Introduction to bioinformatics, Autumn 2006,
 Exercise 2

29.9.2006

1. (Chapter 3, Exercise 7) Suppose that Z has a standard normal distribution.
(a) Find $P(-1 \leq Z \leq 1), P(-1 \leq Z \leq 2), P(-2 \leq Z \leq-1), P(-\infty \leq$ $Z \leq 1)$.
(b) If $P(Z \leq a)=0.45$ and $P(0 \leq Z \leq b)=0.45$, find a and b. [Hint: Use qnorm in R.]
2. (Chapter 3, Exercise 8) In a certain genome the bases appear to be iid and $p_{g}=0.3$. Define the (binomial) count of the number of Gs in the first 1000 bases as $N=X_{1}+X_{2}+\cdots+X_{1000}$.
(a) Give the mean and variance of N.
(b) Approximate, using the Central Limit Theorem, $P(0 \leq N \leq 329)$ and $P(285.5 \leq N \leq 329)$.
(c) Produce a histogram for 1000 replicates of N and compare the results with those of (b).
3. (Chapter 3, Exercise 10) Suppose N is binomial with $n=1000$ and success probability p. Find a 90% confidence interval for p using $\hat{p}=N / 1000$ when $N=330$. What are $\mathbb{E} \hat{p}$ and Var \hat{p} ?
4. Perform local alignment of the sequences
```
s = TCAGTTGCCAAACCCGCT
t = AGGGTTGACATCCGTTTT
```

with $\mu=1, \delta=2$ and uniform match score 1 by constructing the dynamic programming matrix.
5. Perform global alignment of the sequences

$$
\begin{aligned}
& \mathrm{s}=\text { TCAGTTGCTCA } \\
& \mathrm{t}=\mathrm{AGGGTTGACA}
\end{aligned}
$$

with $\mu=1, \delta=2$ and uniform match score 1 by constructing the dynamic programming matrix.

