Introduction to bioinformatics, Autumn 2006, Exercise 2

29.9.2006

- 1. (Chapter 3, Exercise 7) Suppose that ${\cal Z}$ has a standard normal distribution.
 - (a) Find $P(-1 \le Z \le 1), P(-1 \le Z \le 2), P(-2 \le Z \le -1), P(-\infty \le Z \le 1).$
 - (b) If $P(Z \le a) = 0.45$ and $P(0 \le Z \le b) = 0.45$, find a and b. [Hint: Use quorm in R.]
- 2. (Chapter 3, Exercise 8) In a certain genome the bases appear to be iid and $p_g = 0.3$. Define the (binomial) count of the number of Gs in the first 1000 bases as $N = X_1 + X_2 + \cdots + X_{1000}$.
 - (a) Give the mean and variance of N.
 - (b) Approximate, using the Central Limit Theorem, $P(0 \le N \le 329)$ and $P(285.5 \le N \le 329)$.
 - (c) Produce a histogram for 1000 replicates of N and compare the results with those of (b).
- 3. (Chapter 3, Exercise 10) Suppose N is binomial with n = 1000 and success probability p. Find a 90% confidence interval for p using $\hat{p} = N/1000$ when N = 330. What are $\mathbb{E}\hat{p}$ and Var \hat{p} ?
- 4. Perform local alignment of the sequences
 - s = TCAGTTGCCAAACCCGCT
 - t = AGGGTTGACATCCGTTTT

with $\mu = 1$, $\delta = 2$ and uniform match score 1 by constructing the dynamic programming matrix.

5. Perform global alignment of the sequences

s = TCAGTTGCTCA
t = AGGGTTGACA

with $\mu = 1, \delta = 2$ and uniform match score 1 by constructing the dynamic programming matrix.