Introduction to bioinformatics, Autumn 2006, Exercise 1

22.9.2006

1. (Chapter 2, Exercise 1) The base composition of a certain microbial genome is $p_{G}=p_{C}=0.3$ and $p_{A}=p_{T}=0.2$. We are interested in 2 -words where the letters are assumed to be independent. There are $4 \times 4=162$-words.
(a) Present these 16 probabilities in a table. Do your 16 numbers sum to 1.0 ?
(b) Purine bases are defined by $R=\{A, G\}$ and pyrimidine bases by $Y=\{C, T\}$. Let E be the event that the first letter is a pyrimidine, and F the event that the second letter is A or C or T. Find $P(E), P(F), P(E \cup F), P(E \cap F)$ and $P\left(F^{c}\right)$.
(c) Set $G=\{C A, C C\}$. Calculate $P(G \mid E), P(F \mid G \cup E), P(F \cup G \mid E)$.
2. (Chapter 2, Exercise 5) Verify the terms in the first row of the transition matrix P presented in Section 2.6.3. Describe how you would use the sequence of M. genitalium to produce this matrix.

$$
\mathrm{P}=\begin{array}{ccccc}
& & \mathrm{A} & \mathrm{C} & \mathrm{G} \\
\mathrm{~A} & 0.423 & 0.151 & 0.168 & 0.258 \\
\mathrm{C} & 0.399 & 0.184 & 0.063 & 0.354 \\
\mathrm{G} & 0.314 & 0.189 & 0.176 & 0.321 \\
\mathrm{~T} & 0.258 & 0.138 & 0.187 & 0.415
\end{array}
$$

3. (Chapter 2, Exercise 6) Find the stationary distribution of the chain with transition matrix P in Section 2.6.3; that is, solve the equations $\pi=\pi P$ subject to the elements of π begin positive and summing to 1 . Compare π to the base composition of M.genitalium, and comment.
4. (Chapter 2, Exercise 12 (a) - (c)) In this exercise we have two random variables X and Y which are not independent. Their joint probability distribution is given in the following table:

		Y			
		1	3	6	9
	2	0.11	0.05	0.20	0.08
X	3	0.20	0.02	0.00	0.10
	7	0.00	0.05	0.10	0.09

The values of X are written in the first column and the values of Y in the first row. The table is read as $P(X=7 \& Y=6)=0.10$, and so on.
(a) Find the marginal distribution of X and Y. (That is, $P(X=$ 2), $P(X=3), \ldots)$
(b) Write $Z=X Y$. Find the probability distribution of Z.
(c) The covariance between any two random variables is defined by

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)
$$

Show that $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E} X \times \mathbb{E} Y$.
5. (Chapter 2, Exercise 12 (d) - (f))
(a) Find $\mathbb{E} X, \mathbb{E} Y, \sigma_{X}^{2}=\operatorname{Var} X, \sigma_{Y}^{2}=\operatorname{Var} Y$, and $\operatorname{Cov}(X, Y)$ for the example in the table.
(b) The correlation coefficient ρ is defined by $\rho_{X, Y}=\operatorname{Cov}(X, Y) / \sigma_{X} \sigma_{Y}$. It can be shown that $-1 \leq \rho \leq 1$, the values ± 1 arising when Y is a linear function of X. Verify this last statement.
(c) Calculate ρ for the example in the table.

