Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
, Local alignment
Multiple alignment

Homologs

- Two genes or characters
g_{B} and g_{C} evolved from
the same ancestor g_{A} are called homologs
- Homologs usually exhibit conserved functions
$\mathrm{g}_{\mathrm{C}}=\mathrm{ctgactgtttgtggttc}$
- Close evolutionary
relationship => expect a
high number of homologs

Similarity vs homology

, Sequence similarity is not sequence homology

- If the two sequences g_{B} and g_{C} have accumulated enough mutations, the similarity between them is likely to be low
\#mutations
- agtgtccgttaagtgcgttc
agtgtccgttatagtgcgttc agtgtccgcttatagtgcgttc agtgtccgettaagggcgttc
8 agtgtccgcttcaaggggcgt
16 gggccgttcatgggggt
32 gcagggcgtcactgagggct
\#mutations
64 acagtccgttcgggctattg
128 cagagcactaccgc
256 cacgagtaagatatagct
512 taatcgtgata
1024 accottatctacttcctggagtt
2048 agcgacctgcceaa
4096 caaac
Homology is more difficult to detect over greater evolutionary distances

Similarity vs homology (2)

Sequence similarity can occur by chance

- Similarity does not imply homology

Similarity is an expected consequence of homology

Orthologs and paralogs

We distinguish between two types of homology

- Orthologs: homologs from two different species
- Paralogs: homologs within a species

Sequence alignment

Alignment specifies which positions in two sequences match

acgtctag	acgtctag	acgtctag									
\|	\|					\|					
actctag-	-actctag	ac-tctag									
2 matches	5 matches	7 matches									
5 mismatches	2 mismatches	0 mismatches									
1 not aligned	1 not aligned	1 not aligned									

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Insertions and/or deletions are called indels

- We can't tell whether the ancestor sequence had a base or not at indel position

Mismatch: substitution (point mutation) of a single base

Problems

, What sorts of alignments should be considered?
, How to score alignments?
, How to find optimal or good scoring alignments?
, How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

Course Biological sequence analysis tackles all four indepth.

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
, Local alignment
Multiple alignment

Global alignment

Problem: find optimal scoring alignment between two sequences (Needleman \& Wunsch 1970)
We give score for each position in alignment

- Identity (match)	+1	WHAT		
- Substitution (mismatch)	$-\mu$	$\\|$		
- Indel	$-\delta$	WH-Y		
	S(WHAT/WH-Y) $=1+1-\delta-\mu$			

Representing alignments and scores

WHAT

II
WH-Y

Global alignment
score $\mathrm{S}_{3,4}=2-\delta-\mu$

	-	W	H	A	T
-	0				
W		1			
H			2	$2-\delta$	
Y					$2-\delta-\mu$

How to find the optimal alignment?
We use previous solutions for optimal alignments of smaller subsequences
, This general approach is known as dynamic programming

Dynamic programming

| \mid
WH-Y

	-	W	H	A	T
-					
W			X		

Global alignment: formal development

$A=a_{1} a_{2} a_{3} \ldots a_{n}$,
$B=b_{1} b_{2} b_{3} \ldots b_{m}$
$\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4}\end{array}$
$a_{1}-a_{2} a_{3}$
, Any alignment can be written as a unique path through the matrix
, Score for aligning A and B up to positions i and j
$S_{i, j}=S\left(a_{1} a_{2} a_{3} \ldots a_{i}, b_{1} b_{2} b_{3} \ldots b_{j}\right)$

Scoring alignments

Scores for each case:

- Case 1: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$

$$
\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}
$$

$s\left(a_{i}, b_{j}\right)=\left\{\begin{array}{l}+1 \text { if } a_{i}=b_{j} \\ -\mu \text { otherwise }\end{array}\right.$

- Case 2: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$
$\left(b_{1} b_{2} \ldots b_{j}\right)-$
- Case 3: $\left(a_{1} a_{2} \ldots a_{i}\right)$ -
$s\left(a_{i},-\right)=s\left(-, b_{j}\right)=-\delta$
$\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}$

Algorithm for global alignment

```
Input sequences }\mathcal{A},\mathcal{B},n=|\mathcal{A}|,m=|\mathcal{B}
Set S
Set S S O,j := - % for all j
for i:= 1 to n
    for j:= 1 to m
        S Si,j}:=\operatorname{max}{\mp@subsup{S}{i\cdotl,j}{}-\delta,\mp@subsup{S}{i\cdotl,j-1}{}+s(\mp@subsup{a}{i,}{\prime},\mp@subsup{b}{j}{\prime}),\mp@subsup{S}{i,j}{}-1-\delta
    end
end
Algorithm takes \(\mathrm{O}(\mathrm{nm})\) time and space.
```

Global alignment: example
$\mu=1$
$\delta=2$

	T		G	G	T	G
-	0	-2	-4	-6	-8	-10
A	-2					
T	-4					
C	-6					
G	-8					
T	-10					?

Global alignment: example (2)

```
\mu=1
\delta=2
-TGGTG
```

	-	T	G	G	T	G
-	0	-2	-4	-6	-8	-10
A	-2	-1	-3	-5	-7	-9
T	-4	-1	-2	-4	-4	-6
C	-6	-3	-2	-3	-5	-5
G	-8	-5	-2	-1	-3	-4
T	-10	-7	-4	-3	0	- -2

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
, Local alignment
Multiple alignment

Local alignment: rationale

- Otherwise dissimilar proteins may have local regions of similarity
-> Proteins may share a function
Human bone
morphogenic protein receptor type II precursor (left) has a 300 aa region that resembles 291 aa region in TGF- β receptor (right).
The shared function here is protein kinase

Local alignment: rationale
A

- Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith \& Waterman 1981)

From global to local alignment

Modifications to the global alignment algorithm

- Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix)
- Allow preceding and trailing indels without penalty

Scoring local alignments

$A=a_{1} a_{2} a_{3} \ldots a_{n}, B=b_{1} b_{2} b_{3} \ldots b_{m}$
Let I and J be intervals (substrings) of A and B, respectively: $I \subset A, \quad J \subset B$

Best local alignment score:

$$
M(A, B)=\max \{S(I, J): I \subset A, J \subset B\}
$$

where $S(I, J)$ is the score for substrings I and J.

Allowing preceding and trailing

 indels- First row and column initialised to zero:

$$
M_{i, 0}=M_{0, \mathrm{j}}=0
$$

b1 b2 b3

- - a1

Recursion for local alignment

- $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=\max \{$
- T G G T G
$M_{i-1, j-1}+s\left(a_{i}, b_{i}\right)$,
$\mathrm{M}_{\mathrm{i}-1, \mathrm{j}}-\delta$,
$\mathrm{M}_{\mathrm{i}, \mathrm{j}-1}-\delta$,
0
\}

Local alignment: example

Non-uniform mismatch penalties

We used uniform penalty for mismatches:

Transition mutations (A->G, G->A, C->T, T->C) are approximately twice as frequent than transversions (A$>\mathrm{T}, \mathrm{T}->\mathrm{A}, \mathrm{A}->\mathrm{C}, \mathrm{G}->\mathrm{T}$)

- use non-uniform mismatch
penalties

	A	C	G	T
A	1	-1	-0.5	-1
C	-1	1	-1	-0.5
G	-0.5	-1	1	-1
T	-1	-0.5	-1	1

57

Gaps in alignment

Gap is a succession of indels in alignment

$$
\begin{aligned}
& \text { С } \mathbf{T}-\text { - }-\mathrm{A} \mathrm{~A} \\
& \text { CTCGCAA }
\end{aligned}
$$

Previous model scored a length k gap as $w(k)=-k \delta$
Replication processes may produce longer stretches of insertions or deletions

- In coding regions, insertions or deletions of codons may preserve functionality

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
, Local alignment
, Multiple alignment

Optimal alignment of three sequences

Alignment of $A=a_{1} a_{2} \ldots a_{i}$ and $B=b_{1} b_{2} \ldots b_{j}$ can end either in $\left(-, b_{j}\right),\left(a_{i}, b_{j}\right)$ or $\left(a_{i},-\right)$
$2^{2}-1=3$ alternatives
1 Alignment of A, B and $C=C_{1} C_{2} \ldots C_{k}$ can end in $2^{3}-1$ ways: $\left(\mathrm{a}_{\mathrm{i}},-,-\right),\left(-, \mathrm{b}_{\mathrm{j}},-\right),\left(-,-, \mathrm{c}_{\mathrm{k}}\right),\left(-, \mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}},-, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}}\right.$, $\left.b_{j},-\right)$ or $\left(a_{i}, b_{j}, c_{k}\right)$
, Solve the recursion using three-dimensional dynamic programming matrix: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time and space
Generalizes to n sequences but impractical with moderate number of sequences

Multiple alignment in practice

In practice, real-world multiple alignment problems are usually solved with heuristics
Progressive multiple alignment

- Choose two sequences and align them
- Choose third sequence w.r.t. two previous sequences and align the third against them
- Repeat until all sequences have been aligned
- Different options how to choose sequences and score alignments

Multiple alignment in practice

Profile-based progressive multiple alignment: CLUSTALW

- Construct a distance matrix of all pairs of sequences using dynamic programming
- Progressively align pairs in order of decreasing similarity
- CLUSTALW uses various heuristics to contribute to accuracy

Additional material

R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
Course Biological sequence analysis in Spring 2007

