Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods

- Models for mutations and estimation of distances
, Maximum likelihood methods

Estimation of distances

, Many alternative ways to derive the distances d_{ij} exist We can construct a simple stochastic model for the evolution of a DNA sequence...
...and then obtain the distances from the model
, Key points:

- mutations at sites are rare events in the course of time => poisson process
- sites evolve individually and by an identical mechanism
- number of mismatched bases is a sum of mutations at individual sites => binomial variable

A stochastic model for base substitutions

, Consider a single homologous site in two sequences
, Assume the sites diverged for time length t : the sites are separated by time $2 t$
Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
, Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^{k} /(k!), k=0,1,2, \ldots$

Substitutions at one site

, General model: P(substitution results in base $\mathrm{j} \mid$ site was base i) $=\mathrm{m}_{\mathrm{ij}}$
, Felsenstein model: $m_{i j}=\pi_{j}$, with $\pi_{j} \geq 0$ and $\pi_{1}+\pi_{2}+$ $\pi_{3}+\pi_{4}=1$
Assume that the set of probabilities π_{j} is same at every position in the sequence

Substitutions at one site (2)

, Probability $q_{i j}(t)$ that a base i at time 0 is substituted by a base j a time t later

- $q_{i j}(t)=e^{-\lambda t}+\left(1-e^{-\lambda t}\right) \pi_{j}$, if $i=j$
- $q_{i j}(t)=\left(1-e^{-\lambda t}\right) \pi_{j}$, otherwise

Substitutions at one site (3)

We assume stationarity: distribution of base frequencies is the same for every time t
, In other words, we want that
$P($ base a time t later $=j) \pi_{j}^{0}$
, For our simple model, this can be shown to hold

Estimating distances

Distances should take into account the mutation mechanism

- Average of λt substitutions occur at a particular site on a branch of length t

However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

Mean number of substitutions in time t

, What is the chance H that a substitution actually changes a base?
, $H=\sum \pi_{i}\left(1-\pi_{i}\right)=1-\sum \pi_{i}^{2}$
Average number of real substitutions is then $\lambda \mathrm{tH}$
Distance K between two sequences is
$K=2 \lambda t H$

Estimating distances from sequence data

We want to estimate $K=2 \lambda t H$ from sequence data The chance $F_{i j}(t)$ that we observe a base i in one sequence and a base j in another is
$F_{i j}(t)=\sum_{l} \Pi_{l} q_{l i}(t) q_{l j}(t)$
by averaging over the possible ancestral nucleotides

Estimating distances from sequence data

Expression $F_{i j}(t)=\sum_{l} \pi_{1} q_{l i}(t) q_{i j}(t)$ can be simplified by assuming that the mutation process is reversible:
$\pi_{i} m_{i j}=\pi_{j} m_{\mathrm{ji}}$ for all $\mathrm{i} \neq \mathrm{j}$
, From this it can be shown that
$m_{I} q_{j j}(t)=\pi_{j} q_{j j}(t)$ for all i, j and $t>0$
, Now the model simplifies into $F_{i j}(t)=\pi_{i} q_{i j}(2 t)$

Estimating distances from sequence data

What is the probabilitity $F=F(t)$ that the letters at a particular position in two immediate descendants from the same node are identical?

$$
F=\sum_{i} \Pi_{i} q_{i i}(2 t)=e^{-2 \lambda t}+\left(1-e^{-2 \lambda t}\right)(1-H)
$$

Putting the sites together

, Assume that

- sites evolve independently of one other and
- mutation process is identical at each site
- The two sequences have been aligned against each other and gaps have been removed
Do the bases at site i in the sequences differ?
$\mathrm{X}_{\mathrm{i}}=1$ if the ith pair of sites differ
$\mathrm{X}_{\mathrm{i}}=0$ otherwise

Putting the sites together (2)

- $P\left(X_{i}=1\right)=1-F=\left(1-e^{-2 \lambda t}\right) H$
- Now $D=X_{1}+\ldots+X_{s}$ is the number of mismatched pairs of bases

D is a binomial random variable with parameters s and 1 - F
, Notice that D is the Hamming distance for the sequences

Putting the sites together (3)

, F is unknown and has to be estimated from the sequence data
, Recall that the observed proportion of successes is a good estimator of the binomial success probability: estimate $1-F$ with D / s

- $\mathrm{D} / \mathrm{s}=\left(1-\mathrm{e}^{-2 \lambda t}\right) \mathrm{H}$
- $2 \lambda t=-\log (1-D /(s H))$

Finally, we obtain $\mathrm{K}=2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$

Jukes-Cantor formula

1 Estimate $2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$ of the distance K is known as the Jukes-Cantor formula
, When H (chance that a substitution actually occurs) approaches 1 , the estimate decreases and approaches the Poisson mean $2 \lambda t$
, H is usually not known and has to be estimated from the data as well

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

Maximum likelihood methods

, Consider the tree on the right with three sequences
, Probability $p\left(i_{1}, i_{2}, i_{3}\right)$ of observing bases i_{1}, i_{2} and i_{3} can be computed by summing over all possible ancestral bases,

$p(i 1, i 2, i 3)=\sum_{a} \sum_{b} \pi_{a} q_{a i 3}\left(\mathrm{t}_{2}\right) \mathrm{q}_{\mathrm{ab}}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi2}}\left(\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi1}}\left(\mathrm{t}_{1}\right)$
, Hard to compute for complex trees

Maximum likelihood estimation

, We would like to calculate likelihood $p\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ in the general case
, Calculations can be arranged using the peeling algorithm

- Basic idea is to move all summation signs as far to the right as possible

Maximum likelihood estimation

, Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

General recipe for maximum likelihood estimation:

- Maximize over all model parameters for a given tree
- Maximize previous expression over all possible trees

Problems with tree-building

, Assumptions

- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance

Additional material on phylogenetic trees

, Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
Jones, Pevzner: An introduction to bioinformatics algorithms

Gusfield: Algorithms on strings, trees, and sequences

