
Neighbor joining algorithm

• Neighbor joining works in a similar fashion to
UPGMA
– Find clusters C1 and C2 that minimise a function f(C1,

C2)
– Join the two clusters C1 and C2 into a new cluster C
– Add a node to the tree corresponding to C
– Assign distances to the new branches

• Differences in
– The choice of function f(C1, C2)
– How to assign the distances

Neighbor joining algorithm
• Recall that the distance dij for clusters Ci and Cj was

• Let u(Ci) be the separation of cluster Ci from other
clusters defined by

where n is the number of clusters.

Neighbor joining algorithm

• Instead of trying to choose the clusters Ci
and Cj closest to each other, neighbor
joining at the same time
– Minimises the distance between clusters Ci

and Cj and
– Maximises the separation of both Ci and Cj

from other clusters

Neighbor joining algorithm
• Start with a star-shaped tree with n leaves and a hub node (see

next slide), n 3
• Iteration

– Find nodes i and j connected to the hub for which
dij – u(Ci) – u(Cj) is minimal

– Define new node k with edges i->k, j->k and k->hub, and
define dkl for all l

– Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k
– Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

• Termination:
– When the hub node has three edges

Creating a new branch

i

j

i

j

k

l

k

l

i

j

k

l

The figure shows first the merging of species i and j, and then k and l:
Each merging creates a new internal branch.

Creating a new branch

i

j

k

l

Merging (i, j) with m creates another internal branch.

m

i

j

k

l

m

Termination

p
q

p
q

Algorithm terminates when the hub node has three edges.

Assigning lengths to edges

• Distances dkx from the new node k to the
other nodes in the graph x are defined as
dkx = ½ (dix + djx – dij)

