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Administrative issues
l Master level course

l Obligatory course in Master’s Degree Programme in
Bioinformatics

l 4 credits

l Prerequisites: basic mathematical skills

l Lectures: Tuesdays and Fridays 14-16 in Exactum C222

l Exercises: Fridays 12-14 in Exactum C222

− Note: exercises start on Friday 22.9.2006!
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Teachers
l Esa Pitkänen, Department of Computer Science, University of

Helsinki

l Prof. Elja Arjas, Department of Mathematics and Statistics,
University of Helsinki

l Prof. Samuel Kaski, Helsinki University of Technology

Introduction to bioinformatics, Autumn 2006 4

How to enrol for the course?
l Use the registration system of the Computer Science

department: https://ilmo.cs.helsinki.fi
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How to successfully pass the course?

l You can get a maximum of 60 points

− Course exam: maximum of 50 points

− Exercises: maximum of 10 points

l 0% completed assignments gives you 0 points, 80% gives 10
points

l Course will be graded on the scale 0-5

− To get the lowest passing grade 1/5, you need to have at least 30
points

l Course exam: Monday 16.10. at 16.00-19.00
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Course material
l Course book: Richard C. Deonier, Simon

Tavare & Michael S. Waterman:
Computational Genome Analysis – an
Introduction, Springer 2005

l Available at Kumpula and Viikki science
libraries; Yliopistokirjakauppa 69€,
Akateeminen 75€, Suomalainen 87€,
amazon.com $66.57, amazon.co.uk £47.50
(6.9.2006)

l It is recommended that you have access to
the course book!

l Slides for some lectures will be available on
the course web page

http://www.cs.helsinki.fi/mbi/courses/06-07/itb/
https://ilmo.cs.helsinki.fi
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Course contents
l Biological background (book chapter 1)

l Probability calculus (chapters 2 and 3)

l Sequence alignment (chapter 6)

l Phylogenetics (chapter 12)

l Expression data analysis (chapter 11)
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Master's Degree Programme in
Bioinformatics (MBI)

l Two-year MSc programme

l Offered jointly by the University of Helsinki and Helsinki
University of Technology

l Admission for 2007-2008 in January 2007

www.cs.helsinki.fi/mbi
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Institutions participating in MBI
Helsinki University of Technology
q Laboratory of Computer and Information Science

University of Helsinki
Faculty of Science
q Department of Computer Science
q Department of Mathematics and
Statistics

University of Helsinki
Faculty of Medicine

University of Helsinki
Faculty of Biosciences
Faculty of Agriculture and
Forestry

506
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Bioinformatics courses at the University of
Helsinki

l Department of Computer Science
− Practical course in biodatabases (II period): techniques for

accessing and integrating data in biology databases.

− Computational neuroscience (II period): mathematical
modeling of information processing taking place in the brain.

− Biological sequence analysis (III period): basic probabilistic
methods for modelling and analysis of biological sequences.

− Modeling of vision (III period): mechanisms and modeling of
human perception.

− Metabolic modeling (IV period): metabolic networks, fluxes
and regulation of metabolism.
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Bioinformatics courses at the University of
Helsinki

l Department of Mathematics and Statistics
− Modelling fluctuating populations (I and II periods): systems driven by

fluctuating parameters

− Evolution and the theory of games (III period): introduction to game
theory with emphasis on applications in evolutionary and behavioural
biology
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Bioinformatics courses at Helsinki University of
Technology

l Laboratory of Computer and Information Science
− Special course in bioinformatics II (I and II periods):

data integration and fusion in bioinformatics.

− Signal processing in neuroinformatics (I and II periods):
overview of some of the main biomedical signal
processing techniques

− High-throughput bioinformatics (III and IV periods):
computational and statistical methods for analyzing
modern high-throughput biological data

− Image analysis in neuroinformatics (III and IV periods):
biomedical image processing techniques

http://www.cs.helsinki.fi/mbi


3

Introduction to bioinformatics, Autumn 2006 13

Biology for methodological scientists (8 cr)

l Course organized by the Faculties of Bioscience and
Medicine for the MBI programme

l Introduction to basic concepts of microarrays,
genetics, molecular medicine and developmental
biology

l Organized in four modules, 2 cr each

l Each module has an individual registration so you can
participate even if you missed the first module

l www.cs.helsinki.fi/bioinformatiikka/mbi/courses/06-07/bfms/
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Bioinformatics courses

l Visit the website of Master's Degree Programme in
Bioinformatics for up-to-date course lists:
http://www.cs.helsinki.fi/mbi
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An introduction to bioinformatics
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What is bioinformatics?
l Solving biological problems with computation?

l Collecting, storing and analysing biological data?

l Informatics - library science?
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What is bioinformatics?
l Bioinformatics, n. The science of information and information

flow in biological systems, esp. of the use of computational
methods in genetics and genomics. (Oxford English Dictionary)

l "The mathematical, statistical and computing methods that aim
to solve biological problems using DNA and amino acid
sequences and related information."
-- Fredj Tekaia

l "I do not think all biological computing is bioinformatics, e.g.
mathematical modelling is not bioinformatics, even when
connected with biology-related problems. In my opinion,
bioinformatics has to do with management and the subsequent
use of biological information, particular genetic information."
-- Richard Durbin
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What is not bioinformatics?
l Biologically-inspired computation, e.g., genetic algorithms and

neural networks

l However, application of neural networks to solve some
biological problem, could be called bioinformatics

l What about DNA computing?

http://www.cs.helsinki.fi/bioinformatiikka/mbi/courses/06-07/bfms/
http://www.cs.helsinki.fi/mbi
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Related concepts
l Computational biology

− Application of computing to biology (broad definition)

− Often used interchangeably with bioinformatics

l Biometry: the statistical analysis of biological data

l Biophysics: "an interdisciplinary field which applies techniques from the
physical sciences to understanding biological structure and function" --
British Biophysical Society

l Mathematical biology “tackles biological problems, but the methods it uses to
tackle them need not be numerical and need not be implemented in software
or hardware.” -- Damian Counsell
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Related concepts
• Systems biology

– “biology of networks”
– integrating different levels of

information to understand how
biological systems work

Overview of metabolic pathways in KEGG
database, www.genome.jp/kegg/
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Biological background

l Molecular Biology Primer: www.bioalgorithms.info
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Background: comparative genomics

l Basic question in biology: what properties are shared
among organisms?

l Genome sequencing allows comparison of organisms
at DNA and protein levels

l Comparisons can be used to
− Find evolutionary relationships between organisms

− Identify functionally conserved sequences

− Identify corresponding genes in human and model
organisms: develop models for human diseases
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Homologs

• Two genes or characters
gB and gC evolved from
the same ancestor gA are
called homologs

• Homologs usually exhibit
conserved functions

• Close evolutionary
relationship => expect a
high number of homologs

gB = agtgccgttaaagttgtacgtc

gC = ctgactgtttgtggttc

gA = agtgtccgttaagtgcgttc

http://www.genome.jp/kegg/
http://www.bioalgorithms.info
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l Intuitively, similarity of two sequences refers to the
degree of match between corresponding positions in
sequence

l What about sequences that differ in length?

Sequence similarity

agtgccgttaaagttgtacgtc

ctgactgtttgtggttc
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Similarity vs homology

l Sequence similarity is not sequence homology
− If the two sequences gB and gC have accumulated enough mutations, the

similarity between them is likely to be low

Homology is more difficult to detect over greater evolutionary
distances.

0 agtgtccgttaagtgcgttc
1     agtgtccgttatagtgcgttc
2     agtgtccgcttatagtgcgttc
4     agtgtccgcttaagggcgttc
8     agtgtccgcttcaaggggcgt
16    gggccgttcatgggggt
32    gcagggcgtcactgagggct

64    acagtccgttcgggctattg
128   cagagcactaccgc
256   cacgagtaagatatagct
512   taatcgtgata
1024  acccttatctacttcctggagtt
2048  agcgacctgcccaa
4096 caaac

#mutations #mutations
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Similarity vs homology (2)

l Sequence similarity can occur by chance
− Similarity does not imply homology

l Similarity is an expected consequence of homology
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Orthologs and paralogs

l We distinguish between two types of homology
− Orthologs: homologs from two different species
− Paralogs: homologs within a species

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A

Gene A is copied

within organism A
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Orthologs and paralogs (2)

l Orthologs typically retain the original function

l In paralogs, one copy is free to mutate and acquire
new function (no selective pressure)

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A

Gene A is copied

within organism A
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Sequence alignment

l Alignment specifies which positions in two sequences
match

acgtctag
|||||

-actctag

5 matches
2 mismatches
1 not aligned

acgtctag
||
actctag-

2 matches
5 mismatches
1 not aligned

acgtctag
|| |||||
ac-tctag

7 matches
0 mismatches
1 not aligned
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Mutations: Insertions, deletions and
substitutions

l Insertions and/or deletions are called indels
− We can’t tell whether the ancestor sequence had a base or

not at indel position

acgtctag
|||||

-actctag

Indel: insertion or
deletion of a base
with respect to the
ancestor sequence

Mismatch: substitution
(point mutation) of
a single base

Introduction to bioinformatics, Autumn 2006 32

Problems

l What sorts of alignments should be considered?
l How to score alignments?
l How to find optimal or good scoring alignments?
l How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

Course Biological sequence analysis tackles all four in-
depth.
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Global alignment

l Problem: find optimal scoring alignment between two
sequences (Needleman & Wunsch 1970)

l We give score for each position in alignment
− Identity (match)                    +1

− Substitution (mismatch)       -µ

− Indel

WHAT

||

WH-Y

S(WHAT/WH-Y) = 1 + 1 – – µ
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Representing alignments and scores

XY

XXH

XW

-

TAHW-WHAT

||

WH-Y
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Representing alignments and scores

Y

H

W

-

TAHW-WHAT

||

WH-Y

Global alignment
score S3,4 = 2- -µ

2- -µ

2-2

1

0
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Dynamic programming

l How to find the optimal alignment?

l We use previous solutions for optimal alignments of
smaller subsequences

l This general approach is known as dynamic
programming
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Filling the alignment matrix

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Consider the alignment process
at shaded square.

Case 1. Align H against H
(match or substitution).

Case 2. Align H in WHY against
– (indel) in WHAT.

Case 3. Align H in WHAT
against – (indel) in WHY.
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Filling the alignment matrix (2)

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Scoring the alternatives.

Case 1. S2,2 = S1,1 + s(2, 2)

Case 2. S2,2 = S1,2

Case 3. S2,2 = S2,1

s(i, j) = 1 for matching positions,

s(i, j) = - µ for substitutions.

Choose the case (path) that
yields the maximum score.

Keep track of path choices.
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Global alignment: formal
development

A = a1a2a3…an,
B = b1b2b3…bm

a3

a2

a1

-

b4b3b2b1-

3

2

1

0

43210

b1 b2 b3 b4 -
- -a1 a2 a3

l Any alignment can be written
as a unique path through the
matrix

l Score for aligning A and B up
to positions i and j:

Si,j = S(a1a2a3…ai, b1b2b3…bj)
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Scoring partial alignments
l Alignment of A = a1a2a3…an with B = b1b2b3…bm can end in

three ways

− Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

− Case 2: (a1a2…ai-1) ai

(b1b2…bj) -

− Case 3: (a1a2…ai) –

(b1b2…bj-1) bj
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Scoring alignments
l Scores for each case:

− Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

− Case 2: (a1a2…ai-1) ai

(b1b2…bj) –

− Case 3: (a1a2…ai) –

(b1b2…bj-1) bj

s(ai, bj) = { -µ otherwise

+1  if ai = bj

s(ai, -) = s(-, bj) = -
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Scoring alignments (2)
• First row and first column

correspond to initial alignment
against indels:

S(i, 0) = -i 
S(0, j) = -j 

• Optimal global alignment
score S(A, B) = Sn,m

a3

a2

a1

-

b4b3b2b1-

-33

-22

1

-4-3-200

43210
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Algorithm for global alignment
Input sequences A, B, n = |A|, m = |B|

Set Si,0 := - i for all i

Set S0,j := - j for all j

for i := 1 to n

for j := 1 to m

Si,j := max{Si-1,j – , Si-1,j-1 + s(ai,bj), Si,j-1 – }

end

end

Algorithm takes O(nm) time and space.
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Global alignment: example

?-10T
-8G
-6C
-4T
-2A

-10-8-6-4-20-
GTGGT-

µ = 1

= 2
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Global alignment: example (2)

-20-3-4-7-10T
-4-3-1-2-5-8G
-5-5-3-2-3-6C
-6-4-4-2-1-4T
-9-7-5-3-1-2A
-10-8-6-4-20-
GTGGT-

µ = 1

= 2

ATCGT-

| ||

-TGGTG
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Local alignment: rationale

• Otherwise dissimilar proteins may have local regions of
similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type II
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-
receptor (right).

The shared function
here is protein kinase.
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Local alignment: rationale

• Global alignment would be inadequate
• Problem: find the highest scoring local alignment

between two sequences
• Previous algorithm with minor modifications solves this

problem (Smith & Waterman 1981)

A

B
Regions of
similarity
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From global to local alignment

l Modifications to the global alignment algorithm
− Look for the highest-scoring path in the alignment matrix

(not necessarily through the matrix)

− Allow preceding and trailing indels without penalty
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Scoring local alignments

A = a1a2a3…an, B = b1b2b3…bm

Let I and J be intervals (substrings) of A and B,
respectively:             ,

Best local alignment score:

where S(I, J) is the score for substrings I and J.
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Allowing preceding and trailing
indels

• First row and column
initialised to zero:
Mi,0 = M0,j = 0

a3

a2

a1

-

b4b3b2b1-

03

02

01

000000

43210

b1 b2 b3
- - a1

Introduction to bioinformatics, Autumn 2006 53

Recursion for local alignment

• Mi,j =  max {
Mi-1,j-1 + s(ai, bi),
Mi-1,j ,
Mi,j-1 ,
0

}

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-
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Finding best local alignment
• Optimal score is the highest

value in the matrix

= maxi,j Mi,j

• Best local alignment can be
found by backtracking from
the highest value in M

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-



10

Introduction to bioinformatics, Autumn 2006 55

Local alignment: example

0G8
0G7
0A6
0A5

0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
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Local alignment: example

24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
Scoring

Match: +2

Mismatch: -1

Indel: -2

C T – A A
C T C A A
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Non-uniform mismatch penalties

l We used uniform penalty for mismatches:

s(’A’, ’C’) = s(’A’, ’G’) = … = s(’G’, ’T’) = µ

l Transition mutations (A->G, G->A, C->T, T->C) are
approximately twice as frequent than transversions (A-
>T, T->A, A->C, G->T)

− use non-uniform mismatch

penalties

1-1-0.5-1T
-11-1-0.5G

-0.5-11-1C
-1-0.5-11A
TGCA
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Gaps in alignment

l Gap is a succession of indels in alignment

l Previous model scored a length k gap as w(k) = -k

l Replication processes may produce longer stretches
of insertions or deletions

− In coding regions, insertions or deletions of codons may
preserve functionality

C T – - - A A
C T C G C A A
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Gap open and extension penalties (2)

l We can design a score that allows the penalty opening
gap to be larger than extending the gap:

w(k) = - (k – 1)

l Gap open cost , Gap extension cost

l Our previous algorithm can be extended to use w(k)
(not discussed on this course)
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Multiple alignment
• Consider a set of n

sequences on the right
– Orthologous sequences from

different organisms
– Paralogs from multiple

duplications
• How can we study

relationships between these
sequences?

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggctgcgac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagcgcta
aagcggcctgtgtgcccta
atgctgctgccagtgta
agtcgagccccgagtgc
agtccgagtcc
actcggtgc
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Optimal alignment of three
sequences

l Alignment of A = a1a2…ai and B = b1b2…bj can end
either in (-, bj), (ai, bj) or (ai, -)

l 22 – 1 = 3 alternatives
l Alignment of A, B and C = c1c2…ck can end in 23 – 1

ways: (ai, -, -), (-, bj, -), (-, -, ck), (-, bj, ck), (ai, -, ck), (ai,
bj, -) or (ai, bj, ck)

l Solve the recursion using three-dimensional dynamic
programming matrix: O(n3) time and space

l Generalizes to n sequences but impractical with
moderate number of sequences
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Multiple alignment in practice

l In practice, real-world multiple alignment problems are
usually solved with heuristics

l Progressive multiple alignment
− Choose two sequences and align them
− Choose third sequence w.r.t. two previous sequences and

align the third against them

− Repeat until all sequences have been aligned

− Different options how to choose sequences and score
alignments
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Multiple alignment in practice

l Profile-based progressive multiple alignment:
CLUSTALW

− Construct a distance matrix of all pairs of sequences using
dynamic programming

− Progressively align pairs in order of decreasing similarity
− CLUSTALW uses various heuristics to contribute to

accuracy
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Additional material

l R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological
sequence analysis

l Course Biological sequence analysis in Spring 2007
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Phylogeny

• We want to study ancestor-
descendant relationships, or
phylogeny, among groups of
organisms

• Groups are called taxa
(singular: taxon)

• Organisms are usually called
operational taxonomic units or
OTUs in the context of
phylogeny
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Phylogenetic trees

• Leaves (external nodes) ~
species, observed (OTUs)

• Internal nodes ~ ancestral
species/divergence events,
not observed

• Unrooted tree does not
specify ancestor-
descendant relationships
beyond the observation
”leaves are not ancestors”

1

2

3

4

5

6
7

8

Unrooted tree with 5 leaves
and 3 internal nodes.

Is node 7 ancestor of node 6?
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Phylogenetic trees

• Rooting a tree specifies
all ancestor-descendant
relationships in the tree

• Root is the ancestor to
the other species

• There are n-1 ways to
root a tree with n nodes

1

2

3

4

5

6
7

8

R1 R2

2 3 4 51

6

7

8

R1

2 3 451

6

7
8

R2

roo
t(R

1
)

root(R
2 )
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Questions

l Can we enumerate all possible phylogenetic trees for
n species (or sequences?)

l How to score a phylogenetic tree with respect to data?

l How to find the best phylogenetic tree given data?
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Finding the best phylogenetic tree:
naive method

l How can we find the phylogenetic tree that best
represents the data?

l Naive method: enumerate all possible trees

l How many different trees are there of n species?

l Denote this number by bn
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Enumerating unordered trees
• Start with the only

unordered tree with 3
leaves (b3 = 1)

• Consider all ways to add a
leaf node to this tree

• Fourth node can be added to
3 different branches (edges),
creating 1 new internal branch

• Total number of branches is n
external and n – 3 internal
branches

• Unrooted tree with n leaves
has 2n – 3 branches

1 2

3

1 2

3

4

1 2

3

4

1 2

3
4
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Enumerating unordered trees

• Thus, we get the number of unrooted trees
bn = (2(n – 1) – 3)bn-1 = (2n – 5)bn-1

= (2n – 5) * (2n – 7) * …* 3 * 1
= (2n – 5)! / ((n-3)!2n-3), n > 2

• Number of rooted trees b’n is
b’n = (2n – 3)bn = (2n – 3)! / ((n-2)!2n-2), n > 2

that is, the number of unrooted trees times the
number of branches in the trees
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Number of possible rooted and
unrooted trees

8.20E+0212.22E+02020
4.95E+0388.69E+03630

34459425202702510
20270251351359
135135103958
103959547
9451056
105155
1534
313
b’nBnn
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Too many trees?

l We can’t construct and evaluate every phylogenetic
tree even for a smallish number of species

l Better alternative is to
− Devise a way to evaluate an individual tree against the data
− Guide the search using the evaluation criteria to reduce the

search space
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Parsimony method

l The parsimony method finds the tree that explains the
observed sequences with a minimal number of
substitutions

l Method has two steps
− Compute smallest number of substitutions for a given tree

with a parsimony algorithm

− Search for the tree with the minimal number of substitutions
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Parsimony: an example

l Consider the following short sequences

1 ACTTT

2 ACATT

3 AACGT

4 AATGT

5 AATTT

l There are 105 possible rooted trees for 5 sequences

l Example: which of the following trees explains the
sequences with least number of substitutions?
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

This tree explains the sequences
with 4 substitutions
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 ACCTTC->T

7 AACGT
8 AATGT

9 AATTT

G->T
T->C

T->G

A->C

C->A

6 substitutions…

First tree is
more
parsimonious!

4 substitutions…
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Computing parsimony

l Parsimony treats each site (position in a sequence)
independently

l Total parsimony cost is the sum of parsimony costs of
each site

l We can compute the minimal parsimony cost for a
given tree by

− First finding out possible assignments at each node, starting
from leaves and proceeding towards the root

− Then, starting from the root, assign a letter at each node,
proceeding towards leaves
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Labelling tree nodes

l An unrooted tree with n leaves contains 2n-2 nodes
altogether

l Assign the following labels to nodes in a rooted tree
− leaf nodes: 1, 2, …, n
− internal nodes: n+1, n+2, …, 2n-1
− root node: 2n-1

l The label of a child node is always
smaller than the label of the
parent node 2 3 4 51

6

8

7

9
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Parsimony algorithm: first phase
l Find out possible assignments at every node for each site

independently. Denote site u in sequence i by si,u

For i := 1, …, n do
Fi := {si,u}                  % possible assignments at node i
Li := 0                       % number of substitutions up to node i

For i := n+1, …, 2n-1 do
Let j and k be the children of node i
If Fj Fk = then Li := Lj + Lk + 1, Fi := Fj Fk

else Li := Lj + Lk, Fi := Fj Fk
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Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

Choose u = 3 (for example)
F1 := {T}
L1 := 0
F2 := {A}
L2 := 0

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F3 := {C}, L3 := 0

F4 := {T}, L4 := 0

F5 := {T}, L5 := 0

6

7

8

9
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Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 T

9 T

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F6 := F3 F4 = {C, T}

L6 := L3 + L4 + 1 = 1

F7 := F5 F6 = {T}
L7 := L5 + L6 = 1

F9 := F7 F8 = {T}
L9 := L7 + L8 = 2 Parsimony cost for site 3 is 2
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Parsimony algorithm: second phase

l Backtrack from the root and assign x Fi at each node

l If we assigned y at parent of node i and y Fi, then
assign y

l Else assign x Fi by random
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Parsimony algorithm: second phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 T

9 T

At node 6, the algorithm
assigns T because T
was assigned to parent
node 7 and T F6

The other nodes have
only one possible letter
to assign
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Parsimony algorithm

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 T

7 T

8 T

9 T

First and second phase are
repeated for each site in the
sequences,
summing the parsimony
costs at each site
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Properties of parsimony algorithm

l Parsimony algorithm requires that the sequences are
of same length

− First align the sequences against each other and remove
indels

− Then compute parsimony for the resulting sequences

l Is the most parsimonious tree the correct tree?
− Not necessarily but it explains the sequences with least

number of substitutions
− We can assume that the probability of having fewer

mutations is higher than having many mutations
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Finding the most parsimonious tree

l Parsimony algorithm calculates the parsimony cost for
a given tree…

l …but we still have the problem of finding the tree with
the lowest cost

l Exhaustive search (enumerating all trees) is in general
impossible

l More efficient methods exist, for example
− Probabilistic search
− Branch and bound
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Branch and bound in parsimony

l We can exploit the fact that adding edges to a tree can
only increase the parsimony cost

1

AATGT

2

AATTT

3

AACGT

1

AATGT

2

AATTT

{T}
{T}

{C, T}

cost 0 cost 1
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Branch and bound in parsimony
Branch and bound is a
general search strategy
where

l Each solution is potentially
generated

l Track is kept of the best
solution found

l If a partial solution cannot
achieve better score, we
abandon the current search
path

In parsimony…

l Start from a tree with 1
sequence

l Add a sequence to the tree
and calculate parsimony
cost

l If the tree is complete, check
if found the best tree so far

l If tree is not complete and
cost exceeds best tree cost,
do not continue adding
edges to this tree

Introduction to bioinformatics, Autumn 2006 93

Branch and bound graphically

…

1 2 34

…

Partial tree, no best complete tree constructed yet

Complete tree: calculate parsimony cost and store
Partial tree, cost exceeds the cost of the best tree this far
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Distance methods

l The parsimony method works on sequence (character
string) data

l We can also build phylogenetic trees in a more
general setting

l Distance methods work on a set of pairwise distances
dij for the data

l Distances can be obtained from phenotypes as well as
from genotypes (sequences)
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Distances in a phylogenetic tree

l Distance matrix D = (dij)
gives pairwise distances for
leaves of the phylogenetic
tree

l In addition, the phylogenetic
tree will now specify
distances between leaves
and internal nodes

− Denote these with dij as well

2 3 4 51

6

7

8

Distance dij states how
far apart species i and j
are evolutionary (e.g.,
number of mismatches in
aligned sequences)
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Distances in evolutionary context

l Distances dij in evolutionary context satisfy the
following conditions

− Symmetry: dij = dji for each i, j
− Distinguishability: dij 0 if and only if i j
− Triangle inequality: dij dik + dkj for each i, j, k

l Distances satisfying these conditions are called metric
l In addition, evolutionary mechanisms may impose

additional constraints on the distances

additive and ultrametric distances
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Additive trees

l A tree is called additive, if the distance between any
pair of leaves (i, j) is the sum of the distances between
the leaves and the first node k that they share in the
tree

dij = dik + djk

l ”Follow the path from the leaf i to the leaf j to find the
exact distance dij between the leaves.”
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Additive trees: example

0244D

2044C

4402B

4420A

DCBA
A

B

C

D

1

1

2 1

1
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Ultrametric trees

l A rooted additive tree is called a ultrametric tree, if the
distances between any two leaves i and j, and their
common ancestor k are equal

dik = djk

l Edge length dij corresponds to the time elapsed since
divergence of i and j from the common parent

l In other words, edge lengths are measured by a
molecular clock with a constant rate
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Identifying ultrametric data

l We can identify distances to be ultrametric by the
three-point condition:

D corresponds to an ultrametric tree if and only if for
any three sequences i, j and k, the distances satisfy
dij max(dik, dkj)

l If we find out that the data is ultrametric, we can utilise
a simple algorithm to find the corresponding tree
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Only vertical segments of the
tree have correspondence to
some distance dij:

Horizontal segments act as
connectors.

d8,9



18

Introduction to bioinformatics, Autumn 2006 103

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

dik = djk for any two leaves
i, j and any ancestor k of
i and j
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Three-point condition: there exists
no leaf i, j for which dij > max(dik, djk)
for some leaf k.
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UPGMA algorithm

l UPGMA (unweighted pair group method using
arithmetic averages) constructs a phylogenetic tree via
clustering

l The algorithm works by at the same time
− Merging two clusters

− Creating a new node on the tree

l The tree is built from leaves towards the root

l UPGMA produces a ultrametric tree
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Cluster distances

l Let distance dij between clusters Ci and Cj be

that is, the average distance between points (species)
in the cluster.
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UPGMA algorithm
l Initialisation

− Assign each point i to its own cluster C i

− Define one leaf for each sequence, and place it at height zero

l Iteration

− Find clusters i and j for which dij is minimal

− Define new cluster k by Ck = Ci Cj, and define dkl for  all l

− Define a node k with children i and j. Place k at height dij/2

− Remove clusters i and j

l Termination:

− When only two clusters i and j remain, place root at height dij/2
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1 2

3

4

5
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1 2

3

4

5
1 2

6
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1 2

3

4

5
1 2 4 5

6 7
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1 2

3

4

5
1 2 4 5

6 7

8

3
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1 2

3

4

5
1 2 4 5

6 7

8

3

9
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UPGMA implementation

l In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

l The algorithm can be implemented to take only O(n2)
time (Gronau & Moran, 2006)

Introduction to bioinformatics, Autumn 2006 114

Problem solved?

l We now have a simple algorithm which finds a
ultrametric tree

− If the data is ultrametric, then there is exactly one ultrametric
tree corresponding to the data (we skip the proof)

− The tree found is then the ”correct” solution to the phylogeny
problem, if the assumptions hold

l Unfortunately, the data is not ultrametric in practice
− Measurement errors distort distances
− Basic assumption of a molecular clock does not hold usually

very well
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Incorrect reconstruction of non-
ultrametric data by UPGMA

1

2 3

4
1 2 34

Tree which corresponds
to non-ultrametric
distances

Incorrect ultrametric reconstruction
by UPGMA algorithm
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Finding an additive phylogenetic
tree

l Additive trees can be found with, for example, the
neighbor joining method (Saitou & Nei, 1987)

l The neighbor joining method produces unrooted trees,
which have to be rooted by other means

− A common way to root the tree is to use an outgroup
− Outgroup is a species that is known to be more distantly

related to every other species than they are to each other
− Root node candidate: position where the outgroup would join

the phylogenetic tree

l However, in real-world data, even additivity usually
does not hold very well
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Estimation of distances

l Many alternative ways to derive the distances dij exist
l We can construct a simple stochastic model for the

evolution of a DNA sequence…
l …and then obtain the distances from the model
l Key points:

− mutations at sites are rare events in the course of time =>
poisson process

− sites evolve individually and by an identical mechanism
− number of mismatched bases is a sum of mutations at

individual sites => binomial variable
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A stochastic model for base
substitutions

l Consider a single homologous site in two sequences

l Assume the sites diverged for time length t: the sites
are separated by time 2t

l Suppose that the number of substitutions in any
branch of length t has a Poisson distribution with mean
t

l Probability that k substitutions occur is given by the
Poisson probability e t t)k/(k!), k = 0, 1, 2, …
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Substitutions at one site

l General model: P(substitution results in base j | site
was base i) = mij

l Felsenstein model: mij = j, with j 0 and 1 + 2 +
3+ 4 = 1

l Assume that the set of probabilities j is same at every
position in the sequence
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Substitutions at one site (2)

l Probability qij(t) that a base i at time 0 is substituted by
a base j a time t later

l qij(t) = e t +  (1  - e t) j, if i = j

l qij(t) = (1 - e t) j, otherwise
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Substitutions at one site (3)

l We assume stationarity: distribution of base
frequencies is the same for every time t

l In other words, we want that

P(base a time t later = j) j
0

l For our simple model, this can be shown to hold
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Estimating distances

l Distances should take into account the mutation
mechanism

l Average of t substitutions occur at a particular site on
a branch of length t

l However, some of the substitutions do not change the
base (A -> A or A -> G -> A, for example)
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Mean number of substitutions in
time t

l What is the chance H that a substitution actually
changes a base?

l H = i(1  - i) = 1 - i
2

l Average number of real substitutions is then tH

l Distance K between two sequences is

K = 2 tH
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Estimating distances from sequence
data

l We want to estimate K = 2 tH from sequence data

l The chance Fij(t) that we observe a base i in one
sequence and a base j in another is

Fij(t) = l lqli(t)qlj(t)

by averaging over the possible ancestral nucleotides
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Estimating distances from sequence
data

l Expression Fij(t) = l lqli(t)qlj(t) can be simplified by
assuming that the mutation process is reversible:

lmij = jmji for all i j

l From this it can be shown that

lqij(t) = jqji(t) for all i, j and t > 0

l Now the model simplifies into Fij(t) = iqij(2t)
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Estimating distances from sequence
data

l What is the probabilitity F = F(t) that the letters at a
particular position in two immediate descendants from
the same node are identical?

F = i iqii(2t) = e-2 t +  (1  - e-2 t)(1 – H)
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Putting the sites together

l Assume that
− sites evolve independently of one other and

− mutation process is identical at each site

− The two sequences have been aligned against each other
and gaps have been removed

l Do the bases at site i in the sequences differ?

Xi = 1 if the ith pair of sites differ

Xi = 0 otherwise
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Putting the sites together (2)

l P(Xi = 1) = 1 – F = (1 - e-2 t)H

l Now D = X1 + … + Xs is the number of mismatched
pairs of bases

l D is a binomial random variable with parameters s and
1  – F

l Notice that D is the Hamming distance for the
sequences
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Putting the sites together (3)

l F is unknown and has to be estimated from the
sequence data

l Recall that the observed proportion of successes is a
good estimator of the binomial success probability:
estimate 1 – F with D/s

l D/s = (1 - e-2 t)H

l t = -log(1 – D/(sH))

l Finally, we obtain K = 2 tH = -H log(1 – D/(sH))
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Jukes-Cantor formula

l Estimate 2 tH = -H log(1 – D/(sH)) of the distance K is
known as the Jukes-Cantor formula

l When H (chance that a substitution actually occurs)
approaches 1, the estimate decreases and
approaches the Poisson mean 2 t

l H is usually not known and has to be estimated from
the data as well
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Maximum likelihood methods

l Consider the tree on the right
with three sequences

l Probability p(i1, i2, i3) of
observing bases i1, i2 and i3 can
be computed by summing over
all possible ancestral bases,

l Hard to compute for complex
trees

1 2 3

p(i1, i2, i3) = a b aqai3(t2)qab(t2-t1)qbi2(t1)qbi1(t1)

a

b
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Maximum likelihood estimation

l We would like to calculate likelihood p(i1, i2, …, in) in
the general case

l Calculations can be arranged using the peeling
algorithm

l Basic idea is to move all summation signs as far to the
right as possible
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Maximum likelihood estimation

l Likelihood for the data is then obtained by multiplying
the likelihoods of individual sites

l General recipe for maximum likelihood estimation:
− Maximize over all model parameters for a given tree
− Maximize previous expression over all possible trees
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Problems with tree-building

l Assumptions
− Sites evolve independently of one other

− Sites evolve according to the same stochastic model

− The tree is rooted

− The sequences are aligned

− Vertical inheritance
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Additional material on phylogenetic
trees

l Durbin, Eddy, Krogh, Mitchison: Biological sequence
analysis

l Jones, Pevzner: An introduction to bioinformatics
algorithms

l Gusfield: Algorithms on strings, trees, and sequences


