Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Background: comparative genomics

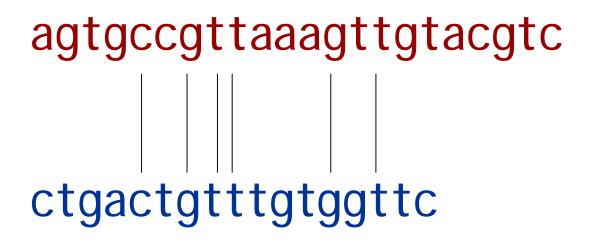
- Basic question in biology: what properties are shared among organisms?
- Genome sequencing allows comparison of organisms at DNA and protein levels
- Comparisons can be used to
 - Find evolutionary relationships between organisms
 - Identify functionally conserved sequences
 - Identify corresponding genes in human and model organisms: develop models for human diseases

Homologs

Two genes or characters
 g_B and g_C evolved from
 the same ancestor g_A are
 called homologs

 $g_A = agtgtccgttaagtgcgttc$

 $g_B = agtgccgttaaagttgtacgtc$


Homologs usually exhibit conserved functions

 $g_C = ctgactgtttgtggttc$

 Close evolutionary relationship => expect a high number of homologs

Sequence similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

What about sequences that differ in length?

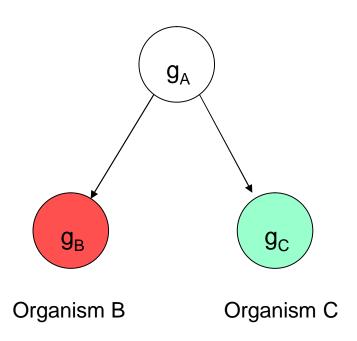
Similarity vs homology

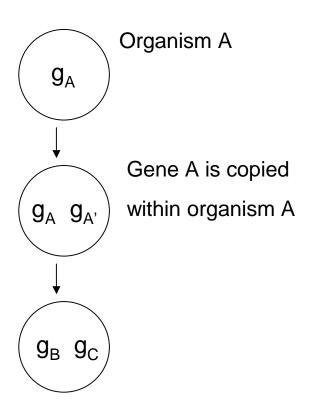
Sequence similarity is not sequence homology

 If the two sequences g_B and g_C have accumulated enough mutations, the similarity between them is likely to be low

#mutation	ns	#mutations
0	agtgtccgttaagtgcgttc	64 acagtccgttcgggctattg
1	agtgtccgttatagtgcgttc	128 cagagcactaccgc
2	agtgtccgcttatagtgcgttc	256 cacgagtaagatatagct
4	agtgtccgcttaagggcgttc	512 taatcgtgata
8	agtgtccgcttcaaggggcgt	1024 accettatetaetteetggagtt
16	gggccgttcatgggggt	2048 agcgacctgcccaa
32	gcagggcgtcactgagggct	4096 caaac

Homology is more difficult to detect over greater evolutionary distances.

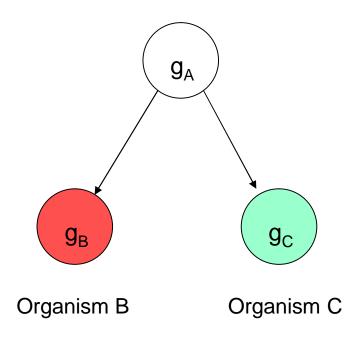

Similarity vs homology (2)

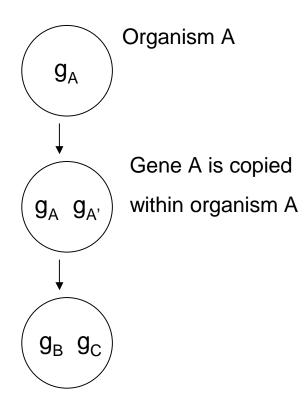

- Sequence similarity can occur by chance
 - Similarity does not imply homology

Similarity is an expected consequence of homology

Orthologs and paralogs

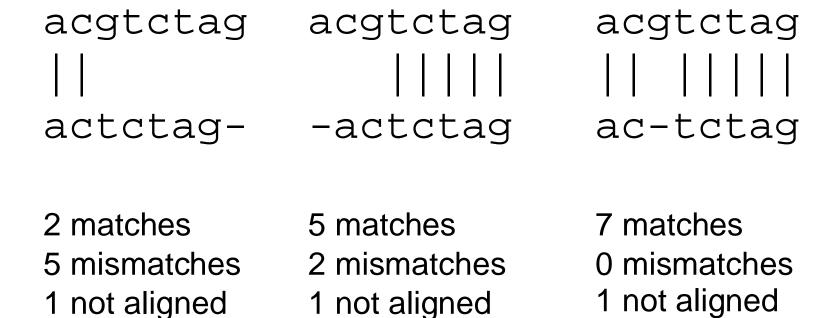
- We distinguish between two types of homology
 - Orthologs: homologs from two different species
 - Paralogs: homologs within a species

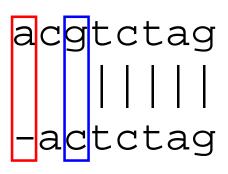



Orthologs and paralogs (2)

Orthologs typically retain the original function

In paralogs, one copy is free to mutate and acquire


new function (no selective pressure)


Sequence alignment

Alignment specifies which positions in two sequences match

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Mismatch: substitution (point mutation) of a single base

- Insertions and/or deletions are called *indels*
 - We can't tell whether the ancestor sequence had a base or not at indel position

Problems

- What sorts of alignments should be considered?
- How to score alignments?
- How to find optimal or good scoring alignments?
- How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

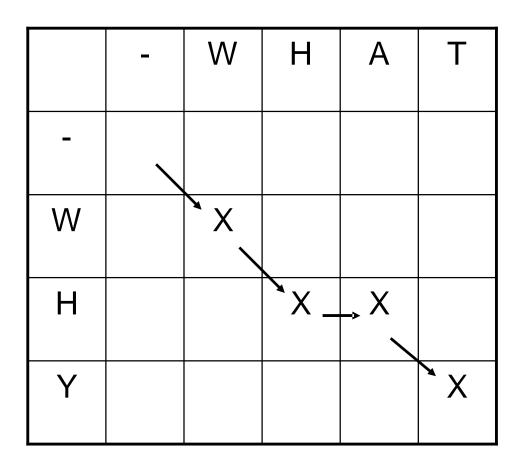
Course *Biological sequence analysis* tackles all four indepth.

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Global alignment

- Problem: find optimal scoring alignment between two sequences (Needleman & Wunsch 1970)
- We give score for each position in alignment


```
    Identity (match) +1 WHAT
    Substitution (mismatch) -μ | |
    Indel -δ WH-Y
```

$$S(WHAT/WH-Y) = 1 + 1 - \delta - \mu$$

Representing alignments and scores

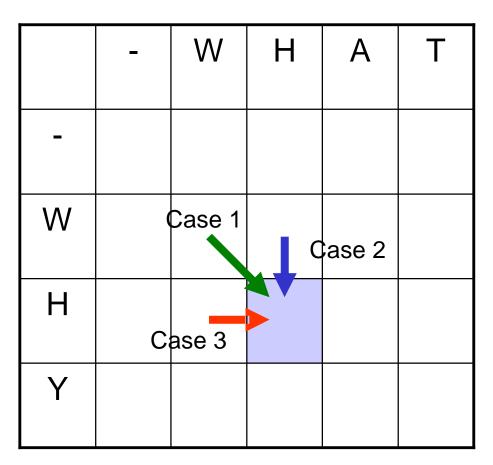
WHAT

WH-Y

Representing alignments and scores

WHAT

WH-Y

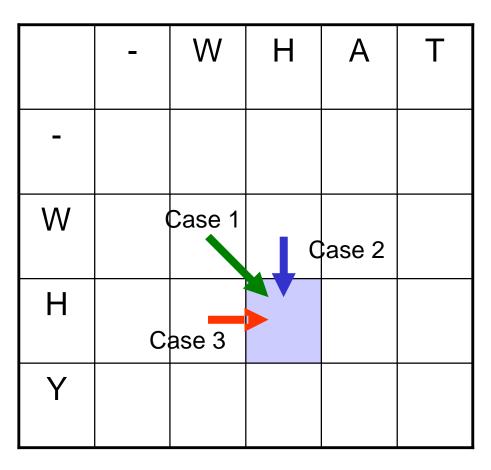

Global alignment score $S_{3,4} = 2-\delta-\mu$

	-	W	Н	A	Т
-	0				
W		1			
Н			2	2-δ	
Y					2-δ-μ

Dynamic programming

- How to find the optimal alignment?
- We use previous solutions for optimal alignments of smaller subsequences
- This general approach is known as dynamic programming

Filling the alignment matrix


Consider the alignment process at shaded square.

Case 1. Align H against H (match or substitution).

Case 2. Align H in WHY against – (indel) in WHAT.

Case 3. Align H in WHAT against – (indel) in WHY.

Filling the alignment matrix (2)

Scoring the alternatives.

Case 1.
$$S_{2,2} = S_{1,1} + s(2, 2)$$

Case 2.
$$S_{2,2} = S_{1,2} - \delta$$

Case 3.
$$S_{2,2} = S_{2,1} - \delta$$

s(i, j) = 1 for matching positions,

$$s(i, j) = -\mu$$
 for substitutions.

Choose the case (path) that yields the maximum score.

Keep track of path choices.

Global alignment: formal development

$$A = a_1 a_2 a_3 ... a_n$$

$$B = b_1 b_2 b_3 ... b_m$$

$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad -$$

$$- a_1 - a_2 a_3$$

- Any alignment can be written as a unique path through the matrix
- Score for aligning A and B up to positions i and j:

$$S_{i,j} = S(a_1 a_2 a_3 ... a_i, b_1 b_2 b_3 ... b_i)$$

0 1 2 3 4

	-	b ₁	b ₂	b_3	b ₄
_		,			
a ₁				-	
a ₂					
a ₃					+

3

Scoring partial alignments

- Alignment of $A = a_1 a_2 a_3 ... a_n$ with $B = b_1 b_2 b_3 ... b_m$ can end in three ways
 - Case 1: $(a_1a_2...a_{i-1}) a_i$ $(b_1b_2...b_{j-1}) b_j$
 - Case 2: $(a_1a_2...a_{i-1}) a_i$ $(b_1b_2...b_j)$ -
 - Case 3: (a₁a₂...a_i) (b₁b₂...b_{i-1}) b_i

Scoring alignments

Scores for each case:

- Case 1:
$$(a_1a_2...a_{i-1}) a_i$$

 $(b_1b_2...b_{j-1}) b_j$

$$s(a_i, b_j) = \begin{cases} +1 \text{ if } a_i = b_j \\ -\mu \text{ otherwise} \end{cases}$$

- Case 2:
$$(a_1a_2...a_{i-1}) a_i$$

 $(b_1b_2...b_j)$ -

$$(D_1D_2...D_j)$$
 – Case 3: $(a_1a_2...a_i)$ –

$$(b_1b_2...b_{i-1})$$
 b_i

$$s(a_i, -) = s(-, b_j) = -\delta$$

Scoring alignments (2)

 First row and first column correspond to initial alignment against indels:

$$S(i, 0) = -i \delta$$

$$S(0, j) = -j \delta$$

 Optimal global alignment score S(A, B) = S_{n.m}

	-	b ₁	b ₂	b ₃	b ₄
_	0	-δ	-2δ	-3δ	-4δ
a ₁	-δ				
a ₂	-2δ				
a ₃	-3δ				

Algorithm for global alignment

```
Input sequences A, B, n = |A|, m = |B|

Set S_{i,0} := -\delta i for all i

Set S_{0,j} := -\delta j for all j

for i := 1 to n

for j := 1 to m

S_{i,j} := max\{S_{i-1,j} - \delta, S_{i-1,j-1} + s(a_i,b_j), S_{i,j}-1 - \delta\}

end
```

Algorithm takes O(nm) time and space.

Global alignment: example

$$\mu = 1$$

$$\delta = 2$$

	-	Т	G	G	Т	G
-	0	-2	-4	-6	-8	-10
Α	-2					
Т	-4					
С	-6					
G	-8					
Т	-10					?

Global alignment: example (2)

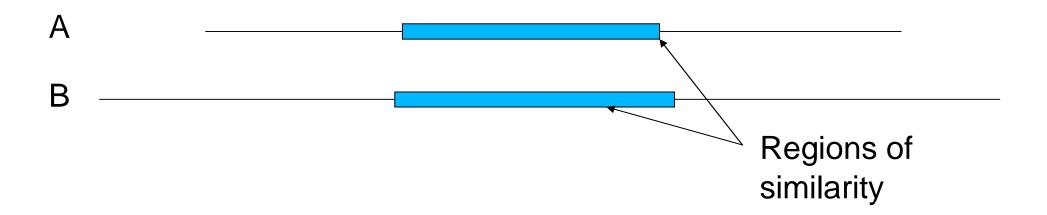
$$\mu = 1$$
 $\delta = 2$

	-	Т	G	G	Т	G
-	0	-2	-4	-6	-8	-10
Α	-2	-1	-3	-5	-7	-9
Т	-4	-1	-2	-4	-4	-6
С	-6	-3	-2	-3	-5	-5
G	-8	-5	-2	-1	-3	-4
Т	-10	-7	-4	-3	, 0 –	→ -2

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Local alignment: rationale


- Otherwise dissimilar proteins may have local regions of similarity
 - -> Proteins may share a function

Human bone morphogenic protein receptor type II precursor (left) has a 300 aa region that resembles 291 aa region in TGF-β receptor (right).

The shared function here is protein kinase.

Local alignment: rationale

- Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith & Waterman 1981)

From global to local alignment

- Modifications to the global alignment algorithm
 - Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix)
 - Allow preceding and trailing indels without penalty

Scoring local alignments

$$A = a_1 a_2 a_3 ... a_n$$
, $B = b_1 b_2 b_3 ... b_m$

Let I and J be intervals (substrings) of A and B, respectively: $I \subset A$, $J \subset B$

Best local alignment score:

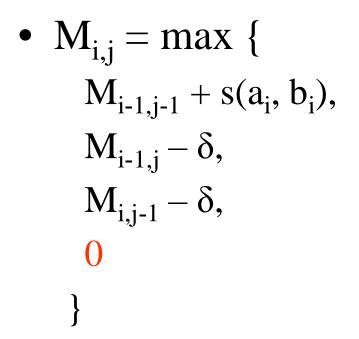
$$M(A,B) = \max\{S(I,J) : I \subset A, J \subset B\}$$

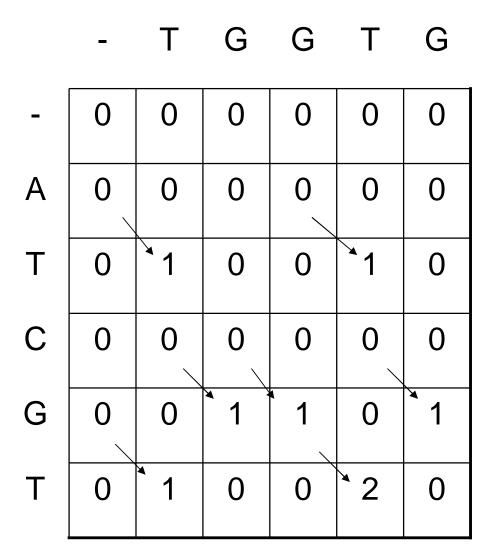
where S(I, J) is the score for substrings I and J.

Allowing preceding and trailing indels

First row and column initialised to zero:

$$M_{i,0} = M_{0,j} = 0$$

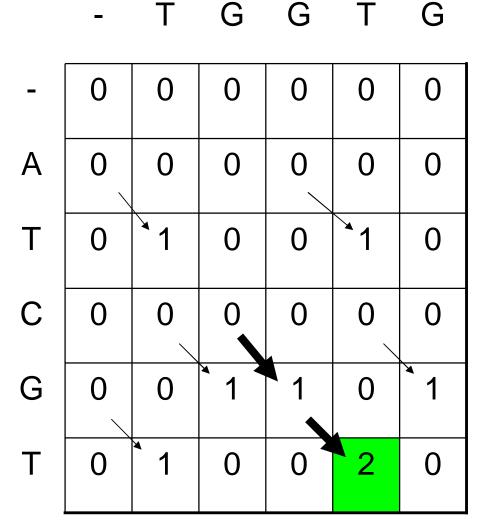

b1 b2 b3
- a1


0 1 2 3 4

	-	b ₁	b ₂	b ₃	b ₄
-	0	0	0	0	0
a ₁	0				
a ₂	0				
a ₃	0				

3

Recursion for local alignment



Finding best local alignment

Optimal score is the highest value in the matrix

$$M(A, B) = \max\{S(I, J) : I \subset A, J \subset B\}$$

= $\max_{i,j} M_{i,j}$

 Best local alignment can be found by backtracking from the highest value in M

Local alignment: example

		0	1	2	3	4	5	6	7	8	9	10
		_	G	G	С	Т	С	Α	Α	Т	С	Α
0	_	0	0	0	0	0	0	0	0	0	0	0
1	Α	0										
2	С	0										
3	С	0										
4	Т	0										
5	Α	0										
6	Α	0										
7	G	0										
8	G	0										

Local alignment: example

Match: +2

Mismatch: -1

Indel: -2

C T - A AC T C A A

		0	1	2	3	4	5	6	7	8	9	10
		_	G	G	С	T	С	Α	Α	Т	С	Α
0	_	0	0	0	0	0	0	0	0	0	0	0
1	Α	0	0	0	0	0	0	2	2	0	0	2
2	С	0	0	0 、	2	0	2	0	1	1	2	0
3	С	0	0	0	2	1	2	1	0	0	3	1
4	Т	0	0	0	0	4 -	2	1	0	2	1	2
5	Α	0	0	0	0	2	3	4	3	1	1	3
6	Α	0	0	0	0	0	1	5	, (O	4	2	3
7	G	0	2	2	0	0	0	3	4	5	3	1
8	G	0	2	4	2	0	0	1	2	3	4	2

Non-uniform mismatch penalties

We used uniform penalty for mismatches:

$$s('A', 'C') = s('A', 'G') = ... = s('G', 'T') = \mu$$

- Transition mutations (A->G, G->A, C->T, T->C) are approximately twice as frequent than transversions (A->T, T->A, A->C, G->T)
 - use non-uniform mismatch penalties

A	С	G	Т
1	-	-0.5	-1
-1	1	-1	-0.5
-0.5	-1	1	-1
-1	-0.5	-1	1

G

Gaps in alignment

Gap is a succession of indels in alignment

- Previous model scored a length k gap as $w(k) = -k\delta$
- Replication processes may produce longer stretches of insertions or deletions
 - In coding regions, insertions or deletions of codons may preserve functionality

Gap open and extension penalties (2)

We can design a score that allows the penalty opening gap to be larger than extending the gap:

$$w(k) = -\alpha - \beta(k-1)$$

- Gap open cost α, Gap extension cost β
- Our previous algorithm can be extended to use w(k) (not discussed on this course)

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Multiple alignment

- Consider a set of n sequences on the right
 - Orthologous sequences from different organisms
 - Paralogs from multiple duplications
- How can we study relationships between these sequences?

aggcgagctgcgagtgcta cgttagattgacgctgac ttccggctgcgac gacacggcgaacgga agtgtgcccgacgaggaggac gcgggctgtgagcgcta aagcggcctgtgtgcccta atgctgctgccagtgta agtcgagccccgagtgc agtccgagtcc actcggtgc

Optimal alignment of three sequences

- Alignment of $A = a_1 a_2 ... a_i$ and $B = b_1 b_2 ... b_j$ can end either in $(-, b_i)$, (a_i, b_i) or $(a_i, -)$
- $12^2 1 = 3$ alternatives
- Alignment of A, B and C = $c_1c_2...c_k$ can end in $2^3 1$ ways: $(a_i, -, -)$, $(-, b_j, -)$, $(-, -, c_k)$, $(-, b_j, c_k)$, $(a_i, -, c_k)$, $(a_i, b_j, -)$ or (a_i, b_j, c_k)
- Solve the recursion using three-dimensional dynamic programming matrix: O(n³) time and space
- Generalizes to n sequences but impractical with moderate number of sequences

Multiple alignment in practice

- In practice, real-world multiple alignment problems are usually solved with heuristics
- Progressive multiple alignment
 - Choose two sequences and align them
 - Choose third sequence w.r.t. two previous sequences and align the third against them
 - Repeat until all sequences have been aligned
 - Different options how to choose sequences and score alignments

Multiple alignment in practice

- Profile-based progressive multiple alignment: CLUSTALW
 - Construct a distance matrix of all pairs of sequences using dynamic programming
 - Progressively align pairs in order of decreasing similarity
 - CLUSTALW uses various heuristics to contribute to accuracy

Additional material

- R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
- Course Biological sequence analysis in Spring 2007