Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

Estimation of distances

- Many alternative ways to derive the distances d_{ii} exist
- We can construct a simple stochastic model for the evolution of a DNA sequence...
- ...and then obtain the distances from the model
- Key points:
 - mutations at sites are rare events in the course of time => poisson process
 - sites evolve individually and by an identical mechanism
 - number of mismatched bases is a sum of mutations at individual sites => binomial variable

A stochastic model for base substitutions

- Consider a single homologous site in two sequences
- Assume the sites diverged for time length t: the sites are separated by time 2t
- Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
- Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^k/(k!)$, k = 0, 1, 2, ...

Substitutions at one site

- General model: P(substitution results in base j | site was base i) = m_{ij}
- Felsenstein model: $m_{ij} = \pi_j$, with $\pi_j \ge 0$ and $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$
- Assume that the set of probabilities π_j is same at every position in the sequence

Substitutions at one site (2)

- Probability q_{ij}(t) that a base i at time 0 is substituted by a base j a time t later
- $q_{ij}(t) = e^{-\lambda t} + (1 e^{-\lambda t}) \pi_j$, if i = j

$$q_{ij}(t) = (1 - e^{-\lambda t}) \pi_j$$
, otherwise

Substitutions at one site (3)

- We assume stationarity: distribution of base frequencies is the same for every time t
- In other words, we want that

P(base a time t later = j) π_i^0

For our simple model, this can be shown to hold

Estimating distances

- Distances should take into account the mutation mechanism
- Average of λt substitutions occur at a particular site on a branch of length t
- However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

Mean number of substitutions in time t

- What is the chance H that a substitution actually changes a base?
- $H = \sum \pi_i (1 \pi_i) = 1 \sum \pi_i^2$
- Average number of real substitutions is then λtH
- Distance K between two sequences is

 $K = 2\lambda t H$

Estimating distances from sequence data

- We want to estimate $K = 2\lambda tH$ from sequence data
- The chance F_{ij}(t) that we observe a base i in one sequence and a base j in another is

$$\mathsf{F}_{ij}(t) = \sum_{I} \pi_{I} q_{Ii}(t) q_{Ij}(t)$$

by averaging over the possible ancestral nucleotides

Estimating distances from sequence data

Expression $F_{ij}(t) = \sum_{l} \pi_{l} q_{li}(t) q_{lj}(t)$ can be simplified by assuming that the mutation process is reversible:

$$\pi_{I}m_{ij} = \pi_{j}m_{ji}$$
 for all $i \neq j$

From this it can be shown that

$$\pi_l q_{ij}(t) = \pi_j q_{ji}(t)$$
 for all i, j and t > 0

Now the model simplifies into $F_{ij}(t) = \pi_i q_{ij}(2t)$

Estimating distances from sequence data

What is the probabilitity F = F(t) that the letters at a particular position in two immediate descendants from the same node are identical?

$$F = \sum_{i} \pi_{i} q_{ii}(2t) = e^{-2\lambda t} + (1 - e^{-2\lambda t})(1 - H)$$

Putting the sites together

- Assume that
 - sites evolve independently of one other and
 - mutation process is identical at each site
 - The two sequences have been aligned against each other and gaps have been removed
- Do the bases at site i in the sequences differ?
 - $X_i = 1$ if the ith pair of sites differ
 - $X_i = 0$ otherwise

Putting the sites together (2)

- $P(X_i = 1) = 1 F = (1 e^{-2\lambda t})H$
- Now $D = X_1 + ... + X_s$ is the number of mismatched pairs of bases
- D is a binomial random variable with parameters s and 1 F
- Notice that D is the Hamming distance for the sequences

Putting the sites together (3)

- F is unknown and has to be estimated from the sequence data
- Recall that the observed proportion of successes is a good estimator of the binomial success probability:
 estimate 1 F with D/s
- $D/s = (1 e^{-2\lambda t})H$
- $\sim 2\lambda t = -\log(1 D/(sH))$
- Finally, we obtain $K = 2\lambda tH = -H \log(1 D/(sH))$

Jukes-Cantor formula

- Estimate $2\lambda tH = -H \log(1 D/(sH))$ of the distance K is known as the Jukes-Cantor formula
- When H (chance that a substitution actually occurs) approaches 1, the estimate decreases and approaches the Poisson mean 2λt
- H is usually not known and has to be estimated from the data as well

Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

Maximum likelihood methods

- Consider the tree on the right with three sequences
- Probability $p(i_1, i_2, i_3)$ of observing bases i_1 , i_2 and i_3 can be computed by summing over all possible ancestral bases,

 $p(i1, i2, i3) = \sum_{a} \sum_{b} \pi_{a} q_{ai3}(t_{2}) q_{ab}(t_{2}-t_{1}) q_{bi2}(t_{1}) q_{bi1}(t_{1})$

Hard to compute for complex trees

Maximum likelihood estimation

- We would like to calculate likelihood $p(i_1, i_2, ..., i_n)$ in the general case
- Calculations can be arranged using the peeling algorithm
- Basic idea is to move all summation signs as far to the right as possible

Maximum likelihood estimation

Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

- General recipe for maximum likelihood estimation:
 - Maximize over all model parameters for a given tree
 - Maximize previous expression over *all* possible trees

Problems with tree-building

- Assumptions
 - Sites evolve independently of one other
 - Sites evolve according to the same stochastic model
 - The tree is rooted
 - The sequences are aligned
 - Vertical inheritance

Additional material on phylogenetic trees

- Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
- Jones, Pevzner: An introduction to bioinformatics algorithms
- Gusfield: Algorithms on strings, trees, and sequences