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The 
ell is the 
ommon unit of stru
ture shared among all living organisms wherealmost all vital pro
esses take pla
e. More then a 
entury of resear
h has beenextremely su

essful in �rst breaking up the 
ellular 
omponents and then identifyingthe majority of all mole
ules inside 
ells. However, every identi�ed mole
ule is justa single link in a typi
ally very 
ompli
ated 
hain of di�erent 
hemi
al rea
tions.Therefore, these rea
tions have to be 
ontemplated under a wider perspe
tive tofully understand all the pro
esses within a living 
ell. Network biology is a relativelynew bioinformati
al approa
h to model these pro
esses and building a 
on
eptualframework based on well-established knowledge on networks.ACM Computing Classi�
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11 Introdu
tionUnderstanding the pro
esses within a living 
ell and the fun
tions of its 
omponentsis su
h an essential topi
 of biology that a huge e�ort has been made to solve themysteries of this very generi
 stru
ture of all living organisms. For more than a
entury the main approa
h to this has been redu
tionism, where the idea is thatall 
omplex systems 
an be gradually redu
ed to a set of simpler stru
tures. Thisresear
h has been indeed very su

essful in identifying 
ellular mole
ules and theirfun
tions in bio
hemi
al rea
tions within and between 
ells. In the �eld of proteinresear
h this 
an be shown as nowadays 
omplete sets of the trans
ripts of organismsare available, i.e. the analysis of the whole yeast trans
riptome [Vel97℄.However, this resear
h has also shed light on the enormous 
omplexity of the bio-
hemi
al ma
hinery inside 
ells. It has be
ome apparent that the full understandingof the 
ellular pro
esses 
annot be obtained by simply identifying every mole
ulepresent in a 
ell. In most 
ases, numerous proteins work together performing a sin-gle task. To understand this task the 
omplex intera
tions between many proteinshave to be 
onsidered and therefore modelled in a way that is both simple and infor-mative but still biologi
ally 
orre
t. Linear rea
tion 
hains su
h as the breakdownof sugars or even more 
omplex rea
tions like the well-known 
itri
 a
id 
y
le havetraditionally been depi
ted by graphs with arrows. Su
h a representation is nothingelse than a network with, in these 
ase, linear or 
y
li
 topology. Approa
hing bio-logi
al problems by applying knowledge from abstra
t network and graph theory isa 
urrent topi
 of bioinformati
s 
alled network biology.This paper is mainly based on the work of Barabási et al. [BaO04, Jeo00℄ andtherefore fo
using on the 
on
epts of network biology and its 
ontribution to un-derstanding the fun
tional organization of 
ells. In addition, examples from otherareas will be mentioned to show the wide appli
ability of general network theory.The next se
tion will give a brief summary of general terminology and measures ofnetworks that will be used throughout the paper. Se
tion 3 introdu
es the 
on
eptsof biologi
al networks and their spe
i�
 
ommon features. Further 
hara
teristi
sof links and their 
onsequen
es to modelling biologi
al systems are then 
overed inse
tion 4. Finally, the paper 
loses with 
omments on network biology in generaland its 
urrent status.



22 Con
epts of networksThe idea of networks is so universally appli
able to 
omplex systems that it has beenadopted in many fundamentally di�erent domains su
h as te
hnology, psy
hologyand so
iology. It has been even used to des
ribe stru
tures like the politi
al orga-nization of a big and so
ially extremely heterogeneous 
ountry like India [CoM58℄or more te
hni
ally, analyzing its railway system [Par03℄. The Internet is probablythe best example of a 
omplex system that is strongly governed by general lawsof network theory although evolving quite independently. This se
tion 
overs thebasi
 measures of graph theory, whi
h will be later used to 
hara
terize biologi
alnetworks.2.1 Basi
 measures and propertiesEvery network 
onsists of nodes and the links between them. The links representsome kind of relationship between two nodes. If there is no logi
al di�eren
e whethernode A is linked to B or vi
e versa, the links are represented as plain lines and thenetwork is said to be undire
ted. Otherwise, the links are arrows and the networkis then dire
ted. The degree k of a node is the amount of links asso
iated with thenode. In dire
ted networks one has to distinguish between outgoing and in
ominglinks, thus resulting in two degrees kin and kout. For example in Fig. 1 node Ahas kin=4 and kout=1. The degree distribution P(k) is obtained by 
ounting thenumber of nodes with k links and dividing that by the total amount of nodes inthe network. This represents the probability that a node in the given network hasexa
tly k links. In Fig. 1 from the total of eight nodes C, G, H and E have twolinks, thus P(2)= 4/8 = 0,5. If we depi
t the distribution of all the degrees in agraph, we observe a global maximum for P(2). Clearly peaked degree distributionsare one 
hara
teristi
 of arbitrary generated so-
alled random networks like the onedepi
ted in Fig 1. As we will see in the next se
tion, the degree distribution playsa major role in 
lassifying di�erent types of networks.If the degree distribution approximates a power law P(k) ∼ k−γ the network is saidto be s
ale-free. S
ale-free networks exhibit many distin
t features in 
ontrast torandom networks. They have a non-uniform topology where most nodes have lowdegrees but few nodes, so-
alled hubs, are highly 
onne
ted. The 
onstant γ is 
alledthe degree exponent and determines many important properties of the underlyingsystems espe
ially the importan
e of these hub nodes.
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Figure 1: Dire
ted random networkPath lengths are important network measures to des
ribe the navigability of eitherspe
i�
 nodes or the whole network. The shortest path between two nodes issimply the path with the fewest links in between. The mean path length is theaverage of the shortest paths of all pairs of nodes. Cal
ulating these measures a bitmore 
ompi
ated in dire
ted networks where typi
ally many paths between nodesare not existing at all and the existing ones get longer (see Fig. 1: no links areleading to neither C nor D, and the shortest path from A to B goes through G andF).One last important measure 
on
erning also biologi
al networks is the 
lustering
oe�
ient CA and its derivatives whi
h des
ribe whether node A is part of 
lusters,i.e. triangles. In Fig. 1, only nodes B and C form a triangle with A and in fa
t, A,B and C are the only nodes in this network being part of a triangle. CA is the ratioof triangles going through node A and the total amount of theoreti
ally possibletriangles given that node A has k neighbours. Formally CA = 2nA/k(k-1), wherenA is the amount of links 
onne
ting node A's k neighbours with ea
h other. Fornode A in Fig. 1, k = 5, nA = 1 and thus CA = 2/20. The average 
lustering
oe�
ient <C> is simply the average of the 
lustering 
oe�
ients and therefore
hara
terizes the overall tenden
y of nodes being part of 
lusters. Sin
e measuresthat depend on the size of the network (i.e. number of nodes/links) are not usefulfor 
hara
terizing di�erent networks, a more general way to des
ribe the 
lusteringof nodes is the fun
tion C(k) whi
h is the average 
lustering 
oe�
ient for all nodeswith k links.



42.2 Network topologyOnly by looking at the graphs of networks, we are usually already able to roughly
hara
terize their stru
ture. Di�erent topologies are interesting sin
e they typi
allyexhibit spe
i�
 features. The main three types are random, s
ale-free and hierar-
hi
al networks. Mathemati
al properties of random networks have been studiedsin
e almost half a 
entury [ErR60℄ but mu
h later the terms s
ale-free [BaA99℄ andhierar
hi
al [Rav02℄ have been introdu
ed to graph theory.A random network topology 
an be generated with �rst pla
ing all nodes N andthen linking ea
h pair of nodes with some probability p. This results in a seeminglyrandom arrangement of nodes and links. S
ale-free networks also look random butthey 
ontain few highly linked hubs in 
ontrast to the majority of nodes with veryfew links. The result is the power-law degree distribution mentioned earlier. Hierar-
hi
al networks also may also have hubs but more important the overall stru
ture isrepeating itself in its substru
tures, see Fig. 2. Typi
al features of hierar
hi
al net-works are 
lustering 
oe�
ients that approximates to C(k) ∼ k−1 and a power lawdegree distribution like s
ale-free networks (more spe
i�
ally, with a degree exponent
γ = 1 + ln4/ln3).3 Biologi
al networksIn the postgenomi
 age of geneti
s where high-throughput methods generate vastamounts of information it is essential to pro
ess this data e�
iently otherwise thisbottlene
k is keeping many important insights hidden. To get a better understandingof a 
ell's fun
tional organization large numbers of intera
ting bio
hemi
al rea
tionshave to be analysed. If we 
an model the rea
tions inside a 
ell as a 
omplex net-work, we might be able to exploit the results of the already well-studied area ofnetwork theory. From here, highly e�
ient or even optimal solutions have beenfound for many very 
ommon network-related problems su
h as sear
h or 
luster-ing algorithms. This se
tion 
overs the properties that 
hara
terize biologi
al andespe
ially 
ellular networks.



53.1 Common featuresOne important feature is that most networks inside 
ells are s
ale-free. Most 
ellularsubstrates are only involved in few rea
tions whereas a few others, the hubs, areperforming a huge number of tasks. Among proteins, whi
h are the omnipresentsubstrates in metaboli
 pathways, there are many known hub proteins e.g. pyruvateor 
oenzyme A. Although most bio
hemi
al rea
tions are theoreti
ally reversible,whi
h would mean an undire
ted network, the 
ellular environment typi
ally for
esthe rea
tions into one spe
i�
 way making metaboli
 pathways generally dire
tednetworks.Resear
h has shown that in 
omplex networks the shortest paths between any twonodes is amazingly short. This so-
alled small-world e�e
t applies to so
ial networks,neural networks, the WWW and many more. Although being a property of randomnetworks, s
ale-free network exhibit this property as well. In fa
t, they are even ultrasmall 
ompared to random networks [CoH03℄. This was �rst observed in metaboli
networks where paths rarely ex
eed three or four rea
tions. These short path lengthsin metaboli
 systems allow the 
ell to response very qui
kly to environment 
hanges.Disassortativity is another feature of 
ellular networks [MaS02℄. This means thathubs usually do not link dire
tly to other hubs. A opposite s
enario is often observedin so
ial networks, where well-
onne
ted persons typi
ally tend to know ea
h otherpersonally. However, no reasons for disassortativity in 
ellular networks have beenreported yet.3.2 Evolution of s
ale-free networksIf s
ale-free networks are so dominant in 
ellular networks, what are the reasons? It iswidely a

epted that preferential atta
hment is one major 
ause for the developmentof hubs. This means that any new node in the network tends to link to well-
onne
tednodes making that even more 
onne
ted. This is very evident in the WWW wherepages prefer linking to well-known pages rather than unknown ones. Of 
ourse, therequirement for this theory is that the network is a result of 
onstant growth. This isobviously true for most networks, espe
ially 
ellular networks that have undergonemillions of years of 
ontinuous evolution.Unlike web pages, new genes are typi
ally not simply 
reated or introdu
ed by someexternal means. For the growth of 
ellular networks gene dupli
ation provides areasonable explanation [RzG01℄. Gene dupli
ation is a rare but natural o

urren
e



6where a gene is dupli
ated to another lo
us on the DNA or RNA. Being an exa
t
opy, it will result in an identi
al protein, if trans
ribed. This new node will intera
twith the same partners as the protein translated from the original gene. Preferentialatta
hment 
an be seen when gene dupli
ation is observed from a node's point ofview. If a node has many links and a random dupli
ation o

urs, then it is morelikely that it 
omes from one of the own neighbours thus giving it another link andeventually it might turn into a hub. In other words, a node with only one link willgain an additional link only in the relatively rare 
ase his sole neighbour's gene getsdupli
ated.3.3 From network stru
ture to fun
tionFormation of groups, or modularity is a 
ommon feature of all sorts of networks.Cir
les of friends in so
ial networks, web pages with similar topi
s and in 
ellularnetworks we typi
ally �nd a group or module of fun
tionally linked mole
ules that
arry out one rather distin
t fun
tion. Most mole
ules are only a
tive when beingpart of a spe
i�
 
omplex of di�erent mole
ules. These 
omplexes 
an be seen asfun
tional modules and some of them are at the 
ore of many very basi
 biologi-
al fun
tions. Identifying these reappearing modules enables us to assign them analready known biologi
al fun
tionality.As modules are groups of inter
onne
ted nodes a high modularity within a network
an be identi�ed by viewing at the 
lustering 
oe�
ient C. Theoreti
ally, random ands
ale-free networks should have a similar average 
lustering 
oe�
ient. However, weobserve signi�
antly higher <C>-values for most real biologi
al networks, rangingfrom metaboli
 to protein-protein intera
tion networks. Therefore, it seems thathigh modularity is in fa
t a general property of biologi
al s
ale-free networks. Inthe next subse
tion, hierar
hi
al 
lustering is introdu
ed to explain high C -valuesin s
ale-free networks.So far, the dis
ussion about topology fo
used on the overall stru
ture of the network.However, a bottom-up analysis often shows distin
t small-s
ale patterns su
h astriangles, squares et
. inside the network. For example in Fig. 1 nodes A, B, C forma triangle whereas A, G, F, B a square. These spe
i�
 arrangements are referred toas subgraphs and in a su�
iently 
omplex random network all of these subgraphs areexpe
ted to be present. Interestingly, in 
ertain networks some of these subgraphsare 
learly over represented, whereas others do not exist at all [Itz03℄. Indeed,some subgraphs, known as motifs, are responsible for spe
i�
 
ellular fun
tions su
h



7as dire
ted triangles, so-
alled feed-forward loops, in trans
ription-regulatory andneural networks. In 
ontrast, a feed-forward loop of four dire
ted nodes, 
reatinga square, is a 
ommon motif in ele
troni
 
ir
uits but not in biologi
al networks[Mil02℄. In fa
t, motifs have been found inside all real 
omplex systems so far[Mil02℄ and here a typi
al observation is, that same types of motifs tend to 
lustertogether thus forming motif 
lusters. However, motif 
lustering naturally resultsin intera
tion between motifs. Understanding these motif-motif intera
tions is ana
tive area of resear
h and not yet su�
iently understood.3.4 Identifying fun
tional modulesThe main task of identifying motifs in networks is to �nd subgraphs that are sig-ni�
antly more frequent than one would expe
t from a randomized network. This
an be a
hieved by 
ombinatorial means 
onsidering every subgraph of all n nodes.This is feasible for small networks, however the amount of possible subgraphs growsexponentially with the amount of nodes and therefore it is obviously not pra
ti
alfor 
omplex systems. Another problem of module identi�
ation is the fa
t that theidea of relatively isolated modules is 
ontradi
tory with our assumption that mostbiologi
al networks are s
ale-free. As mentioned earlier, highly 
onne
ted hubs keepthe network tied 
losely together, thus making isolated 
lusters unlikely. Hierar
hi-
al networks as shown in Fig. 2 exhibit a topology that has both isolated 
lustersand well-linked hubs. Although not as symmetri
al as depi
ted in Fig. 2, hier-ar
hi
al organization to some extend is indeed ubiquitous in real 
omplex systems[Rav02, RaB03℄.Identifying modules in large networks seems to be a daunting task be
ause a break-down of the whole network into the smallest, but still biologi
ally relevant, 
lustersis needed. Fortunately, here the long-lived resear
h of networks has yielded goodresults. Many 
lustering algorithms provide automated solutions to �nd moduleswithin modular networks. However, the term module is not 
lear-
ut and di�erentalgorithms �nd di�erent boundaries for the modules. If we look at the right graph inFig. 2: is the green or the blue triangle the desired module? Not being a weakness ofthe algorithms, this is a logi
al 
onsequen
e of a hierar
hi
al stru
ture. Most 
luster-ing algorithms provide internal parameters that adjust the preferred module sizes.The results of di�erent runs should be 
ompared against ea
h other to �nd suitablevalues. Pure mathemati
al 
lustering approa
hes will always 
ontain this ambiguity.The addition of existing knowledge about fun
tional modules 
an address this issue
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Figure 2: Hierar
hi
al networks (sour
es: left [Bil07℄; right [BaO04℄).and knowledge-based algorithms have already been proposed [Ihm02℄. Then again,the use of hierar
hi
al 
lustering algorithms in wrong 
ontexts should be avoidedsin
e they may �nd hierar
hi
al 
lusters even in 
learly non-hierar
hi
al networks.3.5 RobustnessApart from the analysis of substru
tures, the surprising overall robustness of 
omplexsystems has drawn attention. It is 
ommon knowledge that nodes and/or their linksin all types of networks tend to be
ome spontaneously unavailable. In 
omputers
ien
es, a trivial example is a 
rashed server, in biology a possible reason 
ould bea temporarily or permanently ina
tivated gene that results in a missing node in ametaboli
 network. The Internet as a �ne example of a robust 
omplex network isamazingly invulnerable to failures of nodes or 
hanges of the operating environment.Thus, robustness de�nes the sensitivity of a network to modi�
ations.Topologi
al robustness determines how deletions of nodes alter the overall topologyof a network. Hereby the underlying topologies play a major role. Disabling a
ertain amount of randomly 
hosen nodes, a so-
alled 
riti
al fra
tion, will render arandom network into a set of non-
ommuni
ating islands. On the other hand, larges
ale-free networks do not have these values where disintegration of the networkwill be expe
ted. The reason for this is that the randomized deletion will mainlyaddress the numerous less-
onne
ted non-hub nodes. [AJB00℄ suggest that up to80% of the nodes in a s
ale-free network 
an be 
ut o� with the remaining 20% still



9forming a 
luster where all pairs of nodes have a path between them. Of 
ourse, thisindu
es an atta
k vulnerability to the hubs, be
ause disabling only a few key hubs will
ompletely disintegrate the network. Results of deletion analysis in Baker's yeasthave shown that the amount of intera
tions (links) a protein has, 
learly 
orrelateswith the lethality of the 
ell when this protein is absent [Win99℄. The importan
e ofhubs 
an also be seen in their signi�
ant 
onservation during evolution. The higherthe degree of a yeast 
ell's protein in the 
ellular network, the higher the probabilitythat a 
losely related orthologs of this protein will be found in higher organisms.Fun
tional robustness of 
ellular networks des
ribes the 
ell's ability to maintain itsnormal fun
tions despite external perturbations. From a 
ell's point of view di�erentnodes are not equal, be
ause of their di�erent 
ellular fun
tions. Therefore, simplythe degree of the node 
annot solely determine its importan
e in the whole networkas it is assumed from a purely topologi
al perspe
tive. Evolutionary aspe
ts seemto be an important fa
tor in fun
tional robustness sin
e many highly 
onservedmetaboli
 modules are relatively vulnerable against modi�
ations. On the otherhand, evolutionary less 
onserved metaboli
 pathways are more robust and showability to adapt to perturbations thus allowing the module to evolve.4 Properties of the linksChara
terization of the links in 
ellular networks is probably one of the most prob-lemati
 topi
s in network biology. Bio
hemi
al rea
tions depi
ted as arrows or evensimpler, plain lines are 
ertainly 
rude simpli�
ations of real 
ellular pro
esses. Al-though easy to understand this Boolean-type of approa
h where a 
hemi
al rea
tion,exists or not, is biologi
ally in
orre
t, as most rea
tions o

ur to some extend at anytime and independent of state of the 
ell. Therefore, to obtain more pre
ise mod-elling, a measure to quantify 
ellular pro
esses has to be in
luded [S
P98℄. This 
anbe taken into a

ount with a weighted network, where the weight of a link 
an befor example the amount of a 
hemi
al produ
t of a metaboli
 rea
tion, the so-
alled�ux, e.g. measured in mole
ules per hour. This quanti�
ation of 
ellular pro
essesis addressed with metaboli
 �ux analysis (MFA). However, even results of MFA arenot the absolute truth be
ause to limit logi
al and 
omputational 
omplexity they
ontain many assumptions (e.g. steady-state) that depending on the 
ontext mayor may not be biologi
ally 
orre
t.Even if a Boolean approa
h is used, simple arrows might not provide su�
ient infor-



10mation. For example, modelling of gene expression gets signi�
antly more 
omplexby the fa
t that substrates that regulate the expression of a gene 
an exhibit positiveor negative regulation. In other words, the expression of a gene 
an require botha high 
on
entration of a spe
i�
 substrate and at the same time the absen
e ofanother. On the other hand, positive regulation is also ambiguous. Considering twofa
tors A and B, that both positively regulate expression of gene G. This will bedepi
ted as two arrows, labelled A and B, leading to node G. However, this doesnot tell, whether both A and B are required or only one, either A or B. To 
aterfor all these 
ases, additional information su
h as logi
al operators must be usednot only in visualization but also in the inferred equations for the formal modellingof the pro
ess. Knowledge from the theory of Boolean networks 
an be applied tosome extend but these results may also show 
lear boundaries to what 
an be solved
omputationally at all and what not.5 Con
lusionNetwork biology is 
ertainly a very wel
ome approa
h 
onsidering the in
reasing de-mand for automated methods to pro
ess the ever-growing amount of biologi
al dataextra
ted from existing well-automated experimental methods. The dis
overy of thes
ale-free property of biologi
al networks 
aused a 
onsiderable s
ienti�
 dis
ussionand exploitation of these properties promised unforeseen results.However, lately this ex
itement has 
learly 
almed down as 
on
rete examples forpre
ise modelling of 
omplex biologi
al systems are still missing. Even though we
an draw large metaboli
 networks and 
hara
terize them by means of mathemati
alformulas, so far even the most 
omplex pro
esses for whi
h reliable 
omputablemodels, i.e. di�erential equations, have been developed do not 
ontain mu
h morethan ten genes. This means that we are still far away from high throughput solutionsto model and predi
t 
ellular pro
esses espe
ially pro
esses on a large s
ale.The vision of �nding universal laws that govern 
omplex biologi
al pro
esses istempting but rather unrealisti
. The attempt of inferring general and fundamentalproperties from a 
hosen set of previous observations is easily ill-fated, sin
e manythings 
an be 
on
luded if subje
tively interpreted. This is espe
ially true for a non-exa
t s
ien
e like biology. In most 
ases, the 
on
lusion is simply that real biologyis mu
h more 
ompli
ated than anti
ipated and large simpli�
ation is only rarelymeaningful.
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