Processing 1D NMR spectra

- weighting funtions
 - the FID is multiplied by a function to weight certain part of it
 - exponential (line broaderning), gaussian or cosine (shifted sine bell) weight the early part => better s/n, broader lines
 - also for forcing the last point of fid to 0
 - sine bell or shifted gaussian to weight the later parts of => enchanced resolution, worse s/n
- Fourier transformation (FT)
 - from time domain (s) to frequency domain (Hz)
- base line correction
 - spline fitting
 - (polynomial) function fitting
- chemical shift reference
 - TMS (tetramethyl silane)
- Integration
 - Determination of peak areas

NMR parameters

- chemical shift
 - place of the signal
 - local magnetic filed of the nucleus determined by shielding by the electrones (= chemical structure)
 - given as relative value in ppm independent on external field strength

$$\delta_{\text{sample}} [\text{ppm}] = \frac{V_{\text{sample}} - V_{\text{reference}} [\text{Hz}]}{V_{\text{reference}} [\text{MHz}]}$$

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

¹H chemical shifts in organic compounds

ketones aldehydes acids esters, amides thioketones azomethines heteroaromatics alkenes arenes nitriles N=C alkynes C(quaternary) C(tertiary) C(secondary) C(primary) CF3COOH (CH312CO С6H5 СF3СООН ССІ4 СНСІ3 CS2 CHa Hal-CH3 solvents 1,4-Dioxan DMSD CH312CO 230 210 190 170 150 130 110 90 70 50 30 10 δ [ppm

- spin spin coupling
 - the fine structure of NMR signals
 - also between different nuclei (e.g. 13 satelites in 1H spectrum)
 - over 1 3 (sometimes 4 or 5) chemical bonds
 - the magnetic field at nucleus is affected by the spin states of the coupled nuclei
 - can be decoupled
- intensitity of the signal
 - propotional to concentration in a quantitative spectrum
 - due to long relaxation times and other factors (e.g. NOE), spectrum not always quantitative
- nuclear Overhauser effect
 - "through space" coupling between to adjacent nuclei
 - also intermolecular
 - can been seen in intensity change by special experiment or in 2D
- relaxation times or line widths
 - data on (intra)molecular motion

Nuclear relaxation

- return to thermal equilibrium (magnetation along +z), T_1
- disappearance of the signal, T₂

T₁ relaxation (spin lattice relaxation)

- energy is transfered from the nuclei to the surroundings
- T₁ relaxation times can vary from seconds to hours
- ¹H T₁ relaxation times usually in the order of seconds
- ${}^{13}CT_1$ varies a lot:
 - data on molecular structure
 - must be taken account in selecting parameters
 - many mechanisms, dipole dipole interaction with directly bound protons most important -> number of those protons often determines T₁
 - quaternary carbons can have very long T_1 -> weak NMR signal
- fast molecular motion long T₁

T₂ relaxation

- the decay of the signal
- signal = phase coherence of the nuclear spins
- phase coherence is gradually lost
- mainly because of field inhomogenities
- no energy transfer (no population changes between the spin states)
- T₂ always shorter than T₁

NMR line width

- determined as half-height width of the NMR signal
- depends on relaxation
- in non-viscous solution state for small molecules T_1 and T_2 on the same order of magnitude and both contribute
- in slowly moving molecules (large molecules, viscous solution) T₁ very long, T₂ very short -> broad lines
- to record a quantitative spectrum relaxation delay (between repetition of the pulse sequence) must be at least 5 x T₁
 - for ¹³C often impossible

¹³C NMR spectrum

- much less sensitive than ¹H
 - natural abundance only 1.1%
 - gyromagnetic ratios about 4 times smaller
- ¹H spin spin coulings splitt the signals => usually recorded with ¹H broadband decoupling

¹³C NMR spectrum

- much less sensitive than ¹H
 - natural abundance only 1.1%
 - gyromagnetic ratios about 4 times smaller
- ¹H spin spin couplings split the signals => usually recorded with ¹H broadband decoupling
 - without decoupling signals at least 50% lower
- BB decoupling also enhances the signals due to heteronuclear NOE => not quantitative, intensity depends on number of directly bound protons

31P spectrum of yeast extract

2D NMR

Preparation - evolution - mixing - detection

2D NMR

Common 2D NMR experiments

- COSY, correlated spectroscopy
 - between two protons over 2-3 chemical bonds
- TOCSY, total correlated spectroscopy (HOHAHA)
 - between protons of the whole spin system
- NOESY (ROESY), nuclear Overhauser effect spectroscopy
 - between two protons close in space (< 5Å)
 - inversely proportional to sixth power of the distance
- HSQC and HMQC, heteronuclear single/multiple quantum coherence
 - between a proton and a heteroatom (e.g. ¹³C, ¹⁵C) over one bond
- HMBC, heteronuclear multiple bond correlation
 - between a proton and a heteroatom over 2-3 bonds
- DOSY, diffusion ordered spectroscopy
 - separates molecules according to their diffusion rate

Pulse sequence of the ¹H-³¹P HSQC-AD-TOCSY experiment

