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1 Introduction

Understanding the processes within a living cell and the functions of its components
is such an essential topic of biology that a huge effort has been made to solve the
mysteries of this very generic structure of all living organisms. For more than a
century the main approach to this has been reductionism, where the idea is that
all complex systems can be gradually reduced to a set of simpler structures. This
research has been indeed very successful in identifying cellular molecules and their
functions in biochemical reactions within and between cells. In the field of protein
research this can be shown as nowadays complete sets of the transcripts of organisms

are available, i.e. the analysis of the whole yeast transcriptome [Vel97].

However, this research has also shed light on the enormous complexity of the bio-
chemical machinery inside cells. It has become apparent that the full understanding
of the cellular processes cannot be obtained by simply identifying every molecule
present in a cell. In most cases, numerous proteins work together performing a sin-
gle task. To understand this task the complex interactions between many proteins
have to be considered and therefore modelled in a way that is both simple and infor-
mative but still biologically correct. Linear reaction chains such as the breakdown
of sugars or even more complex reactions like the well-known citric acid cycle have
traditionally been depicted by graphs with arrows. Such a representation is nothing
else than a network with, in these case, linear or cyclic topology. Approaching bio-
logical problems by applying knowledge from abstract network and graph theory is

a current topic of bioinformatics called network biology.

This paper is mainly based on the work of Barabasi et al. [BaO04, Jeo00] and
therefore focusing on the concepts of network biology and its contribution to un-
derstanding the functional organization of cells. In addition, examples from other
areas will be mentioned to show the wide applicability of general network theory.
The next section will give a brief summary of general terminology and measures of
networks that will be used throughout the paper. Section 3 introduces the concepts
of biological networks and their specific common features. Further characteristics
of links and their consequences to modelling biological systems are then covered in
section 4. Finally, the paper closes with comments on network biology in general

and its current status.



2 Concepts of networks

The idea of networks is so universally applicable to complex systems that it has been
adopted in many fundamentally different domains such as technology, psychology
and sociology. It has been even used to describe structures like the political orga-
nization of a big and socially extremely heterogeneous country like India [CoM58|
or more technically, analyzing its railway system [Par03|. The Internet is probably
the best example of a complex system that is strongly governed by general laws
of network theory although evolving quite independently. This section covers the
basic measures of graph theory, which will be later used to characterize biological

networks.

2.1 Basic measures and properties

Every network consists of nodes and the links between them. The links represent
some kind of relationship between two nodes. If there is no logical difference whether
node A is linked to B or vice versa, the links are represented as plain lines and the
network is said to be undirected. Otherwise, the links are arrows and the network
is then directed. The degree k of a node is the amount of links associated with the
node. In directed networks one has to distinguish between outgoing and incoming
links, thus resulting in two degrees k;, and k,,;. For example in Fig. 1 node A
has k;,—4 and k,,;—1. The degree distribution P(k) is obtained by counting the
number of nodes with £ links and dividing that by the total amount of nodes in
the network. This represents the probability that a node in the given network has
exactly £ links. In Fig. 1 from the total of eight nodes C, G, H and E have two
links, thus P(2)— 4/8 — 0,5. If we depict the distribution of all the degrees in a
graph, we observe a global maximum for P(2). Clearly peaked degree distributions
are one characteristic of arbitrary generated so-called random networks like the one
depicted in Fig 1. As we will see in the next section, the degree distribution plays

a major role in classifying different types of networks.

If the degree distribution approximates a power law P(k) ~ k=7 the network is said
to be scale-free. Scale-free networks exhibit many distinct features in contrast to
random networks. They have a non-uniform topology where most nodes have low
degrees but few nodes, so-called hubs, are highly connected. The constant ~ is called
the degree exponent and determines many important properties of the underlying

systems especially the importance of these hub nodes.
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Figure 1: Directed random network

Path lengths are important network measures to describe the navigability of either
specific nodes or the whole network. The shortest path between two nodes is
simply the path with the fewest links in between. The mean path length is the
average of the shortest paths of all pairs of nodes. Calculating these measures a bit
more compicated in directed networks where typically many paths between nodes
are not existing at all and the existing ones get longer (see Fig. 1: no links are
leading to neither C nor D, and the shortest path from A to B goes through G and

One last important measure concerning also biological networks is the clustering
coefficient C'y and its derivatives which describe whether node A is part of clusters,
i.e. triangles. In Fig. 1, only nodes B and C form a triangle with A and in fact, A,
B and C are the only nodes in this network being part of a triangle. C'4 is the ratio
of triangles going through node A and the total amount of theoretically possible
triangles given that node A has k neighbours. Formally Cy = 2n4/k(k-1), where
na is the amount of links connecting node A’s k neighbours with each other. For
node A in Fig. 1, £ = 5, nqy = 1 and thus C4 = 2/20. The average clustering
coefficient <C> is simply the average of the clustering coefficients and therefore
characterizes the overall tendency of nodes being part of clusters. Since measures
that depend on the size of the network (i.e. number of nodes/links) are not useful
for characterizing different networks, a more general way to describe the clustering
of nodes is the function C(k) which is the average clustering coefficient for all nodes
with £ links.



2.2 Network topology

Only by looking at the graphs of networks, we are usually already able to roughly
characterize their structure. Different topologies are interesting since they typically
exhibit specific features. The main three types are random, scale-free and hierar-
chical networks. Mathematical properties of random networks have been studied
since almost half a century [ErR60| but much later the terms scale-free [BaA99| and
hierarchical [Rav02| have been introduced to graph theory.

A random network topology can be generated with first placing all nodes N and
then linking each pair of nodes with some probability p. This results in a seemingly
random arrangement of nodes and links. Scale-free networks also look random but
they contain few highly linked hubs in contrast to the majority of nodes with very
few links. The result is the power-law degree distribution mentioned earlier. Hierar-
chical networks also may also have hubs but more important the overall structure is
repeating itself in its substructures, see Fig. 2. Typical features of hierarchical net-
works are clustering coefficients that approximates to C(k) ~ k~! and a power law
degree distribution like scale-free networks (more specifically, with a degree exponent
v =1+ In4/In3).

3 Biological networks

In the postgenomic age of genetics where high-throughput methods generate vast
amounts of information it is essential to process this data efficiently otherwise this
bottleneck is keeping many important insights hidden. To get a better understanding
of a cell’s functional organization large numbers of interacting biochemical reactions
have to be analysed. If we can model the reactions inside a cell as a complex net-
work, we might be able to exploit the results of the already well-studied area of
network theory. From here, highly efficient or even optimal solutions have been
found for many very common network-related problems such as search or cluster-
ing algorithms. This section covers the properties that characterize biological and

especially cellular networks.



3.1 Common features

One important feature is that most networks inside cells are scale-free. Most cellular
substrates are only involved in few reactions whereas a few others, the hubs, are
performing a huge number of tasks. Among proteins, which are the omnipresent
substrates in metabolic pathways, there are many known hub proteins e.g. pyruvate
or coenzyme A. Although most biochemical reactions are theoretically reversible,
which would mean an undirected network, the cellular environment typically forces
the reactions into one specific way making metabolic pathways generally directed

networks.

Research has shown that in complex networks the shortest paths between any two
nodes is amazingly short. This so-called small-world effect applies to social networks,
neural networks, the WWW and many more. Although being a property of random
networks, scale-free network exhibit this property as well. In fact, they are even ultra
small compared to random networks [CoH03|. This was first observed in metabolic
networks where paths rarely exceed three or four reactions. These short path lengths

in metabolic systems allow the cell to response very quickly to environment changes.

Disassortativity is another feature of cellular networks [MaS02|. This means that
hubs usually do not link directly to other hubs. A opposite scenario is often observed
in social networks, where well-connected persons typically tend to know each other
personally. However, no reasons for disassortativity in cellular networks have been

reported yet.

3.2 Evolution of scale-free networks

If scale-free networks are so dominant in cellular networks, what are the reasons? It is
widely accepted that preferential attachment is one major cause for the development
of hubs. This means that any new node in the network tends to link to well-connected
nodes making that even more connected. This is very evident in the WWW where
pages prefer linking to well-known pages rather than unknown ones. Of course, the
requirement for this theory is that the network is a result of constant growth. This is
obviously true for most networks, especially cellular networks that have undergone

millions of years of continuous evolution.

Unlike web pages, new genes are typically not simply created or introduced by some
external means. For the growth of cellular networks gene duplication provides a

reasonable explanation [RzGO01]. Gene duplication is a rare but natural occurrence
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where a gene is duplicated to another locus on the DNA or RNA. Being an exact
copy, it will result in an identical protein, if transcribed. This new node will interact
with the same partners as the protein translated from the original gene. Preferential
attachment can be seen when gene duplication is observed from a node’s point of
view. If a node has many links and a random duplication occurs, then it is more
likely that it comes from one of the own neighbours thus giving it another link and
eventually it might turn into a hub. In other words, a node with only one link will
gain an additional link only in the relatively rare case his sole neighbour’s gene gets

duplicated.

3.3 From network structure to function

Formation of groups, or modularity is a common feature of all sorts of networks.
Circles of friends in social networks, web pages with similar topics and in cellular
networks we typically find a group or module of functionally linked molecules that
carry out one rather distinct function. Most molecules are only active when being
part of a specific complex of different molecules. These complexes can be seen as
functional modules and some of them are at the core of many very basic biologi-
cal functions. Identifying these reappearing modules enables us to assign them an

already known biological functionality.

As modules are groups of interconnected nodes a high modularity within a network
can be identified by viewing at the clustering coefficient C. Theoretically, random and
scale-free networks should have a similar average clustering coefficient. However, we
observe significantly higher <(C>-values for most real biological networks, ranging
from metabolic to protein-protein interaction networks. Therefore, it seems that
high modularity is in fact a general property of biological scale-free networks. In
the next subsection, hierarchical clustering is introduced to explain high C-values

in scale-free networks.

So far, the discussion about topology focused on the overall structure of the network.
However, a bottom-up analysis often shows distinct small-scale patterns such as
triangles, squares etc. inside the network. For example in Fig. 1 nodes A, B, C form
a triangle whereas A, G, F, B a square. These specific arrangements are referred to
as subgraphs and in a sufficiently complex random network all of these subgraphs are
expected to be present. Interestingly, in certain networks some of these subgraphs
are clearly over represented, whereas others do not exist at all [Itz03]. Indeed,

some subgraphs, known as motifs, are responsible for specific cellular functions such
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as directed triangles, so-called feed-forward loops, in transcription-regulatory and
neural networks. In contrast, a feed-forward loop of four directed nodes, creating
a square, is a common motif in electronic circuits but not in biological networks
[Mil02]. In fact, motifs have been found inside all real complex systems so far
[Mil02] and here a typical observation is, that same types of motifs tend to cluster
together thus forming motif clusters. However, motif clustering naturally results
in interaction between motifs. Understanding these motif-motif interactions is an

active area of research and not yet sufficiently understood.

3.4 Identifying functional modules

The main task of identifying motifs in networks is to find subgraphs that are sig-
nificantly more frequent than one would expect from a randomized network. This
can be achieved by combinatorial means considering every subgraph of all n nodes.
This is feasible for small networks, however the amount of possible subgraphs grows
exponentially with the amount of nodes and therefore it is obviously not practical
for complex systems. Another problem of module identification is the fact that the
idea of relatively isolated modules is contradictory with our assumption that most
biological networks are scale-free. As mentioned earlier, highly connected hubs keep
the network tied closely together, thus making isolated clusters unlikely. Hierarchi-
cal networks as shown in Fig. 2 exhibit a topology that has both isolated clusters
and well-linked hubs. Although not as symmetrical as depicted in Fig. 2, hier-
archical organization to some extend is indeed ubiquitous in real complex systems

|[Rav02, RaB03].

Identifying modules in large networks seems to be a daunting task because a break-
down of the whole network into the smallest, but still biologically relevant, clusters
is needed. Fortunately, here the long-lived research of networks has yielded good
results. Many clustering algorithms provide automated solutions to find modules
within modular networks. However, the term module is not clear-cut and different
algorithms find different boundaries for the modules. If we look at the right graph in
Fig. 2: is the green or the blue triangle the desired module? Not being a weakness of
the algorithms, this is a logical consequence of a hierarchical structure. Most cluster-
ing algorithms provide internal parameters that adjust the preferred module sizes.
The results of different runs should be compared against each other to find suitable
values. Pure mathematical clustering approaches will always contain this ambiguity.

The addition of existing knowledge about functional modules can address this issue



Figure 2: Hierarchical networks (sources: left [Bil07]; right [BaO04]).

and knowledge-based algorithms have already been proposed [Thm02]. Then again,
the use of hierarchical clustering algorithms in wrong contexts should be avoided

since they may find hierarchical clusters even in clearly non-hierarchical networks.

3.5 Robustness

Apart from the analysis of substructures, the surprising overall robustness of complex
systems has drawn attention. It is common knowledge that nodes and/or their links
in all types of networks tend to become spontaneously unavailable. In computer
sciences, a trivial example is a crashed server, in biology a possible reason could be
a temporarily or permanently inactivated gene that results in a missing node in a
metabolic network. The Internet as a fine example of a robust complex network is
amazingly invulnerable to failures of nodes or changes of the operating environment.

Thus, robustness defines the sensitivity of a network to modifications.

Topological robustness determines how deletions of nodes alter the overall topology
of a network. Hereby the underlying topologies play a major role. Disabling a
certain amount of randomly chosen nodes, a so-called critical fraction, will render a
random network into a set of non-communicating islands. On the other hand, large
scale-free networks do not have these values where disintegration of the network
will be expected. The reason for this is that the randomized deletion will mainly
address the numerous less-connected non-hub nodes. [AJBO00| suggest that up to

80% of the nodes in a scale-free network can be cut off with the remaining 20% still
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forming a cluster where all pairs of nodes have a path between them. Of course, this
induces an attack vulnerability to the hubs, because disabling only a few key hubs will
completely disintegrate the network. Results of deletion analysis in Baker’s yeast
have shown that the amount of interactions (links) a protein has, clearly correlates
with the lethality of the cell when this protein is absent [Win99]. The importance of
hubs can also be seen in their significant conservation during evolution. The higher
the degree of a yeast cell’s protein in the cellular network, the higher the probability

that a closely related orthologs of this protein will be found in higher organisms.

Functional robustness of cellular networks describes the cell’s ability to maintain its
normal functions despite external perturbations. From a cell’s point of view different
nodes are not equal, because of their different cellular functions. Therefore, simply
the degree of the node cannot solely determine its importance in the whole network
as it is assumed from a purely topological perspective. Evolutionary aspects seem
to be an important factor in functional robustness since many highly conserved
metabolic modules are relatively vulnerable against modifications. On the other
hand, evolutionary less conserved metabolic pathways are more robust and show

ability to adapt to perturbations thus allowing the module to evolve.

4 Properties of the links

Characterization of the links in cellular networks is probably one of the most prob-
lematic topics in network biology. Biochemical reactions depicted as arrows or even
simpler, plain lines are certainly crude simplifications of real cellular processes. Al-
though easy to understand this Boolean-type of approach where a chemical reaction,
exists or not, is biologically incorrect, as most reactions occur to some extend at any
time and independent of state of the cell. Therefore, to obtain more precise mod-
elling, a measure to quantify cellular processes has to be included [ScP98|. This can
be taken into account with a weighted network, where the weight of a link can be
for example the amount of a chemical product of a metabolic reaction, the so-called
fluz, e.g. measured in molecules per hour. This quantification of cellular processes
is addressed with metabolic flur analysis (MFA ). However, even results of MFA are
not, the absolute truth because to limit logical and computational complexity they
contain many assumptions (e.g. steady-state) that depending on the context may

or may not be biologically correct.

Even if a Boolean approach is used, simple arrows might not provide sufficient infor-
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mation. For example, modelling of gene expression gets significantly more complex
by the fact that substrates that regulate the expression of a gene can exhibit positive
or negative regulation. In other words, the expression of a gene can require both
a high concentration of a specific substrate and at the same time the absence of
another. On the other hand, positive regulation is also ambiguous. Considering two
factors A and B, that both positively regulate expression of gene G. This will be
depicted as two arrows, labelled A and B, leading to node G. However, this does
not tell, whether both A and B are required or only one, either A or B. To cater
for all these cases, additional information such as logical operators must be used
not only in visualization but also in the inferred equations for the formal modelling
of the process. Knowledge from the theory of Boolean networks can be applied to
some extend but these results may also show clear boundaries to what can be solved

computationally at all and what not.

5 Conclusion

Network biology is certainly a very welcome approach considering the increasing de-
mand for automated methods to process the ever-growing amount of biological data
extracted from existing well-automated experimental methods. The discovery of the
scale-free property of biological networks caused a considerable scientific discussion

and exploitation of these properties promised unforeseen results.

However, lately this excitement has clearly calmed down as concrete examples for
precise modelling of complex biological systems are still missing. Even though we
can draw large metabolic networks and characterize them by means of mathematical
formulas, so far even the most complex processes for which reliable computable
models, i.e. differential equations, have been developed do not contain much more
than ten genes. This means that we are still far away from high throughput solutions

to model and predict cellular processes especially processes on a large scale.

The vision of finding universal laws that govern complex biological processes is
tempting but rather unrealistic. The attempt of inferring general and fundamental
properties from a chosen set of previous observations is easily ill-fated, since many
things can be concluded if subjectively interpreted. This is especially true for a non-
exact science like biology. In most cases, the conclusion is simply that real biology
is much more complicated than anticipated and large simplification is only rarely

meaningful.
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