#### 582606 Introduction to bioinformatics

Autumn 2006 Esa Pitkänen

Master's Degree Programme in Bioinformatics (MBI)
Department of Computer Science, University of Helsinki
http://www.cs.helsinki.fi/mbi/courses/06-07/itb/

#### Administrative issues

- Master level course
- Obligatory course in Master's Degree Programme in Bioinformatics
- 4 credits
- Prerequisites: basic mathematical skills
- Lectures: Tuesdays and Fridays 14-16 in Exactum C222
- Exercises: Fridays 12-14 in Exactum C222
  - Note: exercises start on Friday 22.9.2006!

#### **Teachers**

- Esa Pitkänen, Department of Computer Science, University of Helsinki
- Prof. Elja Arjas, Department of Mathematics and Statistics, University of Helsinki
- Prof. Samuel Kaski, Helsinki University of Technology

#### How to enrol for the course?

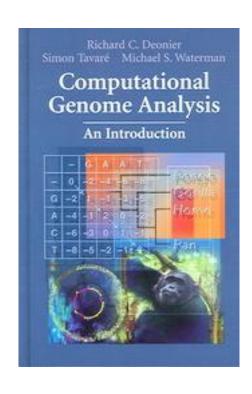
Use the registration system of the Computer Science department: https://ilmo.cs.helsinki.fi

#### How to successfully pass the course?

- You can get a maximum of 60 points
  - Course exam: maximum of 50 points
  - Exercises: maximum of 10 points
    - 0% completed assignments gives you 0 points, 80% gives 10 points
- Course will be graded on the scale 0-5
  - To get the lowest passing grade 1/5, you need to have at least 30 points
- Course exam: Monday 16.10. at 16.00-19.00

#### Course material

- Course book: Richard C. Deonier, Simon Tavare & Michael S. Waterman: Computational Genome Analysis an Introduction, Springer 2005
- Available at Kumpula and Viikki science libraries; Yliopistokirjakauppa 69€, Akateeminen 75€, Suomalainen 87€, amazon.com \$66.57, amazon.co.uk £47.50 (6.9.2006)
- It is recommended that you have access to the course book!
- Slides for some lectures will be available on the course web page oduction to bioinformatics, Autumn 2006

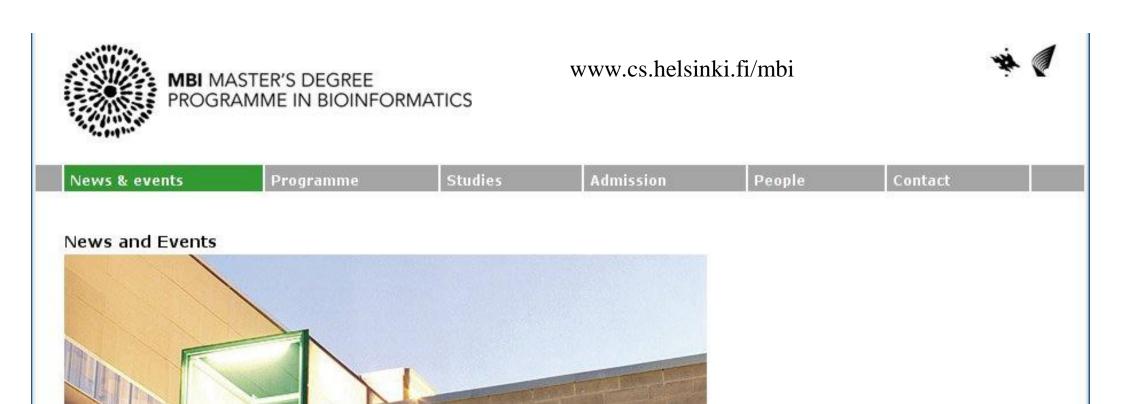


#### Course contents

- Biological background (book chapter 1)
- Probability calculus (chapters 2 and 3)
- Sequence alignment (chapter 6)
- Phylogenetics (chapter 12)
- Expression data analysis (chapter 11)

# Master's Degree Programme in Bioinformatics (MBI)

- Two-year MSc programme
- Offered jointly by the University of Helsinki and Helsinki University of Technology
- Admission for 2007-2008 in January 2007



#### Institutions participating in MBI

#### Helsinki University of Technology

**q** Laboratory of Computer and Information Science





University of Helsinki Faculty of Biosciences Faculty of Agriculture and Forestry

University of Helsinki Faculty of Medicine





**University of Helsinki Faculty of Science** 

- **q** Department of Computer Science
- **Q** Department of Mathematics and Statistics

## Bioinformatics courses at the University of Helsinki

#### Department of Computer Science

- Practical course in biodatabases (II period): techniques for accessing and integrating data in biology databases.
- Computational neuroscience (II period): mathematical modeling of information processing taking place in the brain.
- Biological sequence analysis (III period): basic probabilistic methods for modelling and analysis of biological sequences.
- Modeling of vision (III period): mechanisms and modeling of human perception.
- Metabolic modeling (IV period): metabolic networks, fluxes and regulation of metabolism.

## Bioinformatics courses at the University of Helsinki

- Department of Mathematics and Statistics
  - Modelling fluctuating populations (I and II periods): systems driven by fluctuating parameters
  - Evolution and the theory of games (III period): introduction to game theory with emphasis on applications in evolutionary and behavioural biology

## Bioinformatics courses at Helsinki University of Technology

- Laboratory of Computer and Information Science
  - Special course in bioinformatics II (I and II periods):
     data integration and fusion in bioinformatics.
  - Signal processing in neuroinformatics (I and II periods): overview of some of the main biomedical signal processing techniques
  - High-throughput bioinformatics (III and IV periods): computational and statistical methods for analyzing modern high-throughput biological data
  - Image analysis in neuroinformatics (III and IV periods):
     biomedical image processing techniques

#### Biology for methodological scientists (8 cr)

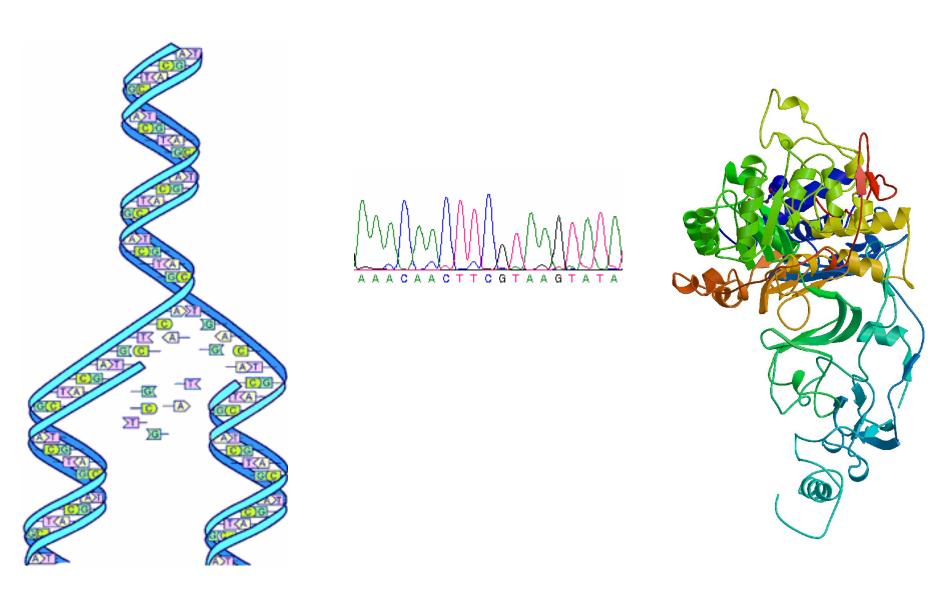
- Course organized by the Faculties of Bioscience and Medicine for the MBI programme
- Introduction to basic concepts of microarrays, genetics, molecular medicine and developmental biology
- Organized in four modules, 2 cr each
- Each module has an individual registration so you can participate even if you missed the first module
- www.cs.helsinki.fi/bioinformatiikka/mbi/courses/06-07/bfms/

#### Bioinformatics courses

Visit the website of Master's Degree Programme in Bioinformatics for up-to-date course lists:

http://www.cs.helsinki.fi/mbi

#### An introduction to bioinformatics



#### What is bioinformatics?

- Solving biological problems with computation?
- Collecting, storing and analysing biological data?
- Informatics library science?

#### What is bioinformatics?

- Bioinformatics, *n.* The science of information and information flow in biological systems, esp. of the use of computational methods in genetics and genomics. (Oxford English Dictionary)
- "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information."
  - -- Fredj Tekaia
- "I do not think all biological computing is bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems. In my opinion, bioinformatics has to do with management and the subsequent use of biological information, particular genetic information."
  - -- Richard Durbin

#### What is not bioinformatics?

- Biologically-inspired computation, e.g., genetic algorithms and neural networks
- However, application of neural networks to solve some biological problem, could be called bioinformatics
- What about DNA computing?

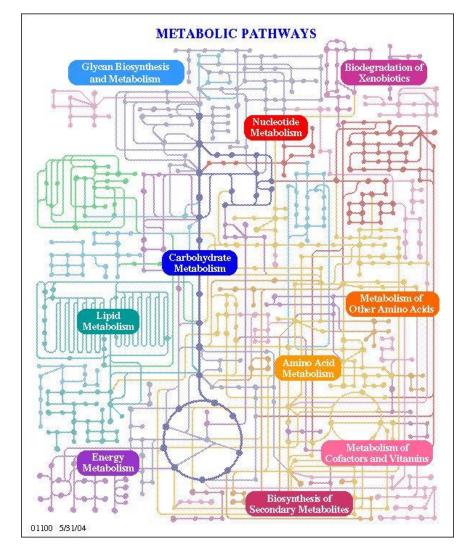
### Related concepts

- Computational biology
  - Application of computing to biology (broad definition)
  - Often used interchangeably with bioinformatics
- Biometry: the statistical analysis of biological data
- Biophysics: "an interdisciplinary field which applies techniques from the physical sciences to understanding biological structure and function" -- British Biophysical Society
- Mathematical biology "tackles biological problems, but the methods it uses to tackle them need not be numerical and need not be implemented in software or hardware." -- Damian Counsell

## Related concepts

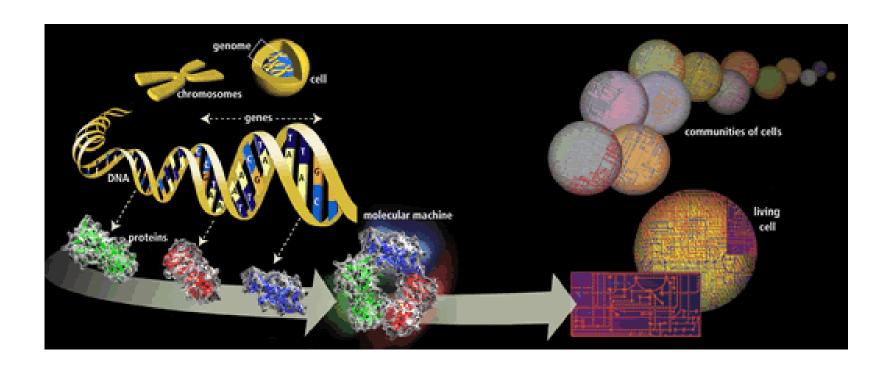
- Systems biology
  - "biology of networks"
  - integrating different levels of information to understand how biological systems work

Overview of metabolic pathways in KEGG database, www.genome.jp/kegg/



## Biological background

Molecular Biology Primer: www.bioalgorithms.info



### Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

## Background: comparative genomics

- Basic question in biology: what properties are shared among organisms?
- Genome sequencing allows comparison of organisms at DNA and protein levels
- Comparisons can be used to
  - Find evolutionary relationships between organisms
  - Identify functionally conserved sequences
  - Identify corresponding genes in human and model organisms: develop models for human diseases

## Homologs

Two genes or characters
 g<sub>B</sub> and g<sub>C</sub> evolved from
 the same ancestor g<sub>A</sub> are
 called homologs

 $g_A = agtgtccgttaagtgcgttc$ 

 $g_B = agtgccgttaaagttgtacgtc$ 

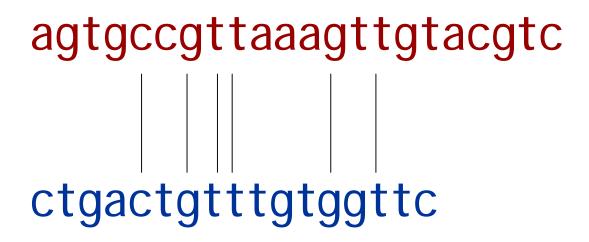
Homologs usually exhibit conserved functions

 $g_C = ctgactgtttgtggttc$ 

 Close evolutionary relationship => expect a high number of homologs

## Sequence similarity

Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence



What about sequences that differ in length?

## Similarity vs homology

#### Sequence similarity is not sequence homology

 If the two sequences g<sub>B</sub> and g<sub>C</sub> have accumulated enough mutations, the similarity between them is likely to be low

| #mutations |                        | #mutations                   |
|------------|------------------------|------------------------------|
| 0          | agtgtccgttaagtgcgttc   | 64 acagtccgttcgggctattg      |
| 1          | agtgtccgttatagtgcgttc  | 128 cagagcactaccgc           |
| 2          | agtgtccgcttatagtgcgttc | 256 cacgagtaagatatagct       |
| 4          | agtgtccgcttaagggcgttc  | 512 taatcgtgata              |
| 8          | agtgtccgcttcaaggggcgt  | 1024 accettatetaetteetggagtt |
| 16         | gggccgttcatgggggt      | 2048 agcgacctgcccaa          |
| 32         | gcagggcgtcactgagggct   | 4096 caaac                   |

Homology is more difficult to detect over greater evolutionary distances.

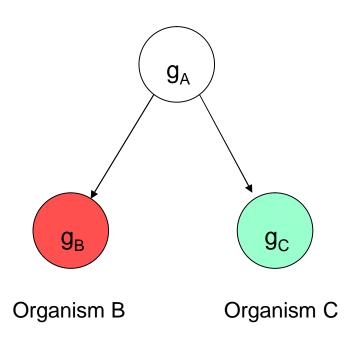
## Similarity vs homology (2)

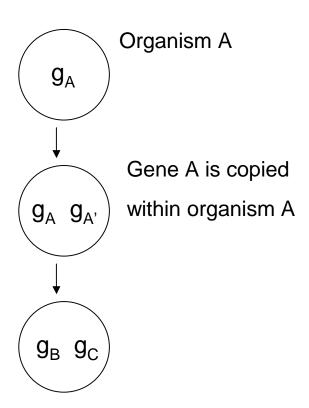
- Sequence similarity can occur by chance
  - Similarity does not imply homology

Similarity is an expected consequence of homology

## Orthologs and paralogs

- We distinguish between two types of homology
  - Orthologs: homologs from two different species
  - Paralogs: homologs within a species



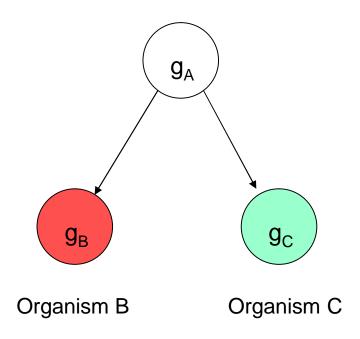


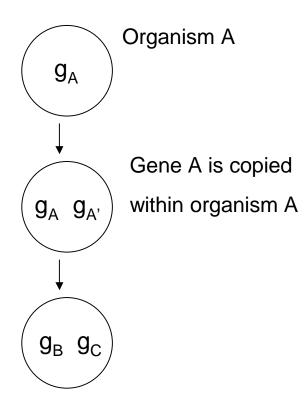
## Orthologs and paralogs (2)

Orthologs typically retain the original function

In paralogs, one copy is free to mutate and acquire

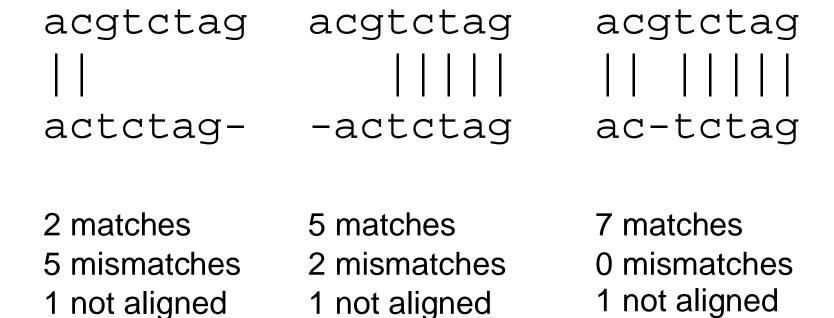
new function (no selective pressure)





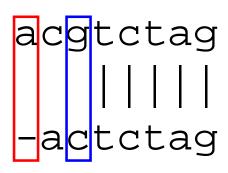
## Sequence alignment

Alignment specifies which positions in two sequences match



# Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence



Mismatch: substitution (point mutation) of a single base

- Insertions and/or deletions are called *indels* 
  - We can't tell whether the ancestor sequence had a base or not at indel position

#### **Problems**

- What sorts of alignments should be considered?
- How to score alignments?
- How to find optimal or good scoring alignments?
- How to evaluate the statistical significance of scores?

In this course, we discuss the first three problems.

Course *Biological sequence analysis* tackles all four indepth.

### Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

## Global alignment

- Problem: find optimal scoring alignment between two sequences (Needleman & Wunsch 1970)
- We give score for each position in alignment

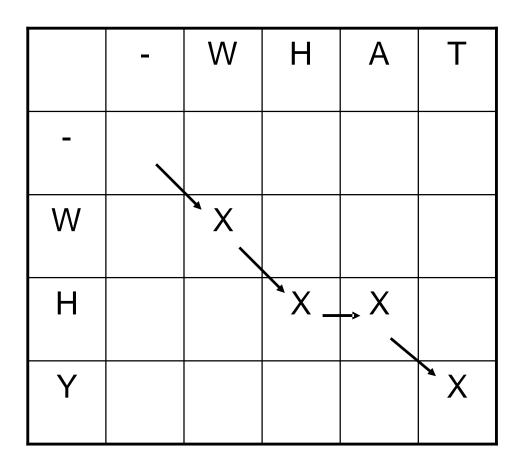
```
    Identity (match) +1 WHAT
    Substitution (mismatch) -μ | |
    Indel -δ WH-Y
```

$$S(WHAT/WH-Y) = 1 + 1 - \delta - \mu$$

## Representing alignments and scores

**WHAT** 

WH-Y



## Representing alignments and scores

WHAT

WH-Y

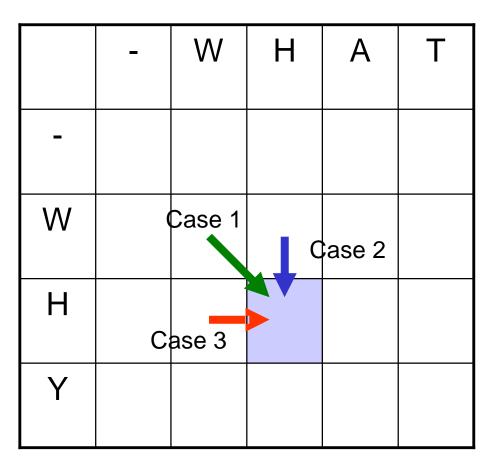
Global alignment score  $S_{3,4} = 2-\delta-\mu$ 

|   | - | W | Н | A   | Т     |
|---|---|---|---|-----|-------|
| - | 0 |   |   |     |       |
| W |   | 1 |   |     |       |
| Н |   |   | 2 | 2-δ |       |
| Y |   |   |   |     | 2-δ-μ |

#### Dynamic programming

- How to find the optimal alignment?
- We use previous solutions for optimal alignments of smaller subsequences
- This general approach is known as dynamic programming

#### Filling the alignment matrix



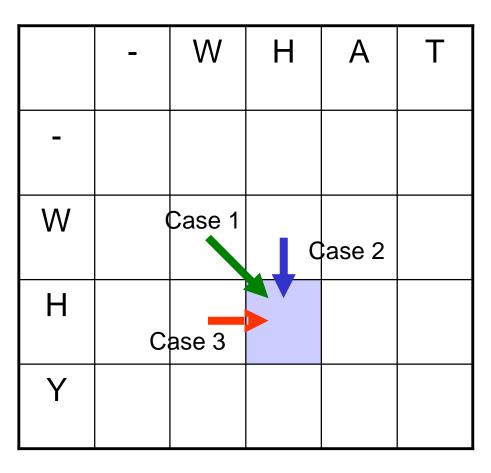
Consider the alignment process at shaded square.

Case 1. Align H against H (match or substitution).

Case 2. Align H in WHY against – (indel) in WHAT.

Case 3. Align H in WHAT against – (indel) in WHY.

#### Filling the alignment matrix (2)



Scoring the alternatives.

Case 1. 
$$S_{2,2} = S_{1,1} + s(2, 2)$$

Case 2. 
$$S_{2,2} = S_{1,2} - \delta$$

Case 3. 
$$S_{2,2} = S_{2,1} - \delta$$

s(i, j) = 1 for matching positions,

 $s(i, j) = -\mu$  for substitutions.

Choose the case (path) that yields the maximum score.

Keep track of path choices.

## Global alignment: formal development

$$A = a_1 a_2 a_3 ... a_n$$

$$B = b_1 b_2 b_3 \dots b_m$$

$$b_1 \quad b_2 \quad b_3 \quad b_4 \quad -$$

$$- a_1 - a_2 a_3$$

- Any alignment can be written as a unique path through the matrix
- Score for aligning A and B up to positions i and j:

$$S_{i,j} = S(a_1 a_2 a_3 ... a_i, b_1 b_2 b_3 ... b_i)$$

0 1 2 3 4

|                | - | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub> | b <sub>4</sub> |
|----------------|---|----------------|----------------|----------------|----------------|
| -              |   | <b>→</b>       |                |                |                |
| a <sub>1</sub> |   |                |                | <b>→</b>       |                |
| a <sub>2</sub> |   |                |                |                |                |
| a <sub>3</sub> |   |                |                |                | •              |

3

#### Scoring partial alignments

- Alignment of  $A = a_1 a_2 a_3 ... a_n$  with  $B = b_1 b_2 b_3 ... b_m$  can end in three ways
  - Case 1:  $(a_1a_2...a_{i-1}) a_i$  $(b_1b_2...b_{i-1}) b_i$
  - Case 2:  $(a_1a_2...a_{i-1}) a_i$  $(b_1b_2...b_j)$  -
  - Case 3: (a<sub>1</sub>a<sub>2</sub>...a<sub>i</sub>) (b<sub>1</sub>b<sub>2</sub>...b<sub>i-1</sub>) b<sub>i</sub>

#### Scoring alignments

#### Scores for each case:

- Case 1: 
$$(a_1a_2...a_{i-1}) a_i$$
  
 $(b_1b_2...b_{j-1}) b_j$ 

$$s(a_i, b_j) = \begin{cases} +1 \text{ if } a_i = b_j \\ -\mu \text{ otherwise} \end{cases}$$

- Case 2: 
$$(a_1a_2...a_{i-1}) a_i$$
  
 $(b_1b_2...b_j)$  -

$$(D_1D_2...D_j)$$
 – Case 3:  $(a_1a_2...a_i)$  –

$$(b_1b_2...b_{i-1})$$
  $b_i$ 

$$s(a_i, -) = s(-, b_j) = -\delta$$

### Scoring alignments (2)

 First row and first column correspond to initial alignment against indels:

$$S(i, 0) = -i \delta$$

$$S(0, j) = -j \delta$$

 Optimal global alignment score S(A, B) = S<sub>n.m</sub>

|                       | -   | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub> | b <sub>4</sub> |
|-----------------------|-----|----------------|----------------|----------------|----------------|
| _                     | 0   | -δ             | -2δ            | -3δ            | -4δ            |
| a <sub>1</sub>        | -δ  |                |                |                |                |
| a <sub>2</sub>        | -2δ |                |                |                |                |
| <b>a</b> <sub>3</sub> | -3δ |                |                |                |                |

#### Algorithm for global alignment

```
Input sequences A, B, n = |A|, m = |B|

Set S_{i,0} := -\delta i for all i

Set S_{0,j} := -\delta j for all j

for i := 1 to n

for j := 1 to m

S_{i,j} := max\{S_{i-1,j} - \delta, S_{i-1,j-1} + s(a_i,b_j), S_{i,j}-1 - \delta\}

end
```

Algorithm takes O(nm) time and space.

#### Global alignment: example

$$\mu = 1$$

$$\delta = 2$$

|   | -   | Т  | G  | G  | Т  | G   |
|---|-----|----|----|----|----|-----|
| - | 0   | -2 | -4 | -6 | -8 | -10 |
| Α | -2  |    |    |    |    |     |
| Т | -4  |    |    |    |    |     |
| С | -6  |    |    |    |    |     |
| G | -8  |    |    |    |    |     |
| Т | -10 |    |    |    |    | ?   |

#### Global alignment: example (2)

$$\mu = 1$$
 $\delta = 2$ 

|   | -   | Т  | G  | G  | Т     | G           |
|---|-----|----|----|----|-------|-------------|
| - | 0   | -2 | -4 | -6 | -8    | -10         |
| Α | -2  | -1 | -3 | -5 | -7    | -9          |
| Т | -4  | -1 | -2 | -4 | -4    | -6          |
| С | -6  | -3 | -2 | -3 | -5    | -5          |
| G | -8  | -5 | -2 | -1 | -3    | -4          |
| Т | -10 | -7 | -4 | -3 | , 0 – | <b>→</b> -2 |

#### Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

#### Local alignment: rationale

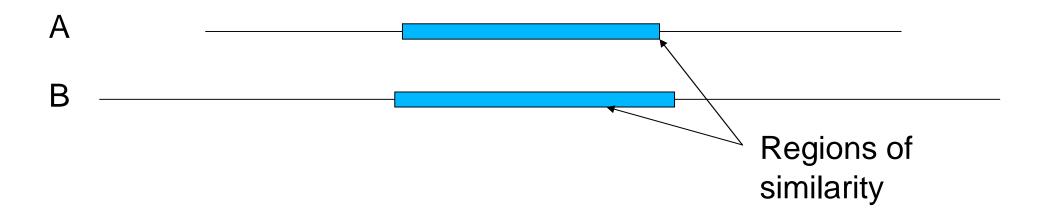
- Otherwise dissimilar proteins may have local regions of similarity
  - -> Proteins may share a function

Human bone morphogenic protein receptor type II precursor (left) has a 300 aa region that resembles 291 aa region in TGF-β receptor (right).

The shared function here is protein kinase.



#### Local alignment: rationale



- Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith & Waterman 1981)

#### From global to local alignment

- Modifications to the global alignment algorithm
  - Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix)
  - Allow preceding and trailing indels without penalty

#### Scoring local alignments

$$A = a_1 a_2 a_3 ... a_n$$
,  $B = b_1 b_2 b_3 ... b_m$ 

Let I and J be intervals (substrings) of A and B, respectively:  $I \subset A$ ,  $J \subset B$ 

Best local alignment score:

$$M(A,B) = \max\{S(I,J) : I \subset A, J \subset B\}$$

where S(I, J) is the score for substrings I and J.

### Allowing preceding and trailing indels

First row and column initialised to zero:

$$M_{i,0} = M_{0,j} = 0$$

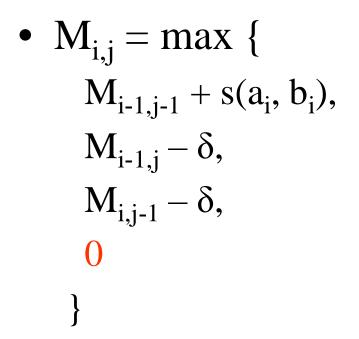
b1 b2 b3
- a1

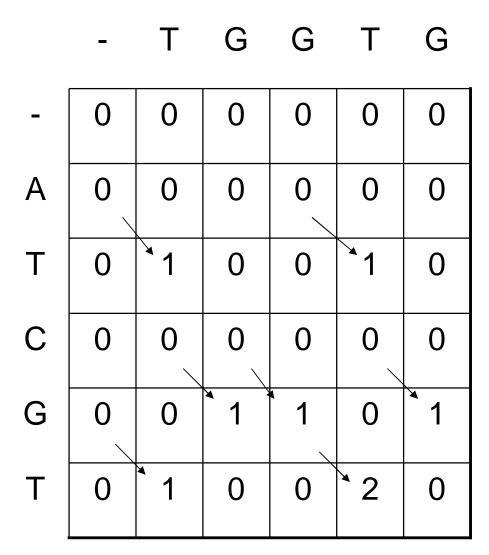
0 1 2 3 4

|                | - | b <sub>1</sub> | b <sub>2</sub> | b <sub>3</sub> | b <sub>4</sub> |
|----------------|---|----------------|----------------|----------------|----------------|
| -              | 0 | 0              | 0              | 0              | 0              |
| a <sub>1</sub> | 0 |                |                |                |                |
| a <sub>2</sub> | 0 |                |                |                |                |
| a <sub>3</sub> | 0 |                |                |                |                |

3

#### Recursion for local alignment



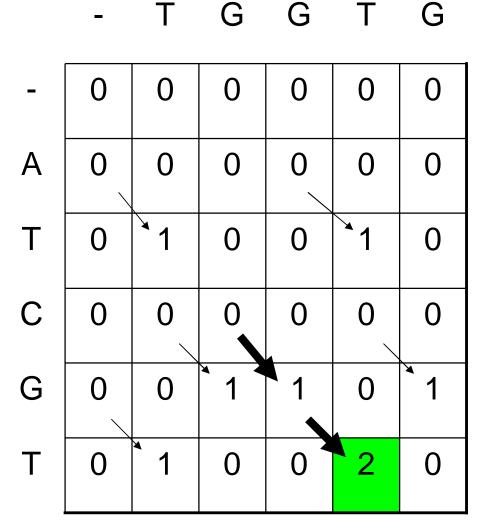


#### Finding best local alignment

Optimal score is the highest value in the matrix

$$M(A, B) = \max\{S(I, J) : I \subset A, J \subset B\}$$
  
=  $\max_{i,j} M_{i,j}$ 

 Best local alignment can be found by backtracking from the highest value in M



#### Local alignment: example

|   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|---|----|
|   |   | _ | G | G | С | Т | С | Α | Α | Т | С | Α  |
| 0 | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  |
| 1 | Α | 0 |   |   |   |   |   |   |   |   |   |    |
| 2 | С | 0 |   |   |   |   |   |   |   |   |   |    |
| 3 | С | 0 |   |   |   |   |   |   |   |   |   |    |
| 4 | Т | 0 |   |   |   |   |   |   |   |   |   |    |
| 5 | Α | 0 |   |   |   |   |   |   |   |   |   |    |
| 6 | Α | 0 |   |   |   |   |   |   |   |   |   |    |
| 7 | G | 0 |   |   |   |   |   |   |   |   |   |    |
| 8 | G | 0 |   |   |   |   |   |   |   |   |   |    |

#### Local alignment: example

Match: +2

Mismatch: -1

Indel: -2

C T - A AC T C A A

|   |   | 0 | 1 | 2   | 3 | 4   | 5 | 6        | 7           | 8 | 9 | 10 |
|---|---|---|---|-----|---|-----|---|----------|-------------|---|---|----|
|   |   | _ | G | G   | С | T   | С | Α        | Α           | Т | С | Α  |
| 0 | _ | 0 | 0 | 0   | 0 | 0   | 0 | 0        | 0           | 0 | 0 | 0  |
| 1 | Α | 0 | 0 | 0   | 0 | 0   | 0 | 2        | 2           | 0 | 0 | 2  |
| 2 | С | 0 | 0 | 0 、 | 2 | 0   | 2 | 0        | 1           | 1 | 2 | 0  |
| 3 | С | 0 | 0 | 0   | 2 | 1   | 2 | 1        | 0           | 0 | 3 | 1  |
| 4 | Т | 0 | 0 | 0   | 0 | 4 - | 2 | 1        | 0           | 2 | 1 | 2  |
| 5 | Α | 0 | 0 | 0   | 0 | 2   | 3 | <b>4</b> | 3           | 1 | 1 | 3  |
| 6 | Α | 0 | 0 | 0   | 0 | 0   | 1 | 5        | <b>,</b> (O | 4 | 2 | 3  |
| 7 | G | 0 | 2 | 2   | 0 | 0   | 0 | 3        | 4           | 5 | 3 | 1  |
| 8 | G | 0 | 2 | 4   | 2 | 0   | 0 | 1        | 2           | 3 | 4 | 2  |

#### Non-uniform mismatch penalties

We used uniform penalty for mismatches:

$$s('A', 'C') = s('A', 'G') = ... = s('G', 'T') = \mu$$

- Transition mutations (A->G, G->A, C->T, T->C) are approximately twice as frequent than transversions (A->T, T->A, A->C, G->T)
  - use non-uniform mismatch penalties

| A    | С        | G    | Т    |
|------|----------|------|------|
| 1    | <b>-</b> | -0.5 | -1   |
| -1   | 1        | -1   | -0.5 |
| -0.5 | -1       | 1    | -1   |
| -1   | -0.5     | -1   | 1    |

G

#### Gaps in alignment

Gap is a succession of indels in alignment

- Previous model scored a length k gap as  $w(k) = -k\delta$
- Replication processes may produce longer stretches of insertions or deletions
  - In coding regions, insertions or deletions of codons may preserve functionality

#### Gap open and extension penalties (2)

We can design a score that allows the penalty opening gap to be larger than extending the gap:

$$w(k) = -\alpha - \beta(k-1)$$

- Gap open cost α, Gap extension cost β
- Our previous algorithm can be extended to use w(k) (not discussed on this course)

#### Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

#### Multiple alignment

- Consider a set of n sequences on the right
  - Orthologous sequences from different organisms
  - Paralogs from multiple duplications
- How can we study relationships between these sequences?

aggcgagctgcgagtgcta cgttagattgacgctgac ttccggctgcgac gacacggcgaacgga agtgtgcccgacgaggaggac gcgggctgtgagcgcta aagcggcctgtgtgcccta atgctgctgccagtgta agtcgagccccgagtgc agtccgagtcc actcggtgc

# Optimal alignment of three sequences

- Alignment of  $A = a_1 a_2 ... a_i$  and  $B = b_1 b_2 ... b_j$  can end either in  $(-, b_i)$ ,  $(a_i, b_i)$  or  $(a_i, -)$
- $12^2 1 = 3$  alternatives
- Alignment of A, B and C =  $c_1c_2...c_k$  can end in  $2^3 1$  ways:  $(a_i, -, -)$ ,  $(-, b_j, -)$ ,  $(-, -, c_k)$ ,  $(-, b_j, c_k)$ ,  $(a_i, -, c_k)$ ,  $(a_i, b_j, -)$  or  $(a_i, b_j, c_k)$
- Solve the recursion using three-dimensional dynamic programming matrix: O(n³) time and space
- Generalizes to n sequences but impractical with moderate number of sequences

#### Multiple alignment in practice

- In practice, real-world multiple alignment problems are usually solved with heuristics
- Progressive multiple alignment
  - Choose two sequences and align them
  - Choose third sequence w.r.t. two previous sequences and align the third against them
  - Repeat until all sequences have been aligned
  - Different options how to choose sequences and score alignments

#### Multiple alignment in practice

- Profile-based progressive multiple alignment: CLUSTALW
  - Construct a distance matrix of all pairs of sequences using dynamic programming
  - Progressively align pairs in order of decreasing similarity
  - CLUSTALW uses various heuristics to contribute to accuracy

#### Additional material

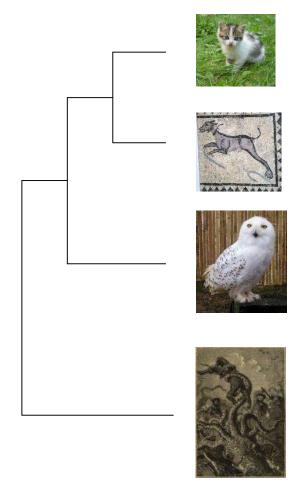
- R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
- Course Biological sequence analysis in Spring 2007

# Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

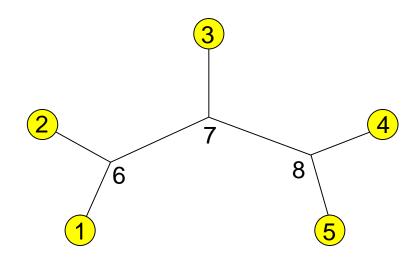
#### Phylogeny

- We want to study ancestordescendant relationships, or phylogeny, among groups of organisms
- Groups are called taxa (singular: taxon)
- Organisms are usually called operational taxonomic units or OTUs in the context of phylogeny



#### Phylogenetic trees

- Leaves (external nodes) ~
   species, observed (OTUs)
- Internal nodes ~ ancestral species/divergence events, not observed
- Unrooted tree does not specify ancestordescendant relationships beyond the observation "leaves are not ancestors"

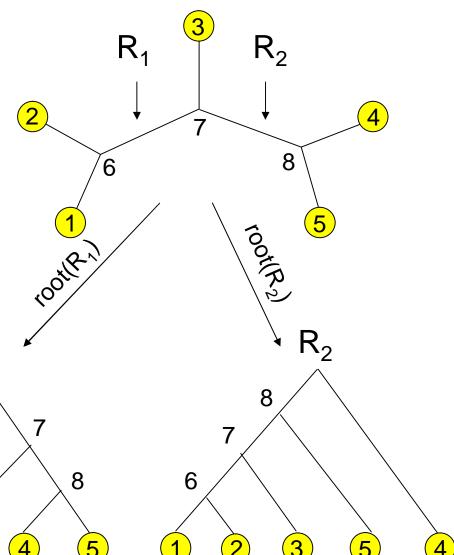


Unrooted tree with 5 leaves and 3 internal nodes.

Is node 7 ancestor of node 6?

#### Phylogenetic trees

- Rooting a tree specifies all ancestor-descendant relationships in the tree
- Root is the ancestor to the other species
- There are n-1 ways to R<sub>1</sub>
   root a tree with n nodes /



#### Questions

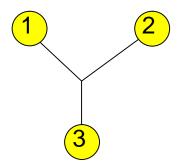
- Can we enumerate all possible phylogenetic trees for n species (or sequences?)
- How to score a phylogenetic tree with respect to data?
- How to find the best phylogenetic tree given data?

### Finding the best phylogenetic tree: naive method

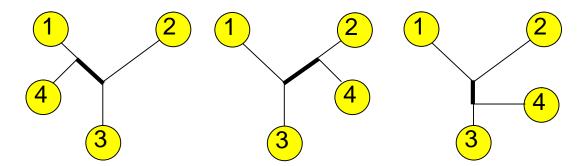
- How can we find the phylogenetic tree that best represents the data?
- Naive method: enumerate all possible trees
- How many different trees are there of n species?
- Denote this number by b<sub>n</sub>

#### Enumerating unordered trees

• Start with the only unordered tree with 3 leaves  $(b_3 = 1)$ 



 Consider all ways to add a leaf node to this tree



- Fourth node can be added to 3 different branches (edges), creating 1 new internal branch
- Total number of branches is n external and n – 3 internal branches
- Unrooted tree with n leaves has 2n – 3 branches

## Enumerating unordered trees

• Thus, we get the number of unrooted trees

$$b_n = (2(n-1) - 3)b_{n-1} = (2n - 5)b_{n-1}$$

$$= (2n - 5) * (2n - 7) * ... * 3 * 1$$

$$= (2n - 5)! / ((n-3)!2^{n-3}), n > 2$$

Number of rooted trees b'<sub>n</sub> is

$$b'_n = (2n - 3)b_n = (2n - 3)! / ((n-2)!2^{n-2}), n > 2$$

that is, the number of unrooted trees times the number of branches in the trees

# Number of possible rooted and unrooted trees

| n  | B <sub>n</sub> | b' <sub>n</sub> |
|----|----------------|-----------------|
| 3  | 1              | 3               |
| 4  | 3              | 15              |
| 5  | 15             | 105             |
| 6  | 105            | 945             |
| 7  | 954            | 10395           |
| 8  | 10395          | 135135          |
| 9  | 135135         | 2027025         |
| 10 | 2027025        | 34459425        |
| 20 | 2.22E+020      | 8.20E+021       |
| 30 | 8.69E+036      | 4.95E+038       |

## Too many trees?

- We can't construct and evaluate every phylogenetic tree even for a smallish number of species
- Better alternative is to
  - Devise a way to evaluate an individual tree against the data
  - Guide the search using the evaluation criteria to reduce the search space

# Inferring the Past: Phylogenetic Trees (chapter 12)

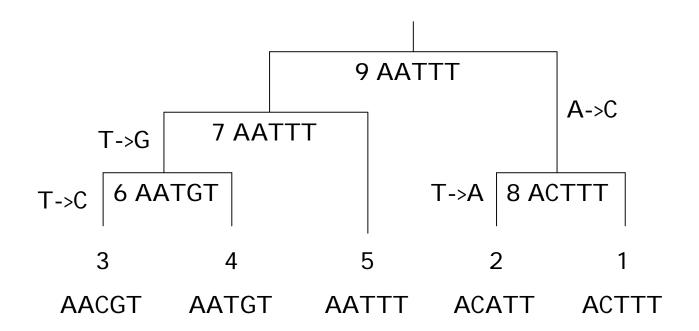
- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

## Parsimony method

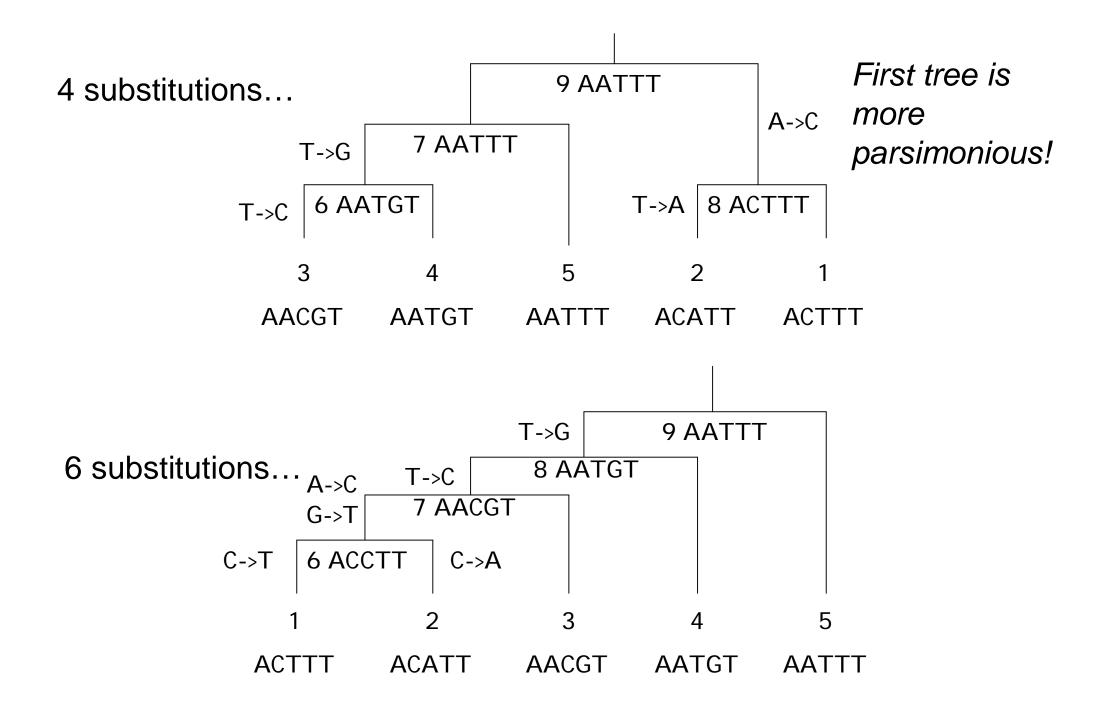
- The parsimony method finds the tree that explains the observed sequences with a minimal number of substitutions
- Method has two steps
  - Compute smallest number of substitutions for a given tree with a parsimony algorithm
  - Search for the tree with the minimal number of substitutions

## Parsimony: an example

- Consider the following short sequences
  - 1 ACTTT
  - 2 ACATT
  - 3 AACGT
  - 4 AATGT
  - 5 AATTT
- There are 105 possible rooted trees for 5 sequences
- Example: which of the following trees explains the sequences with least number of substitutions?



This tree explains the sequences with 4 substitutions

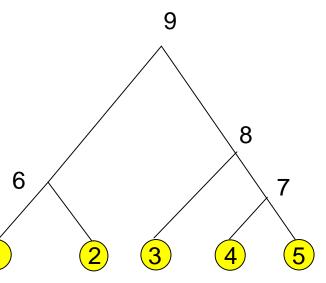


## Computing parsimony

- Parsimony treats each site (position in a sequence) independently
- Total parsimony cost is the sum of parsimony costs of each site
- We can compute the minimal parsimony cost for a given tree by
  - First finding out possible assignments at each node, starting from leaves and proceeding towards the root
  - Then, starting from the root, assign a letter at each node, proceeding towards leaves

## Labelling tree nodes

- An unrooted tree with *n* leaves contains 2n-2 nodes altogether
- Assign the following labels to nodes in a rooted tree
  - leaf nodes: 1, 2, ..., n
  - internal nodes: n+1, n+2, ..., 2n-1
  - root node: 2n-1
- The label of a child node is always smaller than the label of the parent node



## Parsimony algorithm: first phase

Find out possible assignments at every node for each site independently. Denote site u in sequence i by s<sub>i.u</sub>

$$F_{i} := \{S_{i,u}\}$$

% possible assignments at node i

$$L_i := 0$$

% number of substitutions up to node i

For 
$$i := n+1, ..., 2n-1 do$$

Let j and k be the children of node i

If 
$$F_j \cap F_k = \emptyset$$
 then  $L_i := L_j + L_k + 1$ ,  $F_i := F_j \cup F_k$   
else  $L_i := L_j + L_k$ ,  $F_i := F_j \cap F_k$ 

# Parsimony algorithm: first phase

Choose u = 3 (for example)

$$F_1 := \{T\}$$

$$L_1 := 0$$

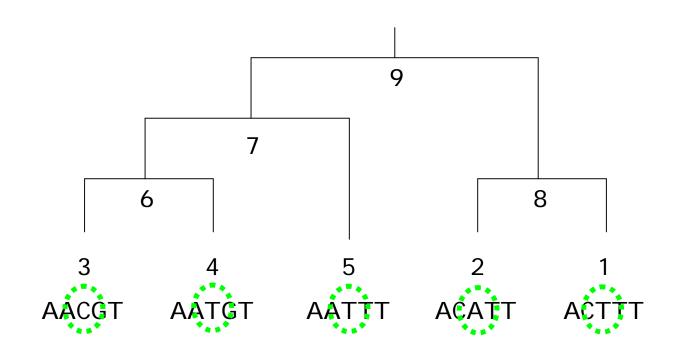
$$F_2 := \{A\}$$

$$L_2 := 0$$

$$F_3 := \{C\}, L_3 := 0$$

$$F_4 := \{T\}, L_4 := 0$$

$$F_5 := \{T\}, L_5 := 0$$



$$F_8 := F_1 \cup F_2 = \{A, T\}$$
  
 $L_8 := L_1 + L_2 + 1 = 1$ 

## Parsimony algorithm: first phase

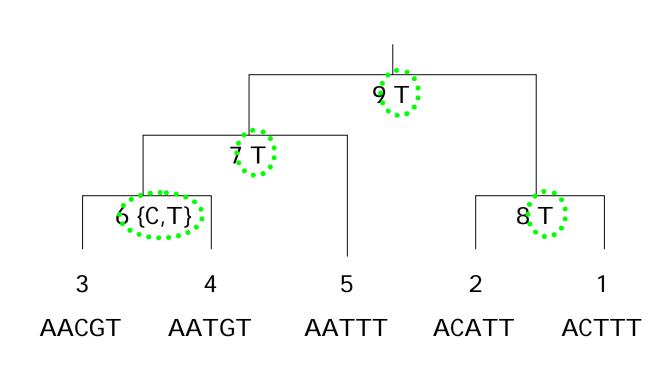
$$F_6 := F_3 \cup F_4 = \{C, T\}$$

$$L_6 := L_3 + L_4 + 1 = 1$$

$$F_7 := F_5 \cap F_6 = \{T\}$$
  
 $L_7 := L_5 + L_6 = 1$ 

$$F_8 := F_1 \cup F_2 = \{A, T\}$$
  
 $L_8 := L_1 + L_2 + 1 = 1$ 

$$F_9 := F_7 \cap F_8 = \{T\}$$
  
 $L_9 := L_7 + L_8 = 2$ 



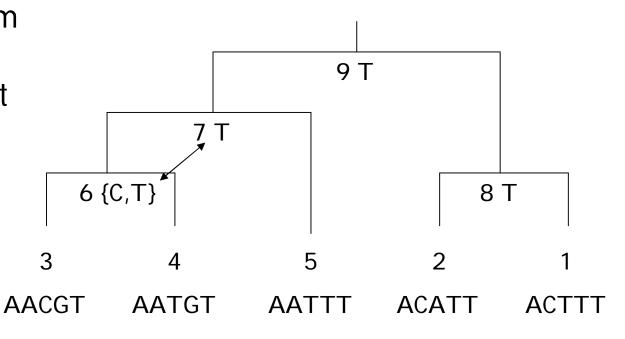
⇒ Parsimony cost for site 3 is 2

## Parsimony algorithm: second phase

- Backtrack from the root and assign x ∈ F<sub>i</sub> at each node
- If we assigned y at parent of node i and y ∈ F<sub>i</sub>, then assign y
- Else assign x ∈ F<sub>i</sub> by random

## Parsimony algorithm: second phase

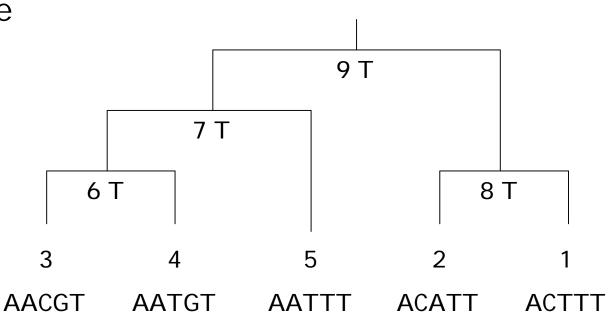
At node 6, the algorithm assigns T because T was assigned to parent node 7 and  $T \in F_6$ 



The other nodes have only one possible letter to assign

## Parsimony algorithm

First and second phase are repeated for each site in the sequences, summing the parsimony costs at each site



## Properties of parsimony algorithm

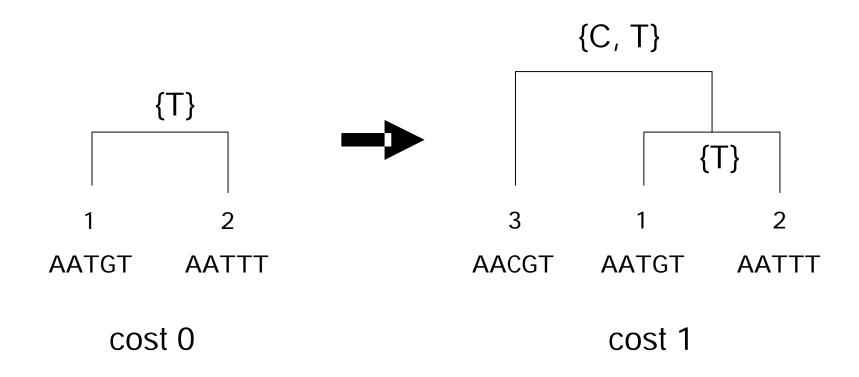
- Parsimony algorithm requires that the sequences are of same length
  - First align the sequences against each other and remove indels
  - Then compute parsimony for the resulting sequences
- Is the most parsimonious tree the correct tree?
  - Not necessarily but it explains the sequences with least number of substitutions
  - We can assume that the probability of having fewer mutations is higher than having many mutations

## Finding the most parsimonious tree

- Parsimony algorithm calculates the parsimony cost for a given tree...
- ...but we still have the problem of finding the tree with the lowest cost
- Exhaustive search (enumerating all trees) is in general impossible
- More efficient methods exist, for example
  - Probabilistic search
  - Branch and bound

## Branch and bound in parsimony

We can exploit the fact that adding edges to a tree can only increase the parsimony cost



## Branch and bound in parsimony

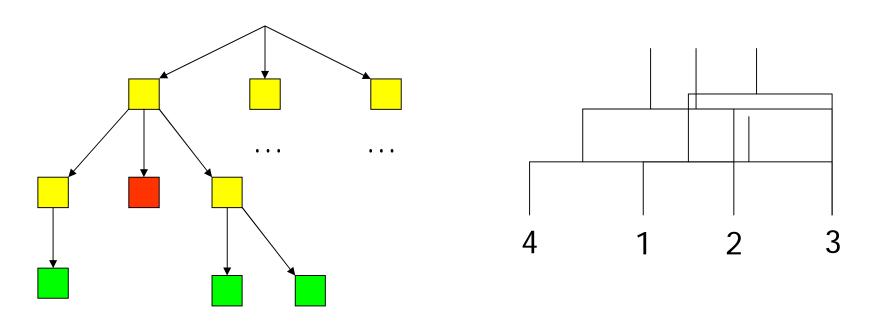
Branch and bound is a general search strategy where

- Each solution is potentially generated
- Track is kept of the best solution found
- If a partial solution cannot achieve better score, we abandon the current search path

In parsimony...

- Start from a tree with 1 sequence
- Add a sequence to the tree and calculate parsimony cost
- If the tree is complete, check if found the best tree so far
- If tree is not complete and cost exceeds best tree cost, do not continue adding edges to this tree

## Branch and bound graphically



Partial tree, no best complete tree constructed yet

Complete tree: calculate parsimony cost and store

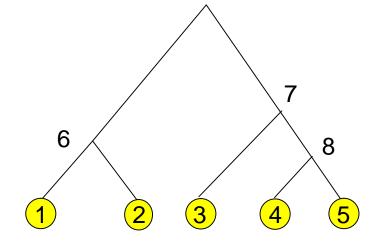
Partial tree, cost exceeds the cost of the best tree this far

#### Distance methods

- The parsimony method works on sequence (character string) data
- We can also build phylogenetic trees in a more general setting
- Distance methods work on a set of pairwise distances d<sub>ii</sub> for the data
- Distances can be obtained from phenotypes as well as from genotypes (sequences)

## Distances in a phylogenetic tree

- Distance matrix D = (d<sub>ij</sub>)
  gives pairwise distances for leaves of the phylogenetic tree
- In addition, the phylogenetic tree will now specify distances between leaves and internal nodes
  - Denote these with d<sub>ii</sub> as well



Distance d<sub>ij</sub> states how far apart species i and j are evolutionary (e.g., number of mismatches in aligned sequences)

## Distances in evolutionary context

- Distances d<sub>ij</sub> in evolutionary context satisfy the following conditions
  - Symmetry: d<sub>ii</sub> = d<sub>ii</sub> for each i, j
  - Distinguishability: d<sub>ii</sub> ≠ 0 if and only if i ≠ j
  - Triangle inequality: d<sub>ij</sub> ≤ d<sub>ik</sub> + d<sub>kj</sub> for each i, j, k
- Distances satisfying these conditions are called metric
- In addition, evolutionary mechanisms may impose additional constraints on the distances
  - > additive and ultrametric distances

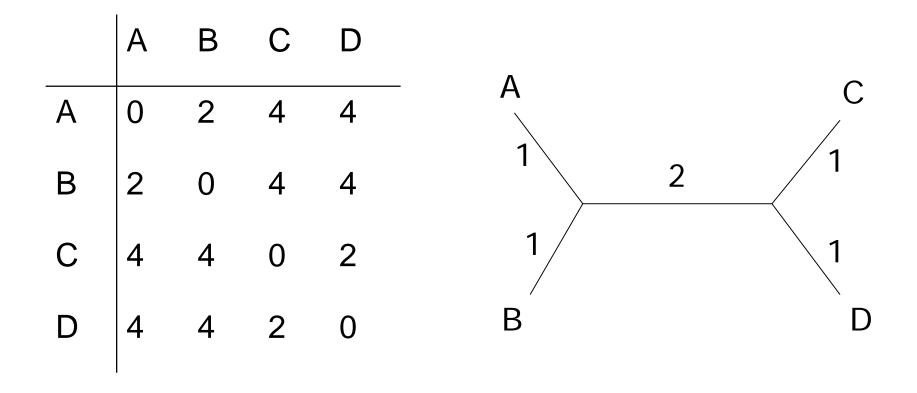
#### Additive trees

A tree is called *additive*, if the distance between any pair of leaves (i, j) is the sum of the distances between the leaves and the first node k that they share in the tree

$$d_{ij} = d_{ik} + d_{jk}$$

"Follow the path from the leaf i to the leaf j to find the exact distance d<sub>ii</sub> between the leaves."

## Additive trees: example



A rooted additive tree is called a *ultrametric tree*, if the distances between any two leaves i and j, and their common ancestor k are equal

$$d_{ik} = d_{jk}$$

- Edge length d<sub>ij</sub> corresponds to the time elapsed since divergence of i and j from the common parent
- In other words, edge lengths are measured by a molecular clock with a constant rate

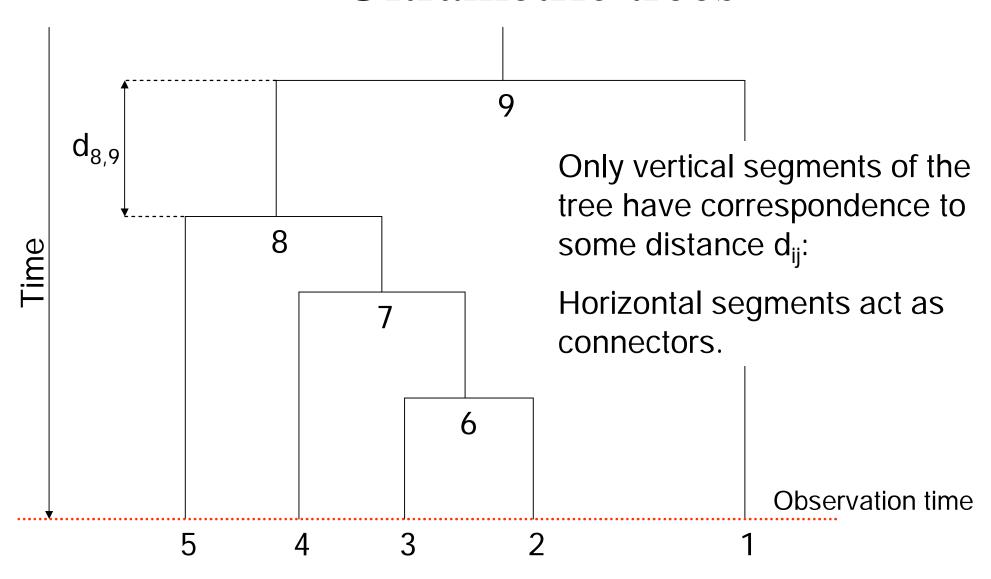
## Identifying ultrametric data

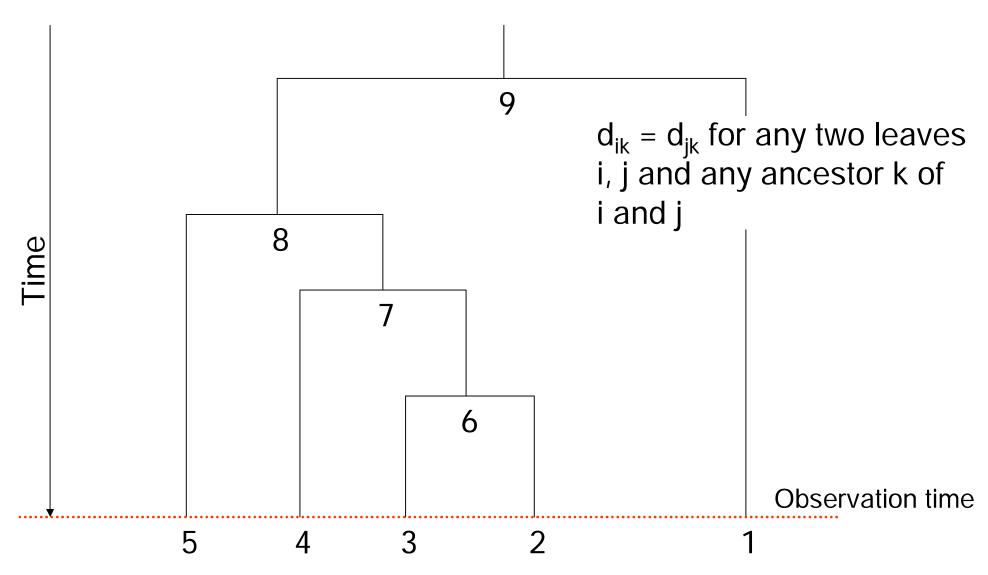
We can identify distances to be ultrametric by the three-point condition:

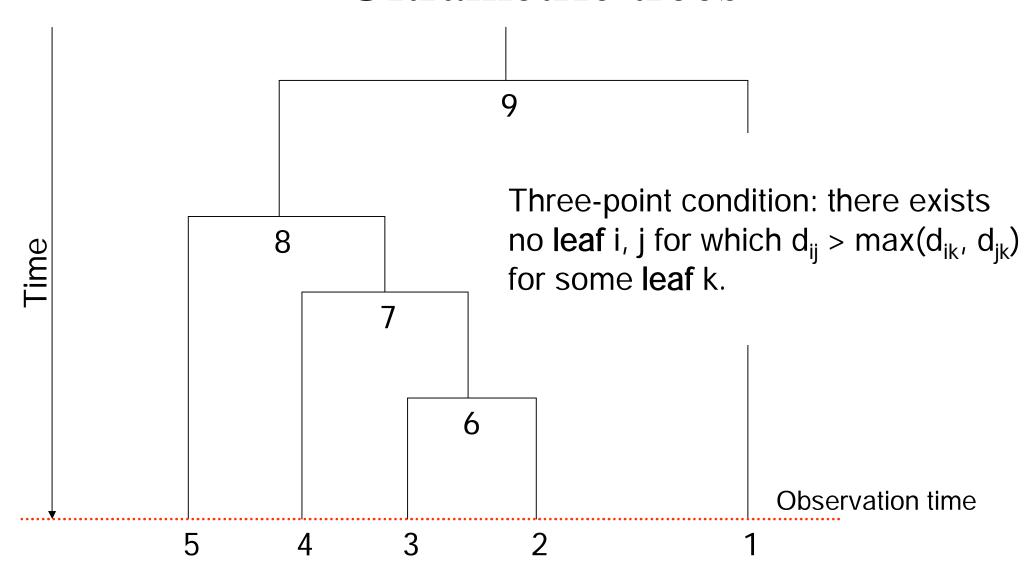
D corresponds to an ultrametric tree if and only if for any three **sequences** i, j and k, the distances satisfy  $d_{ij} \le \max(d_{ik}, d_{kj})$ 

If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

Time







## UPGMA algorithm

- UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
- The algorithm works by at the same time
  - Merging two clusters
  - Creating a new node on the tree
- The tree is built from leaves towards the root
- UPGMA produces a ultrametric tree

#### Cluster distances

Let distance d<sub>ij</sub> between clusters C<sub>i</sub> and C<sub>j</sub> be

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_i} d_{pq}$$

that is, the average distance between points (species) in the cluster.

## UPGMA algorithm

#### Initialisation

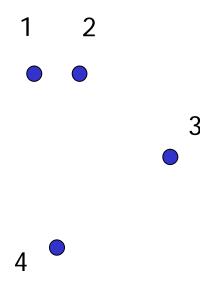
- Assign each point i to its own cluster C<sub>i</sub>
- Define one leaf for each sequence, and place it at height zero

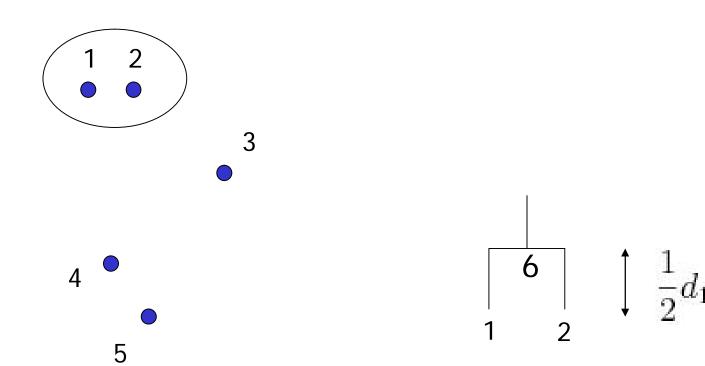
#### I teration

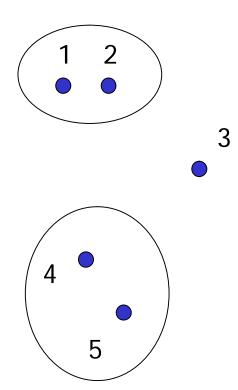
- Find clusters i and j for which d<sub>ii</sub> is minimal
- Define new cluster k by  $C_k = C_i \cup C_j$ , and define  $d_{kl}$  for all l
- Define a node k with children i and j. Place k at height d<sub>ij</sub>/2
- Remove clusters i and j

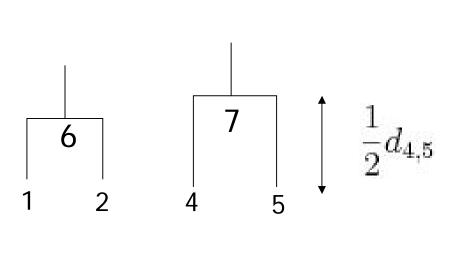
#### Termination:

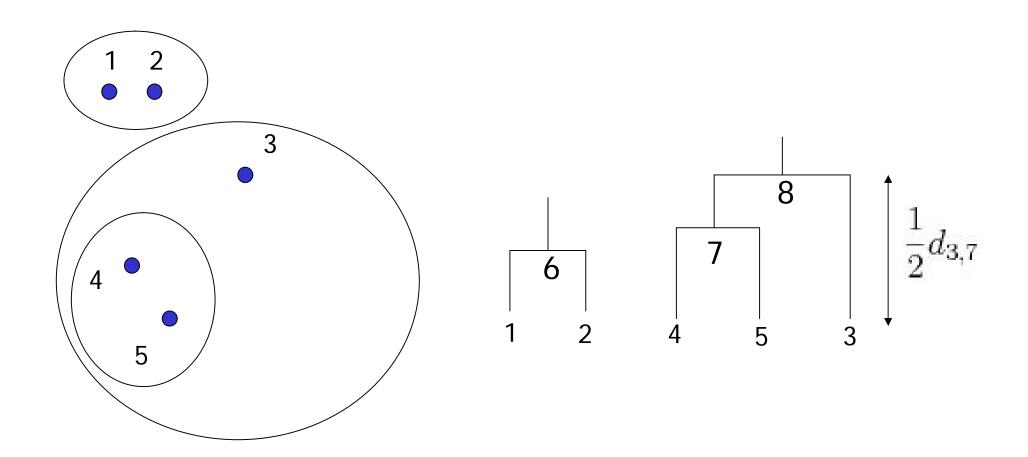
When only two clusters i and j remain, place root at height d<sub>ij</sub>/2

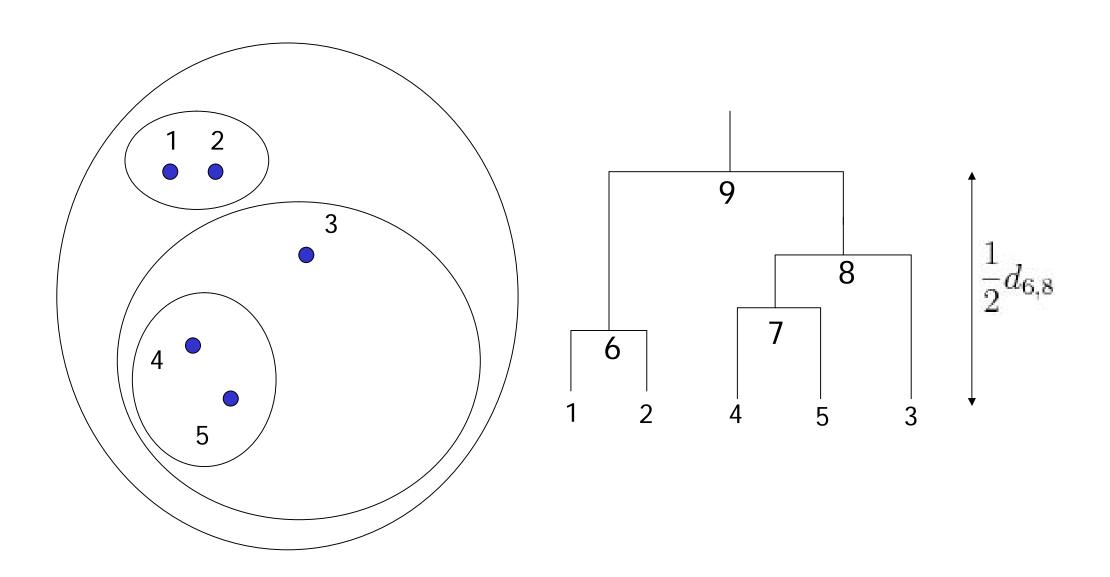












### **UPGMA** implementation

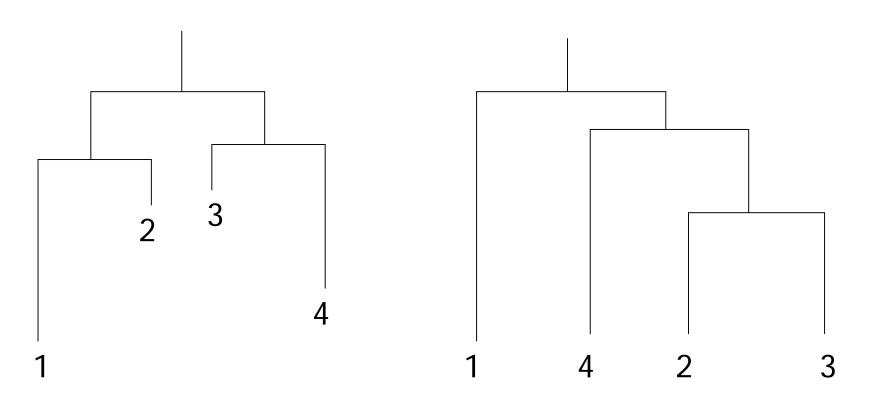
In naive implementation, each iteration takes  $O(n^2)$  time with n sequences => algorithm takes  $O(n^3)$  time

The algorithm can be implemented to take only O(n²) time (Gronau & Moran, 2006)

#### Problem solved?

- We now have a simple algorithm which finds a ultrametric tree
  - If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (we skip the proof)
  - The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
- Unfortunately, the data is not ultrametric in practice
  - Measurement errors distort distances
  - Basic assumption of a molecular clock does not hold usually very well

## Incorrect reconstruction of nonultrametric data by UPGMA



Tree which corresponds to non-ultrametric distances

Incorrect ultrametric reconstruction by UPGMA algorithm

## Finding an additive phylogenetic tree

- Additive trees can be found with, for example, the neighbor joining method (Saitou & Nei, 1987)
- The neighbor joining method produces unrooted trees, which have to be rooted by other means
  - A common way to root the tree is to use an outgroup
  - Outgroup is a species that is known to be more distantly related to every other species than they are to each other
  - Root node candidate: position where the outgroup would join the phylogenetic tree
- However, in real-world data, even additivity usually does not hold very well

# Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

#### Estimation of distances

- Many alternative ways to derive the distances die exist
- We can construct a simple stochastic model for the evolution of a DNA sequence...
- ...and then obtain the distances from the model
- Key points:
  - mutations at sites are rare events in the course of time => poisson process
  - sites evolve individually and by an identical mechanism
  - number of mismatched bases is a sum of mutations at individual sites => binomial variable

## A stochastic model for base substitutions

- Consider a single homologous site in two sequences
- Assume the sites diverged for time length t: the sites are separated by time 2t
- Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
- Probability that k substitutions occur is given by the Poisson probability  $e^{-\lambda t}(\lambda t)^k/(k!)$ , k = 0, 1, 2, ...

### Substitutions at one site

- General model: P(substitution results in base j | site was base i) = m<sub>ij</sub>
- Felsenstein model:  $m_{ij} = \pi_j$ , with  $\pi_j \ge 0$  and  $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$
- Assume that the set of probabilities  $\pi_j$  is same at every position in the sequence

### Substitutions at one site (2)

Probability q<sub>ij</sub>(t) that a base i at time 0 is substituted by a base j a time t later

$$q_{ij}(t) = e^{-\lambda t} + (1 - e^{-\lambda t}) \pi_j$$
, if  $i = j$ 

$$q_{ij}(t) = (1 - e^{-\lambda t}) \pi_j$$
, otherwise

### Substitutions at one site (3)

- We assume stationarity: distribution of base frequencies is the same for every time t
- In other words, we want that P(base a time t later = j)  $\pi_{j}^{0}$

For our simple model, this can be shown to hold

### Estimating distances

- Distances should take into account the mutation mechanism
- Average of λt substitutions occur at a particular site on a branch of length t
- However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

## Mean number of substitutions in time t

What is the chance H that a substitution actually changes a base?

$$H = \sum \pi_i (1 - \pi_i) = 1 - \sum \pi_i^2$$

- Average number of real substitutions is then λtH
- Distance K between two sequences is

$$K = 2\lambda tH$$

## Estimating distances from sequence data

- We want to estimate  $K = 2\lambda tH$  from sequence data
- The chance F<sub>ij</sub>(t) that we observe a base i in one sequence and a base j in another is

$$F_{ij}(t) = \sum_{l} \pi_{l} q_{li}(t) q_{lj}(t)$$

by averaging over the possible ancestral nucleotides

## Estimating distances from sequence data

Expression  $F_{ij}(t) = \sum_{l} \pi_{l} q_{li}(t) q_{lj}(t)$  can be simplified by assuming that the mutation process is reversible:

$$\pi_l m_{ij} = \pi_j m_{ji}$$
 for all  $i \neq j$ 

From this it can be shown that

$$\pi_i q_{ii}(t) = \pi_i q_{ii}(t)$$
 for all i, j and  $t > 0$ 

Now the model simplifies into  $F_{ij}(t) = \pi_i q_{ij}(2t)$ 

## Estimating distances from sequence data

What is the probabilitity F = F(t) that the letters at a particular position in two immediate descendants from the same node are identical?

$$F = \sum_{i} \pi_{i} q_{ii}(2t) = e^{-2\lambda t} + (1 - e^{-2\lambda t})(1 - H)$$

### Putting the sites together

#### Assume that

- sites evolve independently of one other and
- mutation process is identical at each site
- The two sequences have been aligned against each other and gaps have been removed
- Do the bases at site i in the sequences differ?
  - $X_i = 1$  if the ith pair of sites differ
  - $X_i = 0$  otherwise

## Putting the sites together (2)

$$P(X_i = 1) = 1 - F = (1 - e^{-2\lambda t})H$$

- Now D =  $X_1 + ... + X_s$  is the number of mismatched pairs of bases
- D is a binomial random variable with parameters s and
   1 F
- Notice that D is the Hamming distance for the sequences

### Putting the sites together (3)

- F is unknown and has to be estimated from the sequence data
- Recall that the observed proportion of successes is a good estimator of the binomial success probability: estimate 1 – F with D/s
- $D/s = (1 e^{-2\lambda t})H$
- $2\lambda t = -\log(1 D/(sH))$
- Finally, we obtain  $K = 2\lambda tH = -H \log(1 D/(sH))$

#### Jukes-Cantor formula

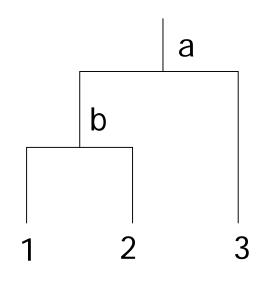
- Estimate 2λtH = -H log(1 D/(sH)) of the distance K is known as the Jukes-Cantor formula
- When H (chance that a substitution actually occurs) approaches 1, the estimate decreases and approaches the Poisson mean 2λt
- H is usually not known and has to be estimated from the data as well

# Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

### Maximum likelihood methods

- Consider the tree on the right with three sequences
- Probability p(i<sub>1</sub>, i<sub>2</sub>, i<sub>3</sub>) of observing bases i<sub>1</sub>, i<sub>2</sub> and i<sub>3</sub> can be computed by summing over all possible ancestral bases,



$$p(i1, i2, i3) = \sum_{a} \sum_{b} \pi_{a} q_{ai3}(t_{2}) q_{ab}(t_{2}-t_{1}) q_{bi2}(t_{1}) q_{bi1}(t_{1})$$

Hard to compute for complex trees

### Maximum likelihood estimation

- We would like to calculate likelihood p(i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>n</sub>) in the general case
- Calculations can be arranged using the peeling algorithm
- Basic idea is to move all summation signs as far to the right as possible

#### Maximum likelihood estimation

 Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

- General recipe for maximum likelihood estimation:
  - Maximize over all model parameters for a given tree
  - Maximize previous expression over all possible trees

### Problems with tree-building

#### Assumptions

- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance

## Additional material on phylogenetic trees

- Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
- Jones, Pevzner: An introduction to bioinformatics algorithms
- Gusfield: Algorithms on strings, trees, and sequences