majority of synthetic-lethal interactions [GHHO1| in Ideker
and Kelleys experiment |[IdKO05| genetic interactions were assigned into between-
pathway models three and half times more often than into within-pathway models.
Dataset used in their experiment might be biased because SGA experiments are

conducted only to genes that are not previously found to be essential for cell survival.

Indirect effects can not be mapped into a physical network. A cell may respond to
mutation in a gene and that way it can affect to many different pathways causing
synthetic lethal interaction. These kind of synthetic-lethal interactions are predicted
to be rare. At experiment of Ideker and Kelley [IdK05| they noticed that they could
interpret 40% of genetic interactions into between- or within-pathway models. Their

method could not classify 60% of genetic interactions into either one of these models.
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Figure 1: Between-pathway interpretations [IdK05].
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Figure 2: Within-pathway interpretations [IdK05].

4 Framework for finding interpretations

Although synthetic-lethal interactions can be searched automatically, functional in-
terpretation of these interactions is very slow [IdK05]. Ideker and Kelley [IdK05]
have demonstrated a systematic method to map genetic interactions on physical
interpretation. They have built a framework that assembly genetic interactions and
physical interactions into models generalized from physical interpretations of genetic
interactions. Physical interpretations they used were between-pathway and within-
pathway models. In this chapter I present the framework they have created and the

results they got from testing their system.

Data they used in their experiment was gathered from different sources. 2012
synthetic-lethal and 2113 synthetic-sic interactions collected from SGA screening
where 132 yest genes were deleted. Another 687 synthetic-lethal interactions was
from Munich Information Center for Protein Sequences (MIPS). Eventually they
had 1424 proteins linked with each other by 4812 synthetic-lethal interactions.
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Data for physical networks was collected from DIP-database (protein-protein inter-
actions), KEGG-database (enzymatic interactions) and from large scale study of
106 transcription factors (protein-DNA interactions). At the end physical networks

covered 94,4% of genes in synthetic-lethal interaction dataset.

Steps in the experiment were first to map genetic interactions into physical inter-
actions. Next physical interaction models were enriched by data about functional
annotations from Gene Ontology database. After these steps new protein functions
could be predicted from proteins in physical interaction models. Last step was to
predict new genetic interactions. Next I describe more accurately each of these steps

in framework of Ideker and Kelley.

4.1 Genetic interactions into physical interaction models

In the framework genetic interactions were mapped on between-pathway model and
within-pathway model. Genetic interactions related to physical interactions only in
limited cases. In this model each pathway of physical interaction networks included
protein complexes and other network structures where set of proteins are densely
connected by physical interactions. Interesting pathways were those pathways that
had set of proteins that have denser genetic interactions than would expect in ran-

dom. These pathways were extracted from physical models computationally.

Relation of genetic interactions to between-pathway models was constructed by
probabilistic model. If genetic interactions is interpreted as between-pathway model,
there is a pair of physical pathways that have dense genetic interactions in between.
Pathway pairs were constructed if there were connected with many genetic interac-
tions. All found pairs was scored according to their density of connective genetic
interactions and density of physical interactions within pathway. Drawback of this
method is the fact that all datasets are not as predictive than others. Large net-
works are more likely to generate high scores randomly. Comparison with random
genetic interaction networks was conducted in order to determine significance of the

models.

Within-pathway interpretations of genetic interactions fall into pathways that have,
beside of physical interactions, also dense genetic interactions. For within-pathway
model scoring was different. Scoring captured group of proteins that were interacting
with more than would happen in random. Model for this gave higher scores on set of

proteins that were interacting by both genetic interactions and physical interactions.



4.2 Functional annotations for models

For validating the models functional annotations were included into them. Anno-
tations were retrieved from Gene Ontology database. Proteins that had common
molecular function in pathways were enriched with annotations. Functional role
of proteins in a pathway had to be over significant level of P=0.05 in order to
annotation to be added into model. Same enrichment was done to between- and

within-pathway models.

4.3 Prediction of functions and interactions

After models were finished, new protein functions and genetic interactions were pre-
dicted from functionally annotated models. For physical pathways that most of
their proteins had common functional annotation, rest of proteins were predicted to
have same function. This method succeeded 63% for between-pathway models and
69% for within-pathway models in a cross validation test. In the test 20% of anno-
tations were removed and predicted again with remaining annotations. Prediction

was scored to succeed or fail.

In between-pathway models proteins in one pathway interact wit same partners in
another pathway. This causes complete bipartite motifs to occur in genetic inter-
action network. In this motif two interacting proteins have every possible link into
another two interacting protein. If motif is not complete and one link out of four is
missing, this implies that missing interaction is also true. These predictions were also
validated with cross validation. In eight incomplete motifs this method predicted
correctly 87% of genetic interactions. This method relies on between-pathway model

and if these incomplete motifs were searched from all models, prediction accuracy
fell to 5%.

In within-pathway models genetic interactions were predicted to proteins that had
one or more common neighbors. Cross validation test revealed that best prediction
accuracy of 38% was reached when threshold of number of common neighbors was
set to three. If predictions weren’t made only within-pathway model, corresponding

prediction accuracy was only 15%.

Physical interpretations of genetic interactions had a major impact on prediction

accuracy.



5 Conclusions

Some genes are not alone essential to individuals genotype. They interact and some
combinations of variants of these genes are lethal. These synthetic-lethal genetic
interactions can be quite easily found from yest with high throughput methods like
SGA and SLAM. Interpreting physical interactions have been more laborious task.
Information of these genetic interactions can be combined with interaction networks
and functional knowledge of proteins in these networks. This approach gives some
physical explanation for genetic interactions and it can be used for predicting new

protein functions and genetic interactions.

Protein functions and genetic interactions in yeast can help understanding same
events in human and other species too. When biological networks in different species
are compared with each other, it can be used to detect conserved networks and

protein functions.

Ideker and Kelley [IdK05| present a framework that can be used on systematic search
of physical relations behind genetic interactions. Assembly of data from various

sources can be used for predicting new protein functions and genetic interactions.
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