582606 Introduction to bioinformatics

Autumn 2006

Esa Pitkänen
Master's Degree Programme in Bioinformatics (MBI) Department of Computer Science, University of Helsinki http://www.cs.helsinki.fi/mbi/courses/06-07/itb/

Teachers

Esa Pitkänen, Department of Computer Science, University of Helsinki
Prof. Elja Arjas, Department of Mathematics and Statistics, University of Helsinki
Prof. Samuel Kaski, Helsinki University of Technology

How to successfully pass the course?

You can get a maximum of 60 points

- Course exam: maximum of 50 points
- Exercises: maximum of 10 points
0% completed assignments gives you 0 points, 80% gives 10 points

Course will be graded on the scale 0-5

- To get the lowest passing grade $1 / 5$, you need to have at least 30 points
Course exam: Monday 16.10. at 16.00-19.00
\qquad

Administrative issues

Master level course
Obligatory course in Master's Degree Programme in Bioinformatics
, 4 credits
, Prerequisites: basic mathematical skills
, Lectures: Tuesdays and Fridays 14-16 in Exactum C222
Exercises: Fridays 12-14 in Exactum C222

- Note: exercises start on Friday 22.9.2006!

How to enrol for the course?

Use the registration system of the Computer Science

Course material

Course book: Richard C. Deonier, Simon Tavare \& Michael S. W aterman:
Computational Genome Analysis - an Introduction, Springer 2005
Available at Kumpula and Viikki science libraries; Yliopistokirjakauppa 69€, Akateeminen $75 €$, Suomalainen $87 €$, amazon.com \$66.57, amazon.co.uk $£ 47.50$ (6.9.2006)

- It is recommended that you have access to the course book!

Slides for some lectures will be available on the course web pageoducion no bobiontormaics, Autum 2006

Course contents

, Biological background (book chapter 1)
, Probability calculus (chapters 2 and 3)
, Sequence alignment (chapter 6)
, Phylogenetics (chapter 12)
Expression data analysis (chapter 11)

Bioinformatics courses at the University of Helsinki

, Department of Computer Science

- Practical course in biodatabases (Il period): techniques for accessing and integrating data in biology databases.
- Computational neuroscience (Il period): mathematical modeling of information processing taking place in the brain.
- Biological sequence analysis (III period): basic probabilistic methods for modelling and analysis of biological sequences.
- Modeling of vision (III period): mechanisms and modeling of human perception.
- Metabolic modeling (IV period): metabolic networks, fluxes and regulation of metabolism.

Bioinformatics courses at the University of Helsinki

Department of Mathematics and Statistics

- Modelling fluctuating populations (I and II periods): systems driven by fluctuating parameters
Evolution and the theory of games (III period): introduction to game theory with emphasis on applications in evolutionary and behavioural biology

Bioinformatics courses at Helsinki University of Technology

Laboratory of Computer and Information Science

- Special course in bioinformatics II (I and II periods): data integration and fusion in bioinformatics
- Signal processing in neuroinformatics (I and II periods): overview of some of the main biomedical signal processing techniques
- High-throughput bioinformatics (III and IV periods): computational and statistical methods for analyzing modern high-throughput biological data
- Image analysis in neuroinformatics (III and IV periods): biomedical image processing techniques

Biology for methodological scientists (8 cr)
Course organized by the Faculties of Bioscience and Medicine for the MBI programme
Introduction to basic concepts of microarrays, genetics, molecular medicine and developmental biology
Organized in four modules, 2 cr each
Each module has an individual registration so you can participate even if you missed the first module www.cs.helsinki.fi/bioinformatiikka/mbi/courses/06-07/bfms/

An introduction to bioinformatics

What is bioinformatics?

[^0]
What is not bioinformatics?

Biologically-inspired computation, e.g., genetic algorithms and neural networks
, However, application of neural networks to solve some biological problem, could be called bioinformatics
What about DNA computing?

Related concepts

Computational biology

- Application of computing to biology (broad definition)
- Often used interchangeably with bioinformatics

Biometry: the statistical analysis of biological data
Biophysics: "an interdisciplinary field which applies techniques from the physical sciences to understanding biological structure and function" -British Biophysical Society
Mathematical biology "tackles biological problems, but the methods it uses to tackle them need not be numerical and need not be implemented in software or hardware." -- Damian Counsell

Related concepts

- Systems biology
- "biology of networks"
- integrating different levels of information to understand how biological systems work

Sequence Alignment (chapter 6)
The biological problem
, Global alignment
Local alignment
Multiple alignment

Background: comparative genomics

, Basic question in biology: what properties are shared among organisms?
Genome sequencing allows comparison of organisms at DNA and protein levels

Comparisons can be used to

- Find evolutionary relationships between organisms
- Identify functionally conserved sequences
- Identify corresponding genes in human and model organisms: develop models for human diseases

Sequence similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

What about sequences that differ in length?

Similarity vs homology

Sequence similarity is not sequence homology

- If the two sequences g_{B} and g_{C} have accumulated enough mutations, the similarity between them is likely to be low
\#mutations
0 agtgtccgttaagtgcgttc agtgtccgttatagtgcgttc agtgtccgcttatagtgcgttc agtgtccgctaagggcgttc
8 agtgtccgcttcaaggggcgt
16 gggccgttcatgggggt
\#mutations
64 acagtcegttcgggctattg
128 cagagcactaccgc
256 cacgagtaagatatagct
512 taatcgtgata
1024 accottatctacttcctggagtt 2048 agcgacctgcccaa
32 gcagggcgtcactgagggct 4096 caaac

Homology is more difficult to detect over greater evolutionary distances.

Similarity vs homology (2)

Sequence similarity can occur by chance

- Similarity does not imply homology

Similarity is an expected consequence of homology

Orthologs and paralogs (2)

- Orthologs typically retain the original function

Sequence alignment

Alignment specifies which positions in two sequences match
In paralogs, one copy is free to mutate and acquire new function (no selective pressure)

Organism B
Organism C

acgtctag	acgtctag	acgtctag
$\|\mid$	$\|\|\|\|\|\|\|\|\|l\| l\| l\| l$	
actctag-	-actctag	ac-tctag
2 matches	5 matches	7 matches
5 mismatches	2 mismatches	0 mismatches
1 not aligned	1 not aligned	1 not aligned

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Mismatch: substitution (point mutation) of a single base

Problems

, What sorts of alignments should be considered?
, How to score alignments?
, How to find optimal or good scoring alignments?
How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

Course Biological sequence analysis tackles all four indepth.
nsertions and/or deletions are called indels

- We can't tell whether the ancestor sequence had a base or not at indel position

Sequence Alignment (chapter 6)
, The biological problem
, Global alignment
Local alignment
Multiple alignment

Global alignment

Problem: find optimal scoring alignment between two sequences (Needleman \& Wunsch 1970)

We give score for each position in alignment

- Identity (match)
- Substitution (mismatch)
- Indel

+1	What		
$-\mu$	$\\|\\|$		
$-\delta$	wh-y		

S(WHAT/WH-Y) $=1+1-\delta-\mu$

Representing alignments and scores

WHAT
||
wH-Y

	-	W	H	A	T
-					
W		X			
H			X	X	
Y					X

Dynamic programming

How to find the optimal alignment?
We use previous solutions for optimal alignments of smaller subsequences
, This general approach is known as dynamic programming

Filling the alignment matrix (2)

Scoring the alternatives.
Case 1. $\mathrm{S}_{2,2}=\mathrm{S}_{1,1}+\mathrm{s}(2,2)$
Case 2. $\mathrm{S}_{2,2}=\mathrm{S}_{1,2}-\delta$
Case 3. $\mathrm{S}_{2,2}=\mathrm{S}_{2,1}-\delta$
$s(i, j)=1$ for matching positions,
$s(\mathrm{i}, \mathrm{j})=-\mu$ for substitutions.
Choose the case (path) that yields the maximum score.
Keep track of path choices.

Scoring partial alignments

Alignment of $A=a_{1} a_{2} a_{3} \ldots a_{n}$ with $B=b_{1} b_{2} b_{3} \ldots b_{m}$ can end in three ways

- Case 1: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$
$\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}$
- Case 2: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$
$\left(b_{1} b_{2} \ldots b_{j}\right)-$
- Case 3: $\left(a_{1} a_{2} \ldots a_{i}\right)$ -

$$
\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}
$$

Filling the alignment matrix

Consider the alignment process at shaded square.
Case 1. Align H against H (match or substitution)
Case 2. Align H in WHY against - (indel) in WHAT.

Case 3. Align H in WHAT
against - (indel) in WHY.

Global alignment: formal

 development$A=a_{1} a_{2} a_{3} \ldots a_{n}$,
$B=b_{1} b_{2} b_{3} \ldots b_{m}$
$\begin{array}{lllll}b_{1} & b_{2} & b_{3} & b_{4} & -\end{array}$

- $a_{1} \quad-\quad a_{2} \quad a_{3}$
, Any alignment can be written as a unique path through the matrix
, Score for aligning A and B up to positions i and j :
$\mathrm{S}_{\mathrm{i}, \mathrm{j}}=\mathrm{S}\left(\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \mathrm{a}_{\mathrm{i}}, \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \ldots \mathrm{~b}_{\mathrm{j}}\right)$

Scoring alignments (2)

- First row and first column correspond to initial alignment against indels:
$S(i, 0)=-i \delta$
$S(0, j)=-j \delta$
- Optimal global alignment score $S(A, B)=S_{n, m}$

Global alignment: example

$$
\begin{aligned}
& \mu=1 \\
& \delta=2
\end{aligned}
$$

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
Local alignment
Multiple alignment

Global alignment: example (2)

$\mu=1$

$\delta=2$

ATCGT-
| | |
-TGGTG

	-	T	G	G	T	G
-	0	-2	-4	-6	-8	-10
A	-2	-1	-3	-5	-7	-9
T	-4	-1	-2	-4	-4	-6
C	-6	-3	-2	-3	-5	-5
G	-8	-5	-2	-1	-3	-4
T	-10	-7	-4	-3	0	-2

Sequence Alignment (chapter 6)
, The biological problem
, Global alignment
1 Local alignment
, Multiple alignment

Local alignment: rationale

- Otherwise dissimilar proteins may have local regions of similarity
-> Proteins may share a function

[^1]

Local alignment: rationale

- Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith \& Waterman 1981)

From global to local alignment

Modifications to the global alignment algorithm

- Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix)
- Allow preceding and trailing indels without penalty

Scoring local alignments

$A=a_{1} a_{2} a_{3} \ldots a_{n}, B=b_{1} b_{2} b_{3} \ldots b_{m}$
Let I and J be intervals (substrings) of A and B, respectively: $I \subset A, \quad J \subset B$

Best local alignment score:

$$
M(A, B)=\max \{S(I, J): I \subset A, J \subset B\}
$$

where $S(I, J)$ is the score for substrings I and J.

Recursion for local alignment

- $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=\max \{$

$M_{i-1, j-1}+s\left(a_{i}, b_{i}\right)$,
$\mathrm{M}_{\mathrm{i}-1 . \mathrm{j}}-\delta$,
$\mathrm{M}_{\mathrm{i}, \mathrm{j}-1}-\delta$,
0
\}
- Optimal score is the highest value in the matrix
$M(A, B)=\max \{S(I, J): I \subset A, J \subset B\}$

$$
=\max _{\mathrm{i}, \mathrm{j}} \mathrm{M}_{\mathrm{i}, \mathrm{j}}
$$

- Best local alignment can be found by backtracking from the highest value in M

Local alignment: example

Non-uniform mismatch penalties

We used uniform penalty for mismatches:
$s\left({ }^{\prime} A^{\prime},{ }^{\prime} C^{\prime}\right)=s\left(' A\right.$ ', 'G') $=\ldots=s\left({ }^{\prime} G^{\prime}, ~ ' T '\right)=\mu$
, Transition mutations (A->G, G->A, C->T, T->C) are approximately twice as frequent than transversions (A$>\mathrm{T}, \mathrm{T}->\mathrm{A}, \mathrm{A}->\mathrm{C}, \mathrm{G}->\mathrm{T})$

- use non-uniform mismatch penalties

	C		C	
G	T			
A	1	-1	-0.5	-1
C	-1	1	-1	-0.5
G	-0.5	-1	1	-1
C	-1	-0.5	-1	1

Local alignment: example

Scoring
Match: +2
Mismatch: -1
Indel: -2

C $\boldsymbol{T}-\mathrm{A} A$
CTCAA

Gaps in alignment

Gap is a succession of indels in alignment

$$
\begin{array}{llllll}
C & \mathbf{T} & - & - & - & A \\
C & \mathbf{T} & \mathbf{C} & \mathrm{G} & \mathrm{C} & \mathbf{A}
\end{array} \mathbf{A}
$$

Previous model scored a length k gap as $w(k)=-k \delta$
Replication processes may produce longer stretches of insertions or deletions

- In coding regions, insertions or deletions of codons may preserve functionality

Gap open and extension penalties (2)
We can design a score that allows the penalty opening gap to be larger than extending the gap:

$$
w(k)=-\alpha-\beta(k-1)
$$

Gap open cost α, Gap extension cost β
Our previous algorithm can be extended to use w(k) (not discussed on this course)

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment

- Local alignment
, Multiple alignment

Multiple alignment

- Consider a set of n sequences on the right
- Orthologous sequences from different organisms
- Paralogs from multiple duplications
- How can we study relationships between these sequences?
aggcgagctgcgagtgcta cgttagattgacgctgac ttccggctgcgac gacacggcgaacgga agtgtgcccgacgagcgaggac gcgggctgtgagcgcta aagcggcctgtgtgcceta atgctgctgccagtgta agtcgagccccgagtgc agtccgagtcc actcggtgc

Optimal alignment of three sequences

Alignment of $A=a_{1} a_{2} \ldots a_{i}$ and $B=b_{1} b_{2} \ldots b_{i}$ can end either in $\left(-, b_{j}\right),\left(a_{i}, b_{j}\right)$ or $\left(a_{i},-\right)$
, $2^{2}-1=3$ alternatives
। Alignment of A, B and $C=c_{1} c_{2} \ldots c_{k}$ can end in $2^{3}-1$ ways: $\left(\mathrm{a}_{\mathrm{i}},-,-\right),\left(-, \mathrm{b}_{\mathrm{j}},-\right),\left(-,-, \mathrm{c}_{\mathrm{k}}\right),\left(-, \mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}},-, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}}\right.$, $\left.b_{j},-\right)$ or $\left(a_{i}, b_{j}, c_{k}\right)$
Solve the recursion using three-dimensional dynamic programming matrix: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time and space

Generalizes to n sequences but impractical with moderate number of sequences

Multiple alignment in practice

In practice, real-world multiple alignment problems are usually solved with heuristics
based progressive multiple alignment CLUSTALW

Progressive multiple alignment

- Choose two sequences and align them
- Choose third sequence w.r.t. two previous sequences and align the third against them
- Repeat until all sequences have been aligned
- Different options how to choose sequences and score alignments

Additional material

R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
Course Biological sequence analysis in Spring 2007

Inferring the Past: Phylogenetic

Trees (chapter 12)
, The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
Maximum likelihood methods

Phylogeny

- We want to study ancestordescendant relationships, or phylogeny, among groups of organisms
- Groups are called taxa (singular: taxon)
- Organisms are usually called operational taxonomic units or OTUs in the context of phylogeny

Phylogenetic trees

- Leaves (external nodes) ~ species, observed (OTUs)
- Internal nodes ~ ancestral species/divergence events, not observed
- Unrooted tree does not specify ancestordescendant relationships beyond the observation "leaves are not ancestors"

Unrooted tree with 5 leaves and 3 internal nodes.

Is node 7 ancestor of node 6?

Questions

, Can we enumerate all possible phylogenetic trees for n species (or sequences?)

How to score a phylogenetic tree with respect to data?
How to find the best phylogenetic tree given data?
the other species

- There are $\mathrm{n}-1$ ways to root a tree with n nodes

Finding the best phylogenetic tree:
 naive method

How can we find the phylogenetic tree that best represents the data?
Naive method: enumerate all possible trees
How many different trees are there of n species?
Denote this number by b_{n}

Enumerating unordered trees

- Start with the only unordered tree with 3 leaves ($\mathrm{b}_{3}=1$)

- Consider all ways to add a leaf node to this tree

- Fourth node can be added to 3 different branches (edges), creating 1 new internal branch
- Total number of branches is n external and $n-3$ internal branches
- Unrooted tree with n leaves has $2 n-3$ branches

Enumerating unordered trees

- Thus, we get the number of unrooted trees
$b_{n}=(2(n-1)-3) b_{n-1}=(2 n-5) b_{n-1}$
$=(2 n-5) *(2 n-7)^{*} \ldots 3^{*} 1$
$=(2 n-5)!/\left((n-3)!2^{n-3}\right), n>2$
- Number of rooted trees b_{n}^{\prime} is

$$
b_{n}^{\prime}=(2 n-3) b_{n}=(2 n-3)!/\left((n-2)!2^{n-2}\right), n>2
$$

that is, the number of unrooted trees times the number of branches in the trees

Too many trees?

We can't construct and evaluate every phylogenetic tree even for a smallish number of species

Better alternative is to

- Devise a way to evaluate an individual tree against the data
- Guide the search using the evaluation criteria to reduce the search space

Parsimony method

The parsimony method finds the tree that explains the observed sequences with a minimal number of substitutions

Method has two steps

- Compute smallest number of substitutions for a given tree with a parsimony algorithm
- Search for the tree with the minimal number of substitutions

Parsimony: an example

, Consider the following short sequences
$1 \mathfrak{A C T T T}$
$2 \mathfrak{A C A T T}$
3 AACGT
$4 \mathfrak{A} \mathfrak{A T G T}$
5 $\mathfrak{A A T T T}$
There are 105 possible rooted trees for 5 sequences
Example: which of the following trees explains the sequences with least number of substitutions?

This tree explains the sequences with 4 substitutions

Computing parsimony

Parsimony treats each site (position in a sequence) independently
, Total parsimony cost is the sum of parsimony costs of each site
We can compute the minimal parsimony cost for a given tree by

- First finding out possible assignments at each node, starting from leaves and proceeding towards the root
- Then, starting from the root, assign a letter at each node, proceeding towards leaves

Parsimony algorithm: first phase

```
Find out possible assignments at every node for each site
independently. Denote site u in sequence i by si,u
For i:= 1, .., ndo
    \mathcal{F}}:={\mp@subsup{s}{i,u}{}}\quad % possible assignments at node 
    L}:=0\quad% number of substitutions up to node 
For i:= n+1,.., 2n-1 do
    Let j and k be the children of node i
    If \mp@subsup{\mathcal{F}}{j}{}\cap\mp@subsup{\mathcal{F}}{\ell}{}=\varnothing\mathrm{ then L}\mp@subsup{L}{i}{}:=\mp@subsup{\mathcal{L}}{j}{}+\mp@subsup{\mathcal{L}}{k}{}+1,\mp@subsup{\mathcal{F}}{i}{}:=\mp@subsup{\mathcal{F}}{j}{}\cup\mp@subsup{\textrm{F}}{\textrm{k}}{}
        else L}\mp@subsup{L}{i}{}:=\mp@subsup{\mathcal{L}}{j}{}+\mp@subsup{\mathcal{L}}{k}{\prime}\mp@subsup{\mathcal{F}}{i}{}:=\mp@subsup{\mathcal{F}}{j}{}\cap\mp@subsup{\textrm{F}}{\textrm{k}}{

\section*{Labelling tree nodes}

An unrooted tree with \(n\) leaves contains \(2 n-2\) nodes altogether
Assign the following labels to nodes in a rooted tree
- leaf nodes: \(1,2, \ldots, n\)
- internal nodes: \(\mathrm{n}+1, \mathrm{n}+2, \ldots, 2 \mathrm{n}-1\)
- root node: 2 n -1
, The label of a child node is always smaller than the label of the parent node


\section*{Parsimony algorithm: first phase}


Parsimony algorithm: first phase
\[
\begin{aligned}
& \mathrm{F}_{6}:=\mathrm{F}_{3} \cup \mathrm{~F}_{4}=\{\mathrm{C}, \mathrm{~T}\} \\
& \mathrm{L}_{6}:=\mathrm{L}_{3}+\mathrm{L}_{4}+1=1 \\
& \mathrm{~F}_{7}:=\mathrm{F}_{5} \cap \mathrm{~F}_{6}=\{\mathrm{T}\} \\
& \mathrm{L}_{7}:=\mathrm{L}_{5}+\mathrm{L}_{6}=1 \\
& \mathrm{~F}_{8}:=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\{\mathrm{A}, \mathrm{~T}\} \\
& \mathrm{L}_{8}:=\mathrm{L}_{1}+\mathrm{L}_{2}+1=1 \\
& \mathrm{~F}_{9}:=\mathrm{F}_{7} \cap \mathrm{~F}_{8}=\{\mathrm{T}\} \\
& \mathrm{L}_{9}:=\mathrm{L}_{7}+\mathrm{L}_{8}=2
\end{aligned}
\]


\section*{Parsimony algorithm: second phase}

At node 6, the algorithm assigns T because T was assigned to parent node 7 and \(T \in F_{6}\)


The other nodes have only one possible letter to assign

\section*{Properties of parsimony algorithm}

Parsimony algorithm requires that the sequences are of same length
- First align the sequences against each other and remove indels
- Then compute parsimony for the resulting sequences

Is the most parsimonious tree the correct tree?
- Not necessarily but it explains the sequences with least number of substitutions
- We can assume that the probability of having fewer mutations is higher than having many mutations

\section*{Finding the most parsimonious tree}

Parsimony algorithm calculates the parsimony cost for a given tree...
। ...but we still have the problem of finding the tree with the lowest cost
, Exhaustive search (enumerating all trees) is in general impossible
More efficient methods exist, for example
- Probabilistic search
- Branch and bound

\section*{Branch and bound in parsimony}

We can exploit the fact that adding edges to a tree can only increase the parsimony cost


Branch and bound graphically


Partial tree, no best complete tree constructed yet Complete tree: calculate parsimony cost and store Partial tree, cost exceeds the cost of the best tree this far

\section*{Distances in a phylogenetic tree}

Distance matrix \(\mathrm{D}=\left(\mathrm{d}_{i j}\right)\) gives pairwise distances for leaves of the phylogenetic tree
In addition, the phylogenetic tree will now specify distances between leaves and internal nodes
- Denote these with \(\mathrm{d}_{\mathrm{ij}}\) as well


Distance \(\mathrm{d}_{\mathrm{ij}}\) states how far apart species \(i\) and \(j\) are evolutionary (e.g., number of mismatches in aligned sequences)
Distances in a phylogenetic tree
, Distance matrix \(\mathrm{D}=\left(\mathrm{d}_{\mathrm{ij}}\right)\)
gives pairwise distances for
leaves of the phylogenetic
tree
In addition, the phylogenetic
tree will now specify
distances between leaves
and internal nodes
- Denote these with \(\mathrm{d}_{\mathrm{ij}}\) as well \begin{tabular}{l} 
Distance \(\mathrm{d}_{\mathrm{ij}}\) states how \\
far apart species i and j \\
are evolutionary (e.g., \\
number of mismatches in \\
aligned sequences)
\end{tabular}

\section*{Branch and bound in parsimony}

Branch and bound is a general search strategy where

In parsimony...

Each solution is potentially generated
Track is kept of the best solution found

If a partial solution cannot achieve better score, we abandon the current search path
, Start from a tree with 1 sequence
, Add a sequence to the tree and calculate parsimony cost
If the tree is complete, check if found the best tree so far
If tree is not complete and cost exceeds best tree cost, do not continue adding edges to this tree

\section*{Distance methods}

The parsimony method works on sequence (character string) data
, We can also build phylogenetic trees in a more general setting
, Distance methods work on a set of pairwise distances \(\mathrm{d}_{\mathrm{ij}}\) for the data
, Distances can be obtained from phenotypes as well as from genotypes (sequences)

\section*{Distances in evolutionary context}

Distances \(\mathrm{d}_{\mathrm{ij}}\) in evolutionary context satisfy the following conditions
- Symmetry: \(\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ji}}\) for each \(\mathrm{i}, \mathrm{j}\)
- Distinguishability: \(\mathrm{d}_{\mathrm{ij}} \neq 0\) if and only if \(\mathrm{i} \neq \mathrm{j}\)
- Triangle inequality: \(\mathrm{d}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{kj}}\) for each \(\mathrm{i}, \mathrm{j}, \mathrm{k}\)
, Distances satisfying these conditions are called metric
, In addition, evolutionary mechanisms may impose additional constraints on the distances
\(\triangleright\) additive and ultrametric distances

\section*{Additive trees}

। A tree is called additive, if the distance between any pair of leaves ( \(\mathrm{i}, \mathrm{j}\) ) is the sum of the distances between the leaves and the first node \(k\) that they share in the tree
\(\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{jk}}\)
"Follow the path from the leaf \(i\) to the leaf \(j\) to find the exact distance \(\mathrm{d}_{\mathrm{ij}}\) between the leaves."

\section*{Ultrametric trees}

A rooted additive tree is called a ultrametric tree, if the distances between any two leaves \(i\) and \(j\), and their common ancestor \(k\) are equal
\(\mathrm{d}_{\mathrm{ik}}=\mathrm{d}_{\mathrm{jk}}\)

Edge length \(\mathrm{d}_{\mathrm{ij}}\) corresponds to the time elapsed since divergence of \(i\) and \(j\) from the common parent In other words, edge lengths are measured by a molecular clock with a constant rate

\section*{Additive trees: example}
\begin{tabular}{l|llll} 
& \(A\) & \(B\) & \(C\) & \(D\) \\
\hline A & 0 & 2 & 4 & 4 \\
B & 2 & 0 & 4 & 4 \\
C & 4 & 4 & 0 & 2 \\
D & 4 & 4 & 2 & 0
\end{tabular}


\section*{Identifying ultrametric data}

We can identify distances to be ultrametric by the three-point condition:

D corresponds to an ultrametric tree if and only if for any three sequences \(i, j\) and \(k\), the distances satisfy \(\mathrm{d}_{\mathrm{ij}} \leq \max \left(\mathrm{d}_{\mathrm{ik}}, \mathrm{d}_{\mathrm{kj}}\right)\)

If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

Ultrametric trees
\(\stackrel{y}{\stackrel{y}{F}}\)

\section*{}

Ultrametric trees



\section*{UPGMA algorithm}

UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
The algorithm works by at the same time
- Merging two clusters

\section*{Cluster distances}

Let distance \(\mathrm{d}_{\mathrm{ij}}\) between clusters \(\mathrm{C}_{\mathrm{i}}\) and \(\mathrm{C}_{\mathrm{j}}\) be
\[
d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i}, q \in C_{j}} d_{p q}
\]
that is, the average distance between points (species) in the cluster.
- Creating a new node on the tree

The tree is built from leaves towards the root UPGMA produces a ultrametric tree

\section*{UPGMA algorithm}

Initialis ation
- Assign each point ito its own cluster \(C_{i}\)
- Define one leaf for each sequence, and place it at height zero

Iteration
- Find clusters \(i\) and \(j\) for which \(d_{i j}\) is minimal
- Define new cluster \(\kappa\) by \(\mathcal{C}_{\kappa}=\mathcal{C}_{i} \cup \mathcal{C}_{j}\), and define \(d_{k l}\) for all \(\mathcal{C}\)
- Define a node \(K\) with children \(i\) and \(j\). Place \(K\) at height \(d_{i j} / 2\)
- Remove clusters \(i\) and \(j\)

Termination:
- When only two clusters \(i\) and \(j\) remain, place root at height \(d_{i j} / 2\)

\section*{12 \\ - -}
\(\bullet^{3}\)
\(4^{\bullet}\)
\(5^{\bullet}\)


\section*{UPGMA implementation}

In naive implementation, each iteration takes \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time with \(n\) sequences \(=>\) algorithm takes \(\mathrm{O}\left(\mathrm{n}^{3}\right)\) time

The algorithm can be implemented to take only \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time (Gronau \& Moran, 2006

\section*{Problem solved?}

We now have a simple algorithm which finds a ultrametric tree
- If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (we skip the proof)
- The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
, Unfortunately, the data is not ultrametric in practice
- Measurement errors distort distances
- Basic assumption of a molecular clock does not hold usually very well


\section*{Finding an additive phylogenetic tree}

Additive trees can be found with, for example, the neighbor joining method (Saitou \& Nei, 1987)

। The neighbor joining method produces unrooted trees, which have to be rooted by other means
- A common way to root the tree is to use an outgroup
- Outgroup is a species that is known to be more distantly related to every other species than they are to each other
- Root node candidate: position where the outgroup would join the phylogenetic tree
However, in real-world data, even additivity usually does not hold very well

\section*{Inferring the Past: Phylogenetic}

Trees (chapter 12)
, The biological problem
, Parsimony and distance methods
Models for mutations and estimation of distances
Maximum likelihood methods

\section*{A stochastic model for base substitutions}
, Consider a single homologous site in two sequences
, Assume the sites diverged for time length t: the sites are separated by time \(2 t\)
Suppose that the number of substitutions in any branch of length thas a Poisson distribution with mean \(\lambda t\)
Probability that \(k\) substitutions occur is given by the Poisson probability \(e^{-\lambda t}(\lambda t)^{k} /(k!), k=0,1,2, \ldots\)

\section*{Estimation of distances}

Many alternative ways to derive the distances \(\mathrm{d}_{\mathrm{ij}}\) exist
We can construct a simple stochastic model for the evolution of a DNA sequence...
...and then obtain the distances from the model
Key points:
- mutations at sites are rare events in the course of time => poisson process
- sites evolve individually and by an identical mechanism
- number of mismatched bases is a sum of mutations at individual sites \(=>\) binomial variable

\section*{Substitutions at one site (2)}

Probability \(q_{i j}(t)\) that a base \(i\) at time 0 is substituted by a base j a time t later
\(q_{i j}(t)=e^{-\lambda t}+\left(1-e^{-\lambda t}\right) \pi_{j}\), if \(i=j\)
\(q_{i j}(t)=\left(1-e^{-\lambda t}\right) \Pi_{j}\), otherwise

Substitutions at one site (3)

We assume stationarity: distribution of base frequencies is the same for every time \(t\)
In other words, we want that
\(P(\) base a time t later \(=j) \pi_{j}^{0}\)

For our simple model, this can be shown to hold

\section*{Estimating distances}

Distances should take into account the mutation mechanism
, Average of \(\lambda t\) substitutions occur at a particular site on a branch of length \(t\)
However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

\section*{Estimating distances from sequence \\ data}
, We want to estimate \(K=2 \lambda t H\) from sequence data
, The chance \(F_{i j}(t)\) that we observe a base \(i\) in one sequence and a base \(j\) in another is
\(F_{i j}(t)=\sum_{i} \Pi_{\mid} q_{i j}(t) q_{l j}(t)\)
by averaging over the possible ancestral nucleotides

\section*{Estimating distances from sequence data}

What is the probabilitity \(\mathrm{F}=\mathrm{F}(\mathrm{t})\) that the letters at a particular position in two immediate descendants from the same node are identical?
\(F=\sum_{i} \pi_{i} q_{i i}(2 t)=e^{-2 \lambda t}+\left(1-e^{-2 \lambda t}\right)(1-H)\)

\section*{Putting the sites together (2)}
, \(P\left(X_{i}=1\right)=1-F=\left(1-e^{-2 \lambda t}\right) H\)
- Now \(D=X_{1}+\ldots+X_{s}\) is the number of mismatched pairs of bases
, \(D\) is a binomial random variable with parameters \(s\) and 1-F

Notice that D is the Hamming distance for the sequences

\section*{Jukes-Cantor formula}

Estimate \(2 \lambda t \mathrm{H}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))\) of the distance K is known as the Jukes-Cantor formula

When H (chance that a substitution actually occurs) approaches 1, the estimate decreases and approaches the Poisson mean \(2 \lambda t\)
, H is usually not known and has to be estimated from the data as well

\section*{Inferring the Past: Phylogenetic}

Trees (chapter 12)
, The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

\section*{Maximum likelihood methods}

Consider the tree on the right with three sequences

Probability \(p\left(i_{1}, i_{2}, i_{3}\right)\) of observing bases \(i_{1}, i_{2}\) and \(i_{3}\) can be computed by summing over all possible ancestral bases,

\(p(i 1, i 2, i 3)=\sum_{a} \sum_{b} \pi_{a} q_{a i 3}\left(t_{2}\right) q_{a b}\left(t_{2}-t_{1}\right) q_{b i 2}\left(t_{1}\right) q_{b i 1}\left(t_{1}\right)\)
Hard to compute for complex
trees

\section*{Additional material on phylogenetic trees}

Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
Jones, Pevzner: An introduction to bioinformatics algorithms

Gusfield: Algorithms on strings, trees, and sequences

\section*{Maximum likelihood estimation}

We would like to calculate likelihood \(p\left(i_{1}, i_{2}, \ldots, i_{n}\right)\) in the general case
Calculations can be arranged using the peeling algorithm
Basic idea is to move all summation signs as far to the right as possible

\section*{Maximum likelihood estimation}

Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

General recipe for maximum likelihood estimation:
- Maximize over all model parameters for a given tree
- Maximize previous expression over all possible trees

\section*{Problems with tree-building}

\section*{Assumptions}
- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance```


[^0]:    Bioinformatics, $n$. The science of information and information flow in biological systems, esp. of the use of computational methods in genetics and genomics. (Oxford English Dictionary)
    "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information."
    -- Fredj Tekaia
    "I do not think all biological computing is bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems. In my opinion, bioinformatics has to do with management and the subsequent use of biological information, particular genetic information."
    -- Richard Durbin $\qquad$

[^1]:    Human bone
    morphogenic protein receptor type II receptor type II precursor (left) has a 300 aa region that resembles 291 a region in TGFreceptor (right).
    The shared function here is prote

