

Teachers

- Esa Pitkänen, Department of Computer Science, University of Helsinki
- Prof. Elja Arjas, Department of Mathematics and Statistics, University of Helsinki
- Prof. Samuel Kaski, Helsinki University of Technology

 How to encod for the course?

 • Use the registration system of the Computer Science department: https://ilmo.cs.helsinki.fi

How to successfully pass the course?

uction to bioinformatics, Autumn 2006

- You can get a maximum of 60 points
 - Course exam: maximum of 50 points
 - Exercises: maximum of 10 points
 - 0% completed assignments gives you 0 points, 80% gives 10 points
- Course will be graded on the scale 0-5
- To get the lowest passing grade 1/5, you need to have at least 30 points
- Course exam: Monday 16.10. at 16.00-19.00

Introduction to bioinformatics, Autumn 2006

ction to bioinformatics. Autumn 200

- Biological background (book chapter 1)
- Probability calculus (chapters 2 and 3)
- Sequence alignment (chapter 6)
- Phylogenetics (chapter 12)
- Expression data analysis (chapter 11)

Master's Degree Programme in Bioinformatics (MBI)

- Two-year MSc programme
- Offered jointly by the University of Helsinki and Helsinki University of Technology
- Admission for 2007-2008 in January 2007

Bioinformatics courses at the University of Helsinki

- Practical course in biodatabases (II period): techniques for accessing and integrating data in biology databases.
- Computational neuroscience (II period): mathematical modeling of information processing taking place in the brain.
- Biological sequence analysis (III period): basic probabilistic methods for modelling and analysis of biological sequences.
- Modeling of vision (III period): mechanisms and modeling of human perception.
- Metabolic modeling (IV period): metabolic networks, fluxes and regulation of metabolism.

Introduction to bioinformatics, Autumn 2006

Bioinformatics courses at the University of Helsinki

Department of Mathematics and Statistics

- Modelling fluctuating populations (I and II periods): systems driven by fluctuating parameters
- Evolution and the theory of games (III period): introduction to game theory with emphasis on applications in evolutionary and behavioural biology

Introduction to bioinformatics, Autumn 2006

11

Bioinformatics courses at Helsinki University of Technology

Laboratory of Computer and Information Science

- Special course in bioinformatics II (I and II periods): data integration and fusion in bioinformatics.
- Signal processing in neuroinformatics (I and II periods): overview of some of the main biomedical signal processing techniques
- High-throughput bioinformatics (III and IV periods): computational and statistical methods for analyzing modern high-throughput biological data
- Image analysis in neuroinformatics (III and IV periods): biomedical image processing techniques
 Introduction to bioinformatics, Autum 2006

Background: comparative genomics

- Basic question in biology: what properties are shared among organisms?
- Genome sequencing allows comparison of organisms at DNA and protein levels
- Comparisons can be used to
 - Find evolutionary relationships between organisms
 - Identify functionally conserved sequences
 - Identify corresponding genes in human and model organisms: develop models for human diseases

Introduction to bioinformatics, Autumn 2006

23

Homologs• Two genes or characters
g_B and g_C evolved from
the same ancestor g_A are
called *homologs*g_A = agtgccgttaagtgcgtct
age agtgccgttaagtgtgcagtc• Homologs usually exhibit
conserved functionsg_B = agtgccgttaagttgtacgtc
gc = tgactgttgtggtcc• Close evolutionary
relationship => expect a
igh number of homologsg_B = agtgccgttagtgtgtgtcgtc

- How to find the optimal alignment?
- We use previous solutions for optimal alignments of smaller subsequences

Introduction to bioinformatics. Autumn 2006

37

This general approach is known as dynamic programming

Multiple alignment

- Consider a set of n sequences on the right
 - Orthologous sequences from
 - different organisms
 - Paralogs from multiple duplications
- How can we study relationships between these sequences?

aggcgagctgcgagtgcta cgttagattgacgctgac ttccggctgcgac gacacggcgaacgga agtgtgcccgacgagcgaggag gcgggctgtgagcgcta aagcggcctgtgtgcccta atgctgctgccagtgta agtcgagccccgagtgc agtccgagtcc actcggtgc

61

63

65

Optimal alignment of three sequences

- Alignment of A = $a_1a_2...a_i$ and B = $b_1b_2...b_j$ can end either in (-, b_j), (a_i , b_j) or (a_i , -)
- $2^2 1 = 3$ alternatives
- Alignment of A, B and C = $c_1c_2...c_k$ can end in $2^3 1$ ways: $(a_i, -, -), (-, b_j, -), (-, -, c_k), (-, b_j, c_k), (a_i, -, c_k), (a_i, b_j, -)$ or (a_i, b_j, c_k)
- Solve the recursion using three-dimensional dynamic programming matrix: O(n³) time and space
- Generalizes to n sequences but impractical with moderate number of sequences

Introduction to bioinformatics, Autumn 2006

62

Multiple alignment in practice

 In practice, real-world multiple alignment problems are usually solved with heuristics

Introduction to bioinformatics. Autumn 2006

- Progressive multiple alignment
 - Choose two sequences and align them
 - Choose third sequence w.r.t. two previous sequences and align the third against them
 - Repeat until all sequences have been aligned
 - Different options how to choose sequences and score alignments

Introduction to bioinformatics, Autumn 2006

Additional material

- R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
- Course Biological sequence analysis in Spring 2007

Introduction to bioinformatics, Autumn 2006

Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances

Introduction to bioinformatics, Autumn 2006

Maximum likelihood methods

71

- How can we find the phylogenetic tree that best represents the data?
- Naive method: enumerate all possible trees
- How many different trees are there of *n* species?

Introduction to bioinformatics, Autumn 2006

Denote this number by b_n

Number of possible rooted and unrooted trees

n	Bn	b'n
3	1	3
4	3	15
5	15	105
6	105	945
7	954	10395
8	10395	135135
9	135135	2027025
10	2027025	34459425
20	2.22E+020	8.20E+021
30	8.69E+036	4.95E+038

Too many trees? We can't construct and evaluate every phylogenetic tree even for a smallish number of species

- Better alternative is to
 - Devise a way to evaluate an individual tree against the data
 - Guide the search using the evaluation criteria to reduce the search space

duction to bioinformatics, Autumn 2006

75

77

uction to bioinformatics, Autumn 200

Parsimony method

- The parsimony method finds the tree that explains the observed sequences with a minimal number of substitutions
- Method has two steps
 - Compute smallest number of substitutions for a given tree with a *parsimony algorithm*
 - Search for the tree with the minimal number of substitutions

Introduction to bioinformatics, Autumn 2006

uction to bioinformatics, Autumn 2006

Introduction to bioinformatics, Autumn 2006

UPGMA algorithm

I nitialisation

- Assign each point i to its own cluster ${\rm C}_{\rm i}$
- Define one leaf for each sequence, and place it at height zero
 - Find clusters i and j for which d_{ij} is minimal
 - Define new cluster k by $C_k = C_i \cup C_j$, and define d_{kl} for all l
 - Define a node k with children i and j. Place k at height $d_{ij}/2$
 - Remove clusters i and j
- Termination:
 - When only two clusters i and j remain, place root at height $d_{ij}/2$

Introduction to bioinformatics, Autumn 2006

 $\frac{1}{2}d_{6,8}$

A stochastic model for base substitutions

- Consider a single homologous site in two sequences
- Assume the sites diverged for time length t: the sites are separated by time 2t
- Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
- Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^{k/(k!)}$, k = 0, 1, 2, ...

Introduction to bioinformatics, Autumn 2006

125

Estimating distances from sequence data

- We want to estimate $K = 2\lambda tH$ from sequence data
- The chance $\mathsf{F}_{ij}(t)$ that we observe a base i in one sequence and a base j in another is

 $F_{ij}(t) = \sum_{l} \pi_{l} q_{li}(t) q_{lj}(t)$

by averaging over the possible ancestral nucleotides

Introduction to bioinformatics, Autumn 2006

Estimating distances from sequence data

Expression $F_{ij}(t) = \sum_i \pi_i q_{ii}(t) q_{ij}(t)$ can be simplified by assuming that the mutation process is reversible:

Introduction to bioinformatics, Autumn 2006

 $\pi_i m_{ij} = \pi_j m_{ji}$ for all $i \neq j$

- From this it can be shown that $\pi_i q_{ij}(t) = \pi_i q_{ji}(t)$ for all i, j and t > 0
- Now the model simplifies into $F_{ii}(t) = \pi_i q_{ii}(2t)$

Estimating distances from sequence dataWhat is the probabilitity F = F(t) that the letters at a

particular position in two immediate descendants from the same node are identical?

Introduction to bioinformatics. Autumn 2006

 $\mathsf{F} = \sum_{i} \pi_{i} q_{ii}(2t) = e^{-2\lambda t} + (1 - e^{-2\lambda t})(1 - H)$

127

Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances

Introduction to bioinformatics, Autumn 2006

Maximum likelihood methods

Maximum likelihood estimation We would like to calculate likelihood p(i₁, i₂, ..., i_n) in the general case Calculations can be arranged using the peeling algorithm Basic idea is to move all summation signs as far to the right as possible

Additional material on phylogenetic trees

- Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
- Jones, Pevzner: An introduction to bioinformatics algorithms
- Gusfield: Algorithms on strings, trees, and sequences

Introduction to bioinformatics, Autumn 2006