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The ell is the ommon unit of struture shared among all living organisms wherealmost all vital proesses take plae. More then a entury of researh has beenextremely suessful in �rst breaking up the ellular omponents and then identifyingthe majority of all moleules inside ells. However, every identi�ed moleule is justa single link in a typially very ompliated hain of di�erent hemial reations.Therefore, these reations have to be ontemplated under a wider perspetive tofully understand all the proesses within a living ell. Network biology is a relativelynew bioinformatial approah to model these proesses and building a oneptualframework based on well-established knowledge on networks.ACM Computing Classi�ation System (CCS):J.3 [Life and medial sienes℄
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11 IntrodutionUnderstanding the proesses within a living ell and the funtions of its omponentsis suh an essential topi of biology that a huge e�ort has been made to solve themysteries of this very generi struture of all living organisms. For more than aentury the main approah to this has been redutionism, where the idea is thatall omplex systems an be gradually redued to a set of simpler strutures. Thisresearh has been indeed very suessful in identifying ellular moleules and theirfuntions in biohemial reations within and between ells. In the �eld of proteinresearh this an be shown as nowadays omplete sets of the transripts of organismsare available, i.e. the analysis of the whole yeast transriptome [Vel97℄.However, this researh has also shed light on the enormous omplexity of the bio-hemial mahinery inside ells. It has beome apparent that the full understandingof the ellular proesses annot be obtained by simply identifying every moleulepresent in a ell. In most ases, numerous proteins work together performing a sin-gle task. To understand this task the omplex interations between many proteinshave to be onsidered and therefore modelled in a way that is both simple and infor-mative but still biologially orret. Linear reation hains suh as the breakdownof sugars or even more omplex reations like the well-known itri aid yle havetraditionally been depited by graphs with arrows. Suh a representation is nothingelse than a network with, in these ase, linear or yli topology. Approahing bio-logial problems by applying knowledge from abstrat network and graph theory isa urrent topi of bioinformatis alled network biology.This paper is mainly based on the work of Barabási et al. [BaO04, Jeo00℄ andtherefore fousing on the onepts of network biology and its ontribution to un-derstanding the funtional organization of ells. In addition, examples from otherareas will be mentioned to show the wide appliability of general network theory.The next setion will give a brief summary of general terminology and measures ofnetworks that will be used throughout the paper. Setion 3 introdues the oneptsof biologial networks and their spei� ommon features. Further harateristisof links and their onsequenes to modelling biologial systems are then overed insetion 4. Finally, the paper loses with omments on network biology in generaland its urrent status.



22 Conepts of networksThe idea of networks is so universally appliable to omplex systems that it has beenadopted in many fundamentally di�erent domains suh as tehnology, psyhologyand soiology. It has been even used to desribe strutures like the politial orga-nization of a big and soially extremely heterogeneous ountry like India [CoM58℄or more tehnially, analyzing its railway system [Par03℄. The Internet is probablythe best example of a omplex system that is strongly governed by general lawsof network theory although evolving quite independently. This setion overs thebasi measures of graph theory, whih will be later used to haraterize biologialnetworks.2.1 Basi measures and propertiesEvery network onsists of nodes and the links between them. The links representsome kind of relationship between two nodes. If there is no logial di�erene whethernode A is linked to B or vie versa, the links are represented as plain lines and thenetwork is said to be undireted. Otherwise, the links are arrows and the networkis then direted. The degree k of a node is the amount of links assoiated with thenode. In direted networks one has to distinguish between outgoing and inominglinks, thus resulting in two degrees kin and kout. For example in Fig. 1 node Ahas kin=4 and kout=1. The degree distribution P(k) is obtained by ounting thenumber of nodes with k links and dividing that by the total amount of nodes inthe network. This represents the probability that a node in the given network hasexatly k links. In Fig. 1 from the total of eight nodes C, G, H and E have twolinks, thus P(2)= 4/8 = 0,5. If we depit the distribution of all the degrees in agraph, we observe a global maximum for P(2). Clearly peaked degree distributionsare one harateristi of arbitrary generated so-alled random networks like the onedepited in Fig 1. As we will see in the next setion, the degree distribution playsa major role in lassifying di�erent types of networks.If the degree distribution approximates a power law P(k) ∼ k−γ the network is saidto be sale-free. Sale-free networks exhibit many distint features in ontrast torandom networks. They have a non-uniform topology where most nodes have lowdegrees but few nodes, so-alled hubs, are highly onneted. The onstant γ is alledthe degree exponent and determines many important properties of the underlyingsystems espeially the importane of these hub nodes.
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Figure 1: Direted random networkPath lengths are important network measures to desribe the navigability of eitherspei� nodes or the whole network. The shortest path between two nodes issimply the path with the fewest links in between. The mean path length is theaverage of the shortest paths of all pairs of nodes. Calulating these measures a bitmore ompiated in direted networks where typially many paths between nodesare not existing at all and the existing ones get longer (see Fig. 1: no links areleading to neither C nor D, and the shortest path from A to B goes through G andF).One last important measure onerning also biologial networks is the lusteringoe�ient CA and its derivatives whih desribe whether node A is part of lusters,i.e. triangles. In Fig. 1, only nodes B and C form a triangle with A and in fat, A,B and C are the only nodes in this network being part of a triangle. CA is the ratioof triangles going through node A and the total amount of theoretially possibletriangles given that node A has k neighbours. Formally CA = 2nA/k(k-1), wherenA is the amount of links onneting node A's k neighbours with eah other. Fornode A in Fig. 1, k = 5, nA = 1 and thus CA = 2/20. The average lusteringoe�ient <C> is simply the average of the lustering oe�ients and thereforeharaterizes the overall tendeny of nodes being part of lusters. Sine measuresthat depend on the size of the network (i.e. number of nodes/links) are not usefulfor haraterizing di�erent networks, a more general way to desribe the lusteringof nodes is the funtion C(k) whih is the average lustering oe�ient for all nodeswith k links.



42.2 Network topologyOnly by looking at the graphs of networks, we are usually already able to roughlyharaterize their struture. Di�erent topologies are interesting sine they typiallyexhibit spei� features. The main three types are random, sale-free and hierar-hial networks. Mathematial properties of random networks have been studiedsine almost half a entury [ErR60℄ but muh later the terms sale-free [BaA99℄ andhierarhial [Rav02℄ have been introdued to graph theory.A random network topology an be generated with �rst plaing all nodes N andthen linking eah pair of nodes with some probability p. This results in a seeminglyrandom arrangement of nodes and links. Sale-free networks also look random butthey ontain few highly linked hubs in ontrast to the majority of nodes with veryfew links. The result is the power-law degree distribution mentioned earlier. Hierar-hial networks also may also have hubs but more important the overall struture isrepeating itself in its substrutures, see Fig. 2. Typial features of hierarhial net-works are lustering oe�ients that approximates to C(k) ∼ k−1 and a power lawdegree distribution like sale-free networks (more spei�ally, with a degree exponent
γ = 1 + ln4/ln3).3 Biologial networksIn the postgenomi age of genetis where high-throughput methods generate vastamounts of information it is essential to proess this data e�iently otherwise thisbottlenek is keeping many important insights hidden. To get a better understandingof a ell's funtional organization large numbers of interating biohemial reationshave to be analysed. If we an model the reations inside a ell as a omplex net-work, we might be able to exploit the results of the already well-studied area ofnetwork theory. From here, highly e�ient or even optimal solutions have beenfound for many very ommon network-related problems suh as searh or luster-ing algorithms. This setion overs the properties that haraterize biologial andespeially ellular networks.



53.1 Common featuresOne important feature is that most networks inside ells are sale-free. Most ellularsubstrates are only involved in few reations whereas a few others, the hubs, areperforming a huge number of tasks. Among proteins, whih are the omnipresentsubstrates in metaboli pathways, there are many known hub proteins e.g. pyruvateor oenzyme A. Although most biohemial reations are theoretially reversible,whih would mean an undireted network, the ellular environment typially foresthe reations into one spei� way making metaboli pathways generally diretednetworks.Researh has shown that in omplex networks the shortest paths between any twonodes is amazingly short. This so-alled small-world e�et applies to soial networks,neural networks, the WWW and many more. Although being a property of randomnetworks, sale-free network exhibit this property as well. In fat, they are even ultrasmall ompared to random networks [CoH03℄. This was �rst observed in metabolinetworks where paths rarely exeed three or four reations. These short path lengthsin metaboli systems allow the ell to response very quikly to environment hanges.Disassortativity is another feature of ellular networks [MaS02℄. This means thathubs usually do not link diretly to other hubs. A opposite senario is often observedin soial networks, where well-onneted persons typially tend to know eah otherpersonally. However, no reasons for disassortativity in ellular networks have beenreported yet.3.2 Evolution of sale-free networksIf sale-free networks are so dominant in ellular networks, what are the reasons? It iswidely aepted that preferential attahment is one major ause for the developmentof hubs. This means that any new node in the network tends to link to well-onnetednodes making that even more onneted. This is very evident in the WWW wherepages prefer linking to well-known pages rather than unknown ones. Of ourse, therequirement for this theory is that the network is a result of onstant growth. This isobviously true for most networks, espeially ellular networks that have undergonemillions of years of ontinuous evolution.Unlike web pages, new genes are typially not simply reated or introdued by someexternal means. For the growth of ellular networks gene dupliation provides areasonable explanation [RzG01℄. Gene dupliation is a rare but natural ourrene



6where a gene is dupliated to another lous on the DNA or RNA. Being an exatopy, it will result in an idential protein, if transribed. This new node will interatwith the same partners as the protein translated from the original gene. Preferentialattahment an be seen when gene dupliation is observed from a node's point ofview. If a node has many links and a random dupliation ours, then it is morelikely that it omes from one of the own neighbours thus giving it another link andeventually it might turn into a hub. In other words, a node with only one link willgain an additional link only in the relatively rare ase his sole neighbour's gene getsdupliated.3.3 From network struture to funtionFormation of groups, or modularity is a ommon feature of all sorts of networks.Cirles of friends in soial networks, web pages with similar topis and in ellularnetworks we typially �nd a group or module of funtionally linked moleules thatarry out one rather distint funtion. Most moleules are only ative when beingpart of a spei� omplex of di�erent moleules. These omplexes an be seen asfuntional modules and some of them are at the ore of many very basi biologi-al funtions. Identifying these reappearing modules enables us to assign them analready known biologial funtionality.As modules are groups of interonneted nodes a high modularity within a networkan be identi�ed by viewing at the lustering oe�ient C. Theoretially, random andsale-free networks should have a similar average lustering oe�ient. However, weobserve signi�antly higher <C>-values for most real biologial networks, rangingfrom metaboli to protein-protein interation networks. Therefore, it seems thathigh modularity is in fat a general property of biologial sale-free networks. Inthe next subsetion, hierarhial lustering is introdued to explain high C -valuesin sale-free networks.So far, the disussion about topology foused on the overall struture of the network.However, a bottom-up analysis often shows distint small-sale patterns suh astriangles, squares et. inside the network. For example in Fig. 1 nodes A, B, C forma triangle whereas A, G, F, B a square. These spei� arrangements are referred toas subgraphs and in a su�iently omplex random network all of these subgraphs areexpeted to be present. Interestingly, in ertain networks some of these subgraphsare learly over represented, whereas others do not exist at all [Itz03℄. Indeed,some subgraphs, known as motifs, are responsible for spei� ellular funtions suh



7as direted triangles, so-alled feed-forward loops, in transription-regulatory andneural networks. In ontrast, a feed-forward loop of four direted nodes, reatinga square, is a ommon motif in eletroni iruits but not in biologial networks[Mil02℄. In fat, motifs have been found inside all real omplex systems so far[Mil02℄ and here a typial observation is, that same types of motifs tend to lustertogether thus forming motif lusters. However, motif lustering naturally resultsin interation between motifs. Understanding these motif-motif interations is anative area of researh and not yet su�iently understood.3.4 Identifying funtional modulesThe main task of identifying motifs in networks is to �nd subgraphs that are sig-ni�antly more frequent than one would expet from a randomized network. Thisan be ahieved by ombinatorial means onsidering every subgraph of all n nodes.This is feasible for small networks, however the amount of possible subgraphs growsexponentially with the amount of nodes and therefore it is obviously not pratialfor omplex systems. Another problem of module identi�ation is the fat that theidea of relatively isolated modules is ontraditory with our assumption that mostbiologial networks are sale-free. As mentioned earlier, highly onneted hubs keepthe network tied losely together, thus making isolated lusters unlikely. Hierarhi-al networks as shown in Fig. 2 exhibit a topology that has both isolated lustersand well-linked hubs. Although not as symmetrial as depited in Fig. 2, hier-arhial organization to some extend is indeed ubiquitous in real omplex systems[Rav02, RaB03℄.Identifying modules in large networks seems to be a daunting task beause a break-down of the whole network into the smallest, but still biologially relevant, lustersis needed. Fortunately, here the long-lived researh of networks has yielded goodresults. Many lustering algorithms provide automated solutions to �nd moduleswithin modular networks. However, the term module is not lear-ut and di�erentalgorithms �nd di�erent boundaries for the modules. If we look at the right graph inFig. 2: is the green or the blue triangle the desired module? Not being a weakness ofthe algorithms, this is a logial onsequene of a hierarhial struture. Most luster-ing algorithms provide internal parameters that adjust the preferred module sizes.The results of di�erent runs should be ompared against eah other to �nd suitablevalues. Pure mathematial lustering approahes will always ontain this ambiguity.The addition of existing knowledge about funtional modules an address this issue
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Figure 2: Hierarhial networks (soures: left [Bil07℄; right [BaO04℄).and knowledge-based algorithms have already been proposed [Ihm02℄. Then again,the use of hierarhial lustering algorithms in wrong ontexts should be avoidedsine they may �nd hierarhial lusters even in learly non-hierarhial networks.3.5 RobustnessApart from the analysis of substrutures, the surprising overall robustness of omplexsystems has drawn attention. It is ommon knowledge that nodes and/or their linksin all types of networks tend to beome spontaneously unavailable. In omputersienes, a trivial example is a rashed server, in biology a possible reason ould bea temporarily or permanently inativated gene that results in a missing node in ametaboli network. The Internet as a �ne example of a robust omplex network isamazingly invulnerable to failures of nodes or hanges of the operating environment.Thus, robustness de�nes the sensitivity of a network to modi�ations.Topologial robustness determines how deletions of nodes alter the overall topologyof a network. Hereby the underlying topologies play a major role. Disabling aertain amount of randomly hosen nodes, a so-alled ritial fration, will render arandom network into a set of non-ommuniating islands. On the other hand, largesale-free networks do not have these values where disintegration of the networkwill be expeted. The reason for this is that the randomized deletion will mainlyaddress the numerous less-onneted non-hub nodes. [AJB00℄ suggest that up to80% of the nodes in a sale-free network an be ut o� with the remaining 20% still



9forming a luster where all pairs of nodes have a path between them. Of ourse, thisindues an attak vulnerability to the hubs, beause disabling only a few key hubs willompletely disintegrate the network. Results of deletion analysis in Baker's yeasthave shown that the amount of interations (links) a protein has, learly orrelateswith the lethality of the ell when this protein is absent [Win99℄. The importane ofhubs an also be seen in their signi�ant onservation during evolution. The higherthe degree of a yeast ell's protein in the ellular network, the higher the probabilitythat a losely related orthologs of this protein will be found in higher organisms.Funtional robustness of ellular networks desribes the ell's ability to maintain itsnormal funtions despite external perturbations. From a ell's point of view di�erentnodes are not equal, beause of their di�erent ellular funtions. Therefore, simplythe degree of the node annot solely determine its importane in the whole networkas it is assumed from a purely topologial perspetive. Evolutionary aspets seemto be an important fator in funtional robustness sine many highly onservedmetaboli modules are relatively vulnerable against modi�ations. On the otherhand, evolutionary less onserved metaboli pathways are more robust and showability to adapt to perturbations thus allowing the module to evolve.4 Properties of the linksCharaterization of the links in ellular networks is probably one of the most prob-lemati topis in network biology. Biohemial reations depited as arrows or evensimpler, plain lines are ertainly rude simpli�ations of real ellular proesses. Al-though easy to understand this Boolean-type of approah where a hemial reation,exists or not, is biologially inorret, as most reations our to some extend at anytime and independent of state of the ell. Therefore, to obtain more preise mod-elling, a measure to quantify ellular proesses has to be inluded [SP98℄. This anbe taken into aount with a weighted network, where the weight of a link an befor example the amount of a hemial produt of a metaboli reation, the so-alled�ux, e.g. measured in moleules per hour. This quanti�ation of ellular proessesis addressed with metaboli �ux analysis (MFA). However, even results of MFA arenot the absolute truth beause to limit logial and omputational omplexity theyontain many assumptions (e.g. steady-state) that depending on the ontext mayor may not be biologially orret.Even if a Boolean approah is used, simple arrows might not provide su�ient infor-



10mation. For example, modelling of gene expression gets signi�antly more omplexby the fat that substrates that regulate the expression of a gene an exhibit positiveor negative regulation. In other words, the expression of a gene an require botha high onentration of a spei� substrate and at the same time the absene ofanother. On the other hand, positive regulation is also ambiguous. Considering twofators A and B, that both positively regulate expression of gene G. This will bedepited as two arrows, labelled A and B, leading to node G. However, this doesnot tell, whether both A and B are required or only one, either A or B. To aterfor all these ases, additional information suh as logial operators must be usednot only in visualization but also in the inferred equations for the formal modellingof the proess. Knowledge from the theory of Boolean networks an be applied tosome extend but these results may also show lear boundaries to what an be solvedomputationally at all and what not.5 ConlusionNetwork biology is ertainly a very welome approah onsidering the inreasing de-mand for automated methods to proess the ever-growing amount of biologial dataextrated from existing well-automated experimental methods. The disovery of thesale-free property of biologial networks aused a onsiderable sienti� disussionand exploitation of these properties promised unforeseen results.However, lately this exitement has learly almed down as onrete examples forpreise modelling of omplex biologial systems are still missing. Even though wean draw large metaboli networks and haraterize them by means of mathematialformulas, so far even the most omplex proesses for whih reliable omputablemodels, i.e. di�erential equations, have been developed do not ontain muh morethan ten genes. This means that we are still far away from high throughput solutionsto model and predit ellular proesses espeially proesses on a large sale.The vision of �nding universal laws that govern omplex biologial proesses istempting but rather unrealisti. The attempt of inferring general and fundamentalproperties from a hosen set of previous observations is easily ill-fated, sine manythings an be onluded if subjetively interpreted. This is espeially true for a non-exat siene like biology. In most ases, the onlusion is simply that real biologyis muh more ompliated than antiipated and large simpli�ation is only rarelymeaningful.
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