582606 Introduction to bioinformatics

Autumn 2007
Esa Pitkänen
Master's Degree Programme in Bioinformatics (MBI) Department of Computer Science, University of Helsinki http://www.cs.helsinki.fi/mbi/courses/07-08/itb/

Administrative issues

, Master level course
, Obligatory course in the Master's Degree Programme in Bioinformatics
, 4 credits
, Prerequisites: basic mathematical skills
, Lectures: Tuesdays and Fridays 14-16 in Exactum C222
, Exercises: Wednesday 14-16 in Exactum C221

Teachers

, Esa Pitkänen, Department of Computer Science, University of Helsinki
, Prof. Elja Arjas, Department of Mathematics and Statistics, University of Helsinki
, Prof. Samuel Kaski, Laboratory of Computer and Information Science, Helsinki University of Technology
, Lauri Eronen, Department of Computer Science, University of Helsinki

How to enrol for the course?

- Use the registration system of the Computer Science department: https://ilmo.cs.helsinki.fi
, If you don't have a student number or Finnish id yet, don't worry: attend the lectures and exercises, and register when you have the id

How to successfully pass the course?

, You can get a maximum of 60 points

- Course exam: maximum of 50 points
- Exercises: maximum of 10 points
, 0\% completed assignments gives you 0 points, 80% gives 10 points, the rest by linear interpolation
, "A completed assignment" means that you are willing to present your solution to the class in the exercise session
, Course will be graded on the scale 0-5
- To get the lowest passing grade $1 / 5$, you need to have at least 30 points
, Course exam: Wednesday 17.10. at 16.00-19.00 in A111

Course material

, Course book: Richard C. Deonier, Simon Tavare \& Michael S. Waterman:
Computational Genome Analysis - an Introduction, Springer 2005
, Available at Kumpula and Viikki science libraries; book stores (Amazon.com ~\$56, Akateeminen kirjakauppa ~75€, Yliopistokirjakauppa 71€)

, It is recommended that you have access to the course book!
, Slides for some lectures will be available on the course web page (copies in room C127)

Additional material

- Check the course web site
- N. C. Jones \& P. A. Pevzner: An introduction to bioinformatics algorithms
- Alberts et al.: Molecular
 biology of the cell
- Lodish et al.: Molecular cell biology

Course contents

- Biological background (book chapter 1)
- Probability calculus (chapters 2 and 3)
- Sequence alignment (chapter 6)
- Rapid alignment methods: FASTA and BLAST (chapter 7)
- Phylogenetic trees (chapter 12)
- Expression data analysis (chapter 11)

Master's Degree Programme in Bioinformatics (MBI)

, Two-year MSc programme
, Admission for 2008-2009 in January 2008

- You need to have your Bachelor's degree ready by August 2008

MBI programme

- MBI educates bioinformatics professionals who
- Specialise in computational and statistical methods
- Work in R\&D tasks in biology and medicine

MBI programme

- Two-year masters programme (120 cr)
- Offered jointly by the University of Helsinki (HY) and Helsinki University of Technology (TKK)
- Began in 2006 as a national programme, 2007 international admission
- Students 8 + 7 (2006 + 2007)

MBI programme organizers

Department of Computer Science, Department of Mathematics and Statistics, HY

Laboratory of Computer and Information Science, TKK

Faculty of Medicine, HY

Faculty of Biosciences, Faculty of Agriculture and Forestry, HY

Bioinformatics courses at the University of Helsinki

Department of Computer Science

- Practical course in biodatabases (Il period): techniques for accessing and integrating data in biology databases.
- Biological sequence analysis (III period): basic probabilistic methods for modelling and analysis of biological sequences.
- Modeling of vision (III period): mechanisms and modeling of human perception.
- Seminar: Regulatory networks (I \& II periods)
- Seminar: Management of biological databases (III \& IV periods)

Bioinformatics courses at the University of Helsinki

Department of Mathematics and Statistics

- Statistical methods in genetic epidemiology and gene mapping (I period)
- Mathematical modelling (I \& II periods)
- Practical course on phylogenetic analysis (IV period): recommended to take also Biological sequence analysis
- Adaptive dynamics (III \& IV periods)

Bioinformatics courses at Helsinki University of Technology

, Laboratory of Computer and Information Science

- Computational genomics (I \& II periods): Algorithms and models for biological sequences and genomics
- Signal processing in neuroinformatics (I and II periods): overview of some of the main biomedical signal processing techniques
- High-throughput bioinformatics (III and IV periods): computational and statistical methods for analyzing modern high-throughput biological data
- Image analysis in neuroinformatics (III and IV periods): biomedical image processing techniques

Biology for methodological scientists (8 cr)

, Course organized by the Faculties of Bioscience and Medicine for the MBI programme
, Introduction to basic concepts of microarrays, medical genetics and developmental biology

- Book exam in I period (2 cr)
, Organized in three lectured modules, 2 cr each
, Each module has an individual registration so you can participate even if you missed the first module
, www.cs.helsinki.fi/mbi/courses/07-08/bfms/

Bioinformatics courses

, Visit the website of Master's Degree Programme in Bioinformatics for up-to-date course lists:
http://www.cs.helsinki.fi/mbi

An introduction to bioinformatics

What is bioinformatics?

, Solving biological problems with computation?
, Collecting, storing and analysing biological data?
, Informatics - library science?

What is bioinformatics?

- Bioinformatics, n. The science of information and information flow in biological systems, esp. of the use of computational methods in genetics and genomics. (Oxford English Dictionary)
"The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information."
-- Fredj Tekaia
"I do not think all biological computing is bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems. In my opinion, bioinformatics has to do with management and the subsequent use of biological information, particular genetic information."
-- Richard Durbin

What is not bioinformatics?

, Biologically-inspired computation, e.g., genetic algorithms and neural networks
, However, application of neural networks to solve some biological problem, could be called bioinformatics
, What about DNA computing?

Related concepts

, Computational biology

- Application of computing to biology (broad definition)
- Often used interchangeably with bioinformatics
, Biometry: the statistical analysis of biological data
, Biophysics: "an interdisciplinary field which applies techniques from the physical sciences to understanding biological structure and function" -British Biophysical Society
, Mathematical biology "tackles biological problems, but the methods it uses to tackle them need not be numerical and need not be implemented in software or hardware." -- Damian Counsell

Related concepts

- Systems biology
- "biology of networks"
- integrating different levels of information to understand how biological systems work
- Computational systems biology

Overview of metabolic pathways in $K E G G$ database, www.genome.jp/kegg/

Why is bioinformatics important?

, New measurement techniques produce huge quantities of biological data

- Advanced data analysis methods are needed to make sense of the data
- Typical data sources produce noisy data with a lot of missing values
, Paradigm shift in biology to utilise bioinformatics in research

To give you a glimpse of a typical situation in bioinformatics...

DNA microarray data

Biological background

, Molecular Biology Primer: www.bioalgorithms.info

Today's program

- Biological background (book chapter 1)
- Molecular primer continues
- Recap of the most important material with respect to the course
- A word or two about exercises and the exam
- Note that the lecture on 9.10 . is moved to room ExactumB222

Course contents (18.9.)

- Biological background (book chapter 1)
- Probability calculus (chapters 2 and 3)
- Sequence alignment (chapter 6)
- This week (18.9. and 21.9.)
- Rapid alignment methods: FASTA and BLAST (chapter 7)
- Next week (25.9. and 28.9.)
- Phylogenetic trees (chapter 12)
- Expression data analysis (chapter 11)

Sequence Alignment (chapter 6)

- The biological problem

Global alignment
Local alignment
, Multiple alignment

Background: comparative genomics

, Basic question in biology: what properties are shared among organisms?
, Genome sequencing allows comparison of organisms at DNA and protein levels

Comparisons can be used to

- Find evolutionary relationships between organisms
- Identify functionally conserved sequences
- Identify corresponding genes in human and model organisms: develop models for human diseases

Homologs

- Two genes g_{B} and g_{C} evolved from the same ancestor gene g_{A} are $\quad \mathrm{g}_{\mathrm{A}}=a g t g t c \operatorname{cgttaagtgcgttc}$ called homologs

$$
\mathrm{g}_{\mathrm{B}}=a g t g c \mathrm{cg} t \mathrm{a} a \operatorname{ag} t \operatorname{tg} t a c g t c
$$

- Homologs usually exhibit conserved functions

$$
\mathrm{g}_{\mathrm{C}}=\operatorname{ctgactg} t t \mathrm{tg} \operatorname{tgg} t \mathrm{c}
$$

- Close evolutionary relationship => expect a high number of homologs

Sequence similarity

, Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

$$
\begin{aligned}
& \operatorname{agtgccgttaaagttgtacgtc} \\
& \operatorname{ctgactg} \mid t \operatorname{tgg} t t c
\end{aligned}
$$

What about sequences that differ in length?

Similarity vs homology

Sequence similarity is not sequence homology

- If the two sequences g_{B} and g_{C} have accumulated enough mutations, the similarity between them is likely to be low
\#mutations

0	$a g t g t c c g t t a a g t g c g t t c ~$
1	$a g t g t c c g t t a t a g t g c g t t c ~$
2	$a g t g t c c g c t t a t a g t g c g t t c ~$
4	$a g t g t c c g c t t a a g g g c g t t c$
8	$a g t g t c c g c t t c a a g g g g c g t ~$
16	gggccgttcatgggggt
32	gcagggcgtcactgagggct

\#mutations

```
6 4 ~ a c a g t c c g t t c g g g c t a t t g g
128 cagagcactaccgc
256 cacgagtaagatatagct
5 1 2 ~ t a a t c g t g a t a ~
1024 acccttatctacttcctggagtt
2048 agcgacctgcccaa
4 0 9 6 ~ c a a a c ~
```

Homology is more difficult to detect over greater evolutionary distances.

Similarity vs homology (2)

, Sequence similarity can occur by chance

- Similarity does not imply homology
, Consider comparing two short sequences against each other

Orthologs and paralogs

, We distinguish between two types of homology

- Orthologs: homologs from two different species, separated by a speciation event
- Paralogs: homologs within a species, separated by a gene duplication event

Orthologs and paralogs (2)

Orthologs typically retain the original function
, In paralogs, one copy is free to mutate and acquire new function (no selective pressure)

Paralogy example: hemoglobin

- Hemoglobin is a protein complex which transports oxygen
- In humans, hemoglobin consists of four protein subunits and four nonprotein heme groups

Sickle cell diseases are caused by mutations in hemoglobin genes

Paralogy example: hemoglobin

- In adults, three types are normally present
- Hemoglobin A: 2 alpha and 2 beta subunits
- Hemoglobin A2: 2 alpha and 2 delta subunits
- Hemoglobin F: 2 alpha and 2 gamma subunits
- Each type of subunit (alpha, beta, gamma, delta) is encoded by a separate gene

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureld=1GZX

Paralogy example: hemoglobin

- The subunit genes are paralogs of each other, i.e., they have a common ancestor gene
- Demonstration in lecture: hemoglobin human paralogs in NCBI sequence databases
http://www.ncbi.nlm.nih.gov/sites/entrez ?db=Nucleotide
- Find human hemoglobin alpha, beta, gamma and delta
- Compare sequences

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureld=1GZX

Orthology example: insulin

The genes coding for insulin in human (Homo sapiens) and mouse (Mus musculus) are orthologs:

- They have a common ancestor gene in the ancestor species of human and mouse
- Demonstration in lecture: find insulin orthologs from human and mouse in NCBI sequence databases

Sequence alignment

Alignment specifies which positions in two sequences match

2 matches
5 mismatches
1 not aligned
5 matches
7 matches
2 mismatches
0 mismatches
1 not aligned
1 not aligned

Mutations: Insertions, deletions and substitutions

Indel: insertion or deletion of a base with respect to the ancestor sequence

Mismatch: substitution (point mutation) of a single base
, Insertions and/or deletions are called indels

- We can't tell whether the ancestor sequence had a base or not at indel position

Problems

, What sorts of alignments should be considered?
, How to score alignments?
, How to find optimal or good scoring alignments?
, How to evaluate the statistical significance of scores?

In this course, we discuss each of these problems briefly.

Course Biological sequence analysis tackles all four indepth.

Sequence Alignment (chapter 6)

, The biological problem
, Global alignment
, Local alignment
, Multiple alignment

Global alignment

- Problem: find optimal scoring alignment between two sequences (Needleman \& Wunsch 1970)
, Every position in both sequences is included in the alignment
, We give score for each position in alignment
- Identity (match)
- Substitution (mismatch) $-\mu$
- Indel
-б
WHAT
WH-Y
, Total score: sum of position scores

$$
S(W H A T / W H-Y)=1+1-\delta-\mu
$$

Dynamic programming

, How to find the optimal alignment?
, We use previous solutions for optimal alignments of smaller subsequences

This general approach is known as dynamic programming

Introduction to dynamic programming: the money change problem

- Suppose you buy a pen for $4.23 €$ and pay for with a $5 €$ note
- You get 77 cents in change - what coins is the cashier going to give you if he or she tries to minimise the number of coins?

The usual algorithm: start with largest coin (denominator), proceed to smaller coins until no change is left:

- $50,20,5$ and 2 cents

This greedy algorithm is incorrect, in the sense that it does not always give you the correct answer

The money change problem

- How else to compute the change?
- We could consider all possible ways to reduce the amount of change
- Suppose we have 77 cents change, and the following coins: 50, 20, 5 cents
- We can compute the change with recursion
- Figure shows the recursion tree for the example

- Many values are computed more than once!
- This leads to a correct but very inefficient algorithm

The money change problem

We can speed the computation up by solving the change problem for all $\mathrm{i} \leq \mathrm{n}$

- Example: solve the problem for 9 cents with available coins being 1, 2 and 5 cents
, Solve the problem in steps, first for 1 cent, then 2 cents, and so on

In each step, utilise the solutions from the previous steps

The money change problem

Amount of change left

, Algorithm runs in time proportional to Md, where M is the amount of change and d is the number of coin types
The same technique of storing solutions of subproblems can be utilised in aligning sequences

Representing alignments and scores

Alignments can be represented in the following tabular form.
Each alignment
corresponds to a path through the table.

WHAT

II
WH-Y

Representing alignments and scores

WHAT
 II WH-Y

Global alignment score $S_{3,4}=2-\delta-\mu$

	-	W	H	A	T
-	0				
W		1			
H			2	$2-\delta$	
Y					$2-\delta-\mu$

Filling the alignment matrix

		W	H	A	T
-					
W				ase 2	
H					
Y					

Consider the alignment process at shaded square.

Case 1. Align H against H (match or substitution).

Case 2. Align H in WHY against - (indel) in WHAT.

Case 3. Align H in WHAT against - (indel) in WHY.

Filling the alignment matrix (2)

		W	H	A	T
-					
W					
H					
Y					

Scoring the alternatives.
Case 1. $\mathrm{S}_{2,2}=\mathrm{S}_{1,1}+\mathrm{s}(2,2)$
Case 2. $S_{2,2}=S_{1,2}-\delta$
Case 3. $\mathrm{S}_{2,2}=\mathrm{S}_{2,1}-\delta$
$s(i, j)=1$ for matching positions,
$s(i, j)=-\mu$ for substitutions.
Choose the case (path) that yields the maximum score.

Keep track of path choices.

Global alignment: formal development

$$
\begin{aligned}
& A=a_{1} a_{2} a_{3} \ldots a_{n}, \\
& B= \\
& b_{1} b_{2} b_{3} \ldots b_{m} \\
& b_{1} \\
& b_{2}
\end{aligned} b_{3} \quad b_{4} \quad-\quad .
$$

, Any alignment can be written as a unique path through the matrix
, Score for aligning A and B up to positions i and j :
$S_{i, j}=S\left(a_{1} a_{2} a_{3} \ldots a_{i}, b_{1} b_{2} b_{3} \ldots b_{j}\right)$

Scoring partial alignments

Alignment of $A=a_{1} a_{2} a_{3} \ldots a_{n}$ with $B=b_{1} b_{2} b_{3} \ldots b_{m}$ can end in three ways

- Case 1: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$
$\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}$
- Case 2: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$
$\left(b_{1} b_{2} \ldots b_{j}\right)-$
- Case 3: $\left(a_{1} a_{2} \ldots a_{i}\right)$ $\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}$

Scoring alignments

Scores for each case:

- Case 1: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$

$$
\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}
$$

$$
s\left(a_{i}, b_{j}\right)=\left\{\begin{array}{l}
+1 \text { if } a_{i}=b_{j} \\
-\mu \text { otherwise }
\end{array}\right.
$$

- Case 2: $\left(a_{1} a_{2} \ldots a_{i-1}\right) a_{i}$

$$
\left(b_{1} b_{2} \ldots b_{j}\right)-
$$

- Case 3: $\left(a_{1} a_{2} \ldots a_{i}\right)$ -

$$
s\left(a_{i},-\right)=s\left(-, b_{j}\right)=-\delta
$$

$$
\left(b_{1} b_{2} \ldots b_{j-1}\right) b_{j}
$$

Scoring alignments (2)

- First row and first column $\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}$ correspond to initial alignment against indels:

$$
\begin{aligned}
& S(i, 0)=-i \delta \\
& S(0, j)=-j \delta
\end{aligned}
$$

- Optimal global alignment score $S(A, B)=S_{n, m}$

		-	b_{1}	b_{2}	b_{3}	b_{4}
0	-	0	-б	-2ठ	-38	-4ठ
1	a_{1}	-ס				
2	a_{2}	-2δ				
3	a_{3}	-3ठ				

Algorithm for global alignment

```
Input sequences \(\mathcal{A}, \mathcal{B}, n=|\mathcal{A}|, m=|\mathcal{B}|\)
Set \(S_{i, 0}:=-\) ©ifor all \(i\)
Set \(\mathcal{S}_{0, j}:=-\delta j\) for all \(j\)
for \(i:=1\) to \(n\)
    for \(j:=1\) to \(m\)
        \(S_{i, j}:=\max \left\{S_{i-1, j}-\delta, S_{i-1, j-1}+s\left(a_{i}, b_{j}\right), S_{i, j}-1-\delta\right\}\)
    end
end
```

Algorithm takes $\mathrm{O}(\mathrm{nm})$ time and space.

Global alignment: example

$\mu=1$	-	T		G	G	T G	
		0	-2	-4	-6	-8	-10
$\delta=2$	A	-2					
	T	-4					
	C	-6					
	G	-8					
	T	-10					?

Global alignment: example (2)

$\mu=1$	-	-	T	G	G	T	G
		0	-2	-4	-6	-8	-10
$\delta=2$	A	-2	-1	-3	-5	-7	-9
	T	-4	-1	-2	-4	-4	-6
	C	-6	-3	-2	-3	-5	-5
ATCGT-	G	-8	-5	-2	-1	-3	-4
$1 \mid$	T	-10	-7	-4	-3	0	$\rightarrow-2$

Sequence Alignment (chapter 6)

The biological problem
Global alignment
, Local alignment
, Multiple alignment

Local alignment: rationale

- Otherwise dissimilar proteins may have local regions of similarity
-> Proteins may share a function
Human bone morphogenic protein receptor type II precursor (left) has a 300 aa region that resembles 291 aa region in TGF- β receptor (right).

The shared function here is protein kinase.

Local alignment: rationale

A

B

- Global alignment would be inadequate
- Problem: find the highest scoring local alignment between two sequences
- Previous algorithm with minor modifications solves this problem (Smith \& Waterman 1981)

From global to local alignment

, Modifications to the global alignment algorithm

- Look for the highest-scoring path in the alignment matrix (not necessarily through the matrix), or in other words:
- Allow preceding and trailing indels without penalty

Scoring local alignments

$A=a_{1} a_{2} a_{3} \ldots a_{n}, B=b_{1} b_{2} b_{3} \ldots b_{m}$
Let I and J be intervals (substrings) of A and B, respectively: $I \subset A, \quad J \subset B$

Best local alignment score:

$$
M(A, B)=\max \{S(I, J): I \subset A, J \subset B\}
$$

where $S(I, J)$ is the score for substrings I and J.

Allowing preceding and trailing indels

- First row and column

$$
\begin{array}{lllll}
0 & 1 & 2 & 3 & 4
\end{array}
$$ initialised to zero:

$$
\mathrm{M}_{\mathrm{i}, 0}=\mathrm{M}_{0, \mathrm{j}}=0
$$

		-	b_{1}	b_{2}	b_{3}	b_{4}
0	-	0	0	0	0	0
1	a_{1}	0			.	
2	a_{2}	0				
3	a_{3}	0				

Recursion for local alignment

- $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=\max \{$
$M_{i-1, j-1}+s\left(a_{i}, b_{i}\right)$,
$\mathrm{M}_{\mathrm{i}-1, \mathrm{j}}-\delta$,
$\mathrm{M}_{\mathrm{i}, \mathrm{j}-1}-\delta$,
0
\}

		G		G	T	G
-	0	0	0	0	0	0
A	0	0	0	0	0	0
T	0	+1	0	0	${ }^{1}$	0
C	0	0	0	0	0	0
G	0	0	1	1	0	1
T	0	1	0	0	* 2	0

Finding best local alignment

- Optimal score is the highest value in the matrix
$M(A, B)=\max \{S(I, J): I \subset A, J \subset B\}$

$$
=\max _{\mathrm{i}, \mathrm{j}} \mathrm{M}_{\mathrm{i}, \mathrm{j}}
$$

- Best local alignment can be found by backtracking from the highest value in M

- T G G T

	0	0	0	0	0	0
	0	0	0	0	0	0
	0	0	1	0	0	1
	0					
	0	0	0	0	0	0
	0	0	1	1	0	1
		0	1	0	0	2
	0	1	0			

Local alignment: example

| 0 | | | | | | | | | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 6

Local alignment: example

Scoring
Match: +2
Mismatch: -1
Indel: -2

C T - A A
C T C A A

		0	1	2	3	4	5	6	7		9	
		-	G	G	C	T	C	A	A	T	C	A
0	-	0	0	0	0	0	0	0	0	0	0	0
1	A	0	0	0	0	0	0	2	2	0	0	2
2	C	0	0	0	2	0	2	0	1	1	2	0
3	C	0	0	0	2	1	2	1	0	0	3	1
4	T	0	0	0	0	4	2	1	0	2	1	2
5	A	0	0	0	0	2	3	4	3	1	1	3
6	A	0	0	0	0	0	1	5	6	4	2	3
7	G	0	2	2	0	0	0	3	4	5	3	1
8	G	0	2	4	2	0	0	1	2	3	4	2

Non-uniform mismatch penalties

We used uniform penalty for mismatches:

Transition mutations (A->G, G->A, C->T, T->C) are approximately twice as frequent than transversions (A$>\mathrm{T}, \mathrm{T}->\mathrm{A}, \mathrm{A}->\mathrm{C}, \mathrm{G}->\mathrm{T})$

- use non-uniform mismatch penalties collected into a substitution matrix

	A	C	G	T
A	1	-1	-0.5	-1
C	-1	1	-1	-0.5
G	-0.5	-1	1	-1
T	-1	-0.5	-1	1

Gaps in alignment

, Gap is a succession of indels in alignment

$$
\begin{array}{lllllll}
\mathbf{C} & \mathbf{T} & - & - & - & A \\
C & T & C & G & C & A & A
\end{array}
$$

, Previous model scored a length k gap as $w(k)=-k \delta$
, Replication processes may produce longer stretches of insertions or deletions

- In coding regions, insertions or deletions of codons may preserve functionality

Gap open and extension penalties (2)

We can design a score that allows the penalty opening gap to be larger than extending the gap:

$$
w(k)=-\alpha-\beta(k-1)
$$

Gap open cost α, Gap extension cost β
Our previous algorithm can be extended to use w(k) (not discussed on this course)

Amino acid sequences

We have discussed mainly dna sequences
, Amino acid sequences can be aligned as well
However, the design of the substitution matrix is more involved because of the larger alphabet

- More on the topic in the course Biological sequence analysis

Demonstration of the EBI web site

, European Bioinformatics Institute (EBI) offers many biological databases and bioinformatics tools at http://www.ebi.ac.uk/

Sequence Alignment (chapter 6)

The biological problem
Global alignment
Local alignment
, Multiple alignment

Multiple alignment

- Consider a set of n sequences on the right
- Orthologous sequences from different organisms
- Paralogs from multiple duplications
- How can we study relationships between these sequences?

Optimal alignment of three sequences

1 Alignment of $A=a_{1} a_{2} \ldots a_{i}$ and $B=b_{1} b_{2} \ldots b_{j}$ can end either in $\left(-, \mathrm{b}_{\mathrm{j}}\right),\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{j}}\right)$ or $\left(\mathrm{a}_{\mathrm{i}},-\right)$
$2^{2}-1=3$ alternatives
Alignment of A, B and $C=c_{1} c_{2} \ldots c_{k}$ can end in $2^{3}-1$ ways: $\left(\mathrm{a}_{\mathrm{i}},-,--\right),\left(-, \mathrm{b}_{\mathrm{j}},-\right),\left(-,-, \mathrm{c}_{\mathrm{k}}\right),\left(-, \mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}},-, \mathrm{c}_{\mathrm{k}}\right),\left(\mathrm{a}_{\mathrm{i}}\right.$, $\left.b_{j},-\right)$ or $\left(a_{i}, b_{j}, c_{k}\right)$
Solve the recursion using three-dimensional dynamic programming matrix: $O\left(n^{3}\right)$ time and space

Generalizes to n sequences but impractical with moderate number of sequences

Multiple alignment in practice

In practice, real-world multiple alignment problems are usually solved with heuristics
, Progressive multiple alignment

- Choose two sequences and align them
- Choose third sequence w.r.t. two previous sequences and align the third against them
- Repeat until all sequences have been aligned
- Different options how to choose sequences and score alignments

Multiple alignment in practice

, Profile-based progressive multiple alignment: CLUSTALW

- Construct a distance matrix of all pairs of sequences using dynamic programming
- Progressively align pairs in order of decreasing similarity
- CLUSTALW uses various heuristics to contribute to accuracy

Additional material

, R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological sequence analysis
, N. C. Jones, P. A. Pevzner: An introduction to bioinformatics algorithms
, Course Biological sequence analysis in Spring 2008

Chapter 7: Rapid alignment methods: FASTA and BLAST

, The biological problem
, Search strategies
FASTA
, BLAST

The biological problem

- Global and local alignment algoritms are slow in practice
- Consider the scenario of aligning a query sequence against a large database of sequences
- New sequence with unknown function
- For instance, the size of NCBI GenBank in J anuary 2007 was 65,369,091,950 bases (61,132,599 sequences)

Problem with large amount of sequences

, Exponential growth in both number and total length of sequences
, Possible solution: Compare against model organisms only
With large amount of sequences, changes are that matches occur by random

- Need for statistical analysis

Application of sequence alignment: shotgun sequencing

Shotgun sequencing is a method for sequencing whole-organism genomes

- First, a large number of short sequences ($\sim 500-1000 \mathrm{bp}$), or reads are generated from the genome
- Reads are contiguous subsequences (substrings) of the genome
- Due to sequencing errors and repetitions in the reads, the genome has be covered multiple times by reads

Shotgun sequencing

, Ordering of the reads is initially unknown
, Overlaps resolved by aligning the reads
, In a 3×10^{9} bp genome with 500 bp reads and $5 x$ coverage, there are $\sim 10^{7}$ reads and $\sim 10^{7}\left(10^{7}-1\right) / 2=\sim 5 \times 10^{13}$ pairwise sequence comparisons

Shotgun sequencing

, $\sim 5 \times 10^{13}$ pairwise sequence comparisons
, Recall that local alignment takes $\mathrm{O}(\mathrm{nm})$ time, where n and m are sequence lengths

- Already with $\mathrm{n}=\mathrm{m}=500$, the computation cost is prohibitive

Search strategies

, How to speed up the computation?

- Find ways to limit the number of pairwise comparisons
, Compare the sequences at word level to find out common words
- Word means here a k-tuple (or a k-word), a substring of length k

Analyzing the word content

, Example query string I: TGATGATGAAGACATCAG
, For $k=8$, the set of k-tuples of I is
TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

GACATCAG

Analyzing the word content

There are $n-k+1 k$-tuples in a string of length n
, If at least one word of I is not found from another string J, we know that I differs from J

Need to consider statistical significance: I and J might share words by chance only
, Let $n=|| |$ and $m=|J|$

Word lists and comparison by content

1 The k-words of I can be arranged into a table of word occurences $L_{w}(1)$
, Consider the k-words when $\mathrm{k}=2$ and $\mathrm{I}=\mathrm{GCATCGGC}:$
GC, CA, AT, TC, CG, GG, GC
AT: 3
CA: 2
CG: 5
GC: 1,7 Start indecies of k-word GC in I GG: 6
TC: 4
Building $\mathrm{L}_{\mathrm{w}}(\mathrm{I})$ takes $\mathrm{O}(\mathrm{n})$ time

Common k-words

, Number of common k -words in I and J can be computed using $L_{w}(I)$ and $L_{w}(J)$
, For each word w in I, there are $\left|L_{w}(J)\right|$ occurences in J
, Therefore I and J have $\sum_{w}\left|L_{w}(I)\right|\left|L_{w}(J)\right|$ common words

This can be computed in $O\left(n+m+4^{k}\right)$ time

- $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time to build the lists
- $O\left(4^{k}\right)$ time to calculate the sum

Common k-words

\section*{। $\mathrm{I}=$ GCATCGGC
 $J=$ CCATCGCCATCG
 | $\mathrm{L}_{\mathrm{w}}(\mathrm{I})$ | $\mathrm{L}_{\mathrm{w}}(\mathrm{J})$ | Common words |
| :--- | :--- | :--- |
| AT: 3 | AT: 3,9 | 2 |
| CA: 2 | CA: 2,8 | 2 |
| | CC: 1,7 | 0 |
| CG: 5 | CG: 5,11 | 2 |
| GC: 1,7 | GC: 6 | 2 |
| GG: 6 | | 0 |
| TC: 4 | TC: 4,10 | 2 |
| | | 10 in total |}

Properties of the common word list

, Exact matches can be found using binary search (e.g., where TCGT occurs in I?)

- $O\left(\log 4^{k}\right)$ time
, For large k, the table size is too large to compute the common word count in the previous fashion
- Instead, an approach based on merge sort can be utilised (details skipped, see course book)
, The common k-word technique can be combined with the local alignment algorithm to yield a rapid alignment approach

Chapter 7: Rapid alignment methods: FASTA and BLAST

, The biological problem
, Search strategies
, FASTA
, BLAST

FASTA

, FASTA is a multistep algorithm for sequence alignment (Wilbur and Lipman, 1983)
, The sequence file format used by the FASTA software is widely used by other sequence analysis software
, Main idea:

- Choose regions of the two sequences that look promising (have some degree of similarity)
- Compute local alignment using dynamic programming in these regions

FASTA outline

, FASTA algorithm has five steps:

- 1. Identify common k-words between I and J
- 2. Score diagonals with k-word matches, identify 10 best diagonals
- 3. Rescore initial regions with a substitution score matrix
- 4. Join initial regions using gaps, penalise for gaps
- 5. Perform dynamic programming to find final alignments

Dot matrix comparisons

Word matches in two sequences I and J can be represented as a dot matrix
, Dot matrix element (i, j) has "a dot", if the word starting at position i in I is identical to the word starting at position j in J

- The dot matrix can be plotted for various k

Dot matrix ($k=1,4,8,16$) for two DNA sequences X85973.1 (1875 bp) Y11931.1 (2013 bp)

$\mathrm{k}=8$
$\mathrm{k}=16$

Computing diagonal sums

1 We would like to find high scoring diagonals of the dot matrix
1 Lets index diagonals by the offset, I = i-j

Computing diagonal sums

- As an example, lets compute diagonal sums for $I=$ GCATCGGC, $\mathrm{J}=\mathrm{CCATCGCCATCG} \mathrm{k}=$,

1 1. Construct k-word list $\mathrm{L}_{\mathrm{w}}(\mathrm{J})$
1 2. Diagonal sums $\mathrm{S}_{\boldsymbol{l}}$ are computed into a table, indexed with the offset and initialised to zero

1	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
S_{1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Computing diagonal sums

3. Go through k-words of I, look for matches in $L_{w}(J)$ and update diagonal sums

For the first 2-word in I, $\mathrm{GC}, \mathrm{L}_{\mathrm{GC}}(\mathrm{J})=\{6\}$.

We can then update the sum of diagonal $\mathrm{I}=\mathrm{i}-\mathrm{j}=1-6=-5$ to $S_{-5}:=S_{-5}+1=0+1=1$

Computing diagonal sums

3. Go through k-words of I, look for matches in $L_{w}(J)$ and update diagonal sums

Computing diagonal sums

3. Go through k-words of I, look for matches in $L_{w}(J)$ and update diagonal sums

Computing diagonal sums

After going through the k-words of I, the result is:

1	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
S_{1}	0	0	0	0	4	1	0	0	0	0	4	1	0	0	0	0	0

I

Algorithm for computing diagonal sum of scores

$\mathrm{S}_{1}:=0$ for all $1-\mathrm{m} \leq \mathrm{l} \leq \mathrm{n}-1$
Compute $\mathrm{L}_{\mathrm{w}}(\mathrm{J})$ for all words w

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } n-k-1 \text { do } \\
& \qquad \begin{array}{l}
\mathrm{w}:=\mathrm{l}_{\mathrm{i}} \mathrm{l}_{+1} \ldots \mathrm{l}_{i+k-1} \\
\text { for } \mathrm{j}
\end{array} \in \mathrm{~L}_{\mathrm{w}}(\mathrm{~J}) \text { do } \\
& \mathrm{I}:=\mathrm{i}-\mathrm{j} \\
& \mathrm{~S}_{1}:=\mathrm{S}_{1}+1 \quad \text { Match score is here } 1 \\
& \text { end }
\end{aligned}
$$

end

FASTA outline

, FASTA algorithm has five steps:

- 1. Identify common k-words between I and J
- 2. Score diagonals with k-word matches, identify 10 best diagonals
- 3. Rescore initial regions with a substitution score matrix
- 4. Join initial regions using gaps, penalise for gaps
- 5. Perform dynamic programming to find final alignments

Rescoring initial regions

, Each high-scoring diagonal chosen in the previous step is rescored according to a score matrix

This is done to find subregions with identities shorter than k
Non-matching ends of the diagonal are trimmed

Joining diagonals

, Two offset diagonals can be joined with a gap, if the resulting alignment has a higher score
, Separate gap open and extension are used
, Find the best-scoring combination of diagonals

FASTA outline

, FASTA algorithm has five steps:

- 1. Identify common k-words between I and J
- 2. Score diagonals with k-word matches, identify 10 best diagonals
- 3. Rescore initial regions with a substitution score matrix
- 4. Join initial regions using gaps, penalise for gaps
- 5. Perform dynamic programming to find final alignments

Local alignment in the highest-scoring region

- Last step of FASTA: perform local alignment using dynamic programming around the highestscoring
- Region to be aligned covers -w and +w offset diagonal to the highest-scoring diagonals
- With long sequences, this region is typically very small compared to the
 whole $\mathrm{n} \times \mathrm{m}$ matrix

Dynamic programming matrix
M filled only for the green region

Properties of FASTA

, Fast compared to local alignment using dynamic programming only

- Only a narrow region of the full matrix is aligned
, Increasing parameter k decreases the number of hits: increases specificity, decreases sensitivity
, FASTA can be very specific when identifying long regions of low similarity
- Specific method does not produce many incorrect results
- Sensitive method produces many of the correct results

Properties of FASTA

, FASTA looks for initial exact matches to query sequence

- Two proteins can have very different amino acid sequences and still be biologically similar
- This may lead into a lack of sensitivity with diverged sequences

Demonstration of FASTA at EBI

, http://www.ebi.ac.uk/fasta/
, Note that parameter ktup in the software corresponds to parameter k in lectures

Chapter 7: Rapid alignment methods: FASTA and BLAST

, The biological problem
, Search strategies
FASTA
, BLAST

BLAST: Basic Local Alignment Search Tool

, BLAST (Altschul et al., 1990) and its variants are some of the most common sequence search tools in use

- Roughly, the basic BLAST has three parts:
- 1. Find local alignments between the query sequence and a database sequence ("seed hits")
- 2. Extend seed hits into high-scoring local alignments
- 3. Calculate p-values and a rank ordering of the local alignments
, High-scoring local alignments are called high scoring segment pairs (HSPs)
, Gapped BLAST introduced in 1997 allows for gaps in alignments

Finding seed hits

, First, we generate a set of neighborhood sequences for given k, match score matrix and threshold T
, Neighborhood sequences of a k-word winclude all strings of length k that, when aligned against w , have the alignment score at least T
, For instance, let $\mathrm{I}=$ GCATCGGC, $\mathrm{J}=\mathrm{CCATCGCCATCG}$ and k $=5$, match score be 1 , mismatch score be 0 and $\mathrm{T}=4$

Finding seed hits

, $\mathrm{I}=\mathrm{GCATCGGC}, \mathrm{J}=\mathrm{CCATCGCCATCG}, \mathrm{k}=5$, match score 1 , mismatch score $0, \mathrm{~T}=4$

This allows for one mismatch in each k-word
The neighborhood of the first k-word of I, GCATC, is GCATC and the 15 sequences

Finding seed hits

1 $\mathrm{I}=\mathrm{GCATCGGC}$ has 4 k -words and thus $4 \times 16=645$-word patterns (seed hits) to locate in J
, These patterns can be found using exact search in time proportional to the sum of pattern lengths + length of $J+$ number of matches (Aho-Corasick algorithm)

- Methods for pattern matching are developed on course 58093 String processing algorithms

Extending seed hits: original BLAST

- Initial seed hits are extended
- Extensions do not add gaps to the alignment
- Sequence is extended into a HSP until the alignment score drops below the maximum attained score minus a threshold parameter value
- All statistically significant HSPs reported

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J., J. Mol. Biol., 215, 403-410, 1990

Extending seed hits: gapped BLAST

- In later version of BLAST, two seed hits have to be found on the same diagonal
- Hits have to be non-overlapping
- If the hits are closer than A (additional parameter), then they are joined into a HSP
- Threshold value T is lowered to
 achieve comparable sensitivity
- If the resulting HSP achieves a score at least S_{g}, a gapped extension is triggered

Gapped extensions of HSPs

- Local alignment is performed starting from the HSP
- Dynamic programming matrix filled in "forward" and "backward" directions (see figure)
- Skip cells where value would be X_{g} below the best alignment score found so far

Region searched with score Region potentially searched above cutoff parameter by the alignment algorithm

Estimating the significance of results

1 In general, we have a score $S(D, X)=s$ for a sequence X found in database D
, BLAST rank-orders the sequences found by p-values
, The p-value for this hit is $P(S(D, Y) \geq s)$ where Y is a random sequence

- Measures the amount of "surprise" of finding sequence X
, A smaller p-value indicates more significant hit
- A p-value of 0.1 means that one-tenth of random sequences would have as large score as our result

Estimating the significance of results

, In BLAST, p-values are computed roughly as follows
There are nm places to begin an optimal alignment in the $\mathrm{n} \times \mathrm{m}$ alignment matrix
, Optimal alignment is preceded by a mismatch and has t matching (identical) letters

- (Assume match score 1 and mismatch score 0)

Let $p=P$ (two random letters are equal)
The probability of having a mismatch and then t matches is $(1-p) p^{t}$

Estimating the significance of results

We model this event by a Poisson distribution (why?) with mean $\lambda=n m(1-p) p^{t}$
, P (there is local alignment t or longer)
$=1-P($ no such event $)$
$=1-e^{-\lambda}=1-\exp \left(-n m(1-p) p^{t}\right)$
, An equation of the same form is used in Blast:

- E -value $=\mathrm{P}(\mathrm{S}(\mathrm{D}, \mathrm{Y}) \geq \mathrm{s}) \approx 1-\exp \left(-n m y \xi^{\dagger}\right)$ where $\mathrm{y}>0$ and $0<\xi<1$
Parameters y and ξ are estimated from data

Scoring amino acid alignments

- We need a way to compute the score $\mathrm{S}(\mathrm{D}, \mathrm{X})$ for aligning the sequence X against database D
- Scoring DNA alignments was discussed previously
- Constructing a scoring model for amino acids is more challenging
- 20 different amino acids vs. 4 bases
- Figure shows the molecular structures of the 20 amino acids

L-Alanine
(Ala /A)

OH

L-Cysteine

L-Histidine

Clos

L-Threonine
(Thr $/ \mathrm{T})$

L-Glutamic acid
(Glu/E)
(Glu/E)

L-Isoleucine

L-Phenylalanine
(Phe $/$ F)

L-Tyyptophan
(Trp/W)

L-Glutamine
(Gln / Q)
Glycine
(Gly/G)

Scoring amino acid alignments

- Substitutions between chemically similar amino acids are more frequent than between dissimilar amino acids
- We can check our scoring model against this

Con

L-Alanine
(Ala/A)
(Ala/A)

OH

L-Cysteine
(Cys/C)

L-Histidine
(His / H)

L-Methionine
(Met/m)

L-Threonine
(Thr $/ T)$
 (Asn/N)

L-Glutamic acid
(Glu/E)

L-Isoleucine
(lle (1)

L-Phenylalanine
(Phe / F)
(Phe/F)

L-Tryptophan
(Trp/W)

L-Aspartic acid
(Asp/D)

Glycine
(Gly/G)

L-Lysine
(Lys/K)

L-Serine
(Ser/S)

(valiv)

Score matrices

1 Scores $s=S(D, X)$ are obtained from score matrices
, Let $A=A_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{n}$ be sequences of equal length (no gaps allowed to simplify things)
, To obtain a score for alignment of A and B, where a_{i} is aligned against b_{i}, we take the ratio of two probabilities

- The probability of having A and B where the characters match (match model M)
- The probability that A and B were chosen randomly (random model R)

Score matrices: random model

, Under the random model, the probability of having X and Y is

$$
P(A, B \mid R)=\prod_{i} q_{a i} \prod_{i} q_{b i}
$$

where $q_{x i}$ is the probability of occurence of amino acid type x_{i}
, Position where an amino acid occurs does not affect its type

Score matrices: match model

, Let $p_{a b}$ be the probability of having amino acids of type a and b aligned against each other given they have evolved from the same ancestor c

The probability is

$$
P(A, B \mid M)=\prod_{i} p_{a_{i} b_{i}}
$$

Score matrices: log-odds ratio score

We obtain the score S by taking the ratio of these two probabilities

$$
\frac{P(A, B \mid M)}{P(A, B \mid R)}=\frac{\prod_{i} p_{a_{i} b_{i}}}{\prod_{i} q_{a_{i}} \prod_{i} q_{b_{i}}}=\prod_{i} \frac{p_{a_{i} b_{i}}}{q_{a_{i}} q_{b_{i}}}
$$

and taking a logarithm of the ratio

$$
S=\log _{2} \frac{P(A, B \mid M)}{P(A, B \mid R)}=\sum_{i=1}^{n} \log _{2} \frac{p_{a_{i} b_{i}}}{a_{a_{i}} q_{b_{i}}}=\sum_{i=1}^{n} s\left(a_{i}, b_{i}\right)
$$

Score matrices: log-odds ratio score

$$
S=\log _{2} \frac{P(A, B \mid M)}{P(A, B \mid R)}=\sum_{i=1}^{n} \log _{2} \frac{p_{a_{i} b_{i}}}{q_{a_{i}} q_{b_{i}}}=\sum_{i=1}^{n} s\left(a_{i}, b_{i}\right)
$$

The score S is obtained by summing over character pair-specific scores:

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

The probabilities q_{a} and $p_{a b}$ are extracted from data

Calculating score matrices for amino acids

- Probabilities q_{a} are in principle easy to obtain:

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

- Count relative frequencies of every amino acid in a sequence database

Calculating score matrices for amino
 acids

- To calculate $p_{a b}$ we can use a known pool of aligned sequences
- BLOCKS is a database of highly conserved regions for proteins
- It lists multiply aligned, ungapped and conserved protein segments
- Example from BLOCKS shows genes related to human gene associated with DNA-repair defect xeroderma pigmentosum

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

```
Block PR 00851A
ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 ( 74) RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 ( 74) RPLWVAPDGHIFLEAFSPVYK 54
P91579 ( 80) RPLYLAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 ( 84) RPLWVAPNGHVFLESFSPVYK }7
RA25_YEAST|Q00578 ( 131) PLWISPSDGRIILESFSPLAE 100
Q38861 ( 52) RPLWACADGRIFLETFSPLYK }7
O13768 ( 90) PLWINPIDGRIILEAFSPLAE 100
O00835 ( 79) RPIWVCPDGHIFLETFSAIYK 86
```


BLOSUM matrix

- BLOSUM is a score matrix for amino acid sequences derived from BLOCKS data
- First, count pairwise matches $\mathrm{f}_{\mathrm{x}, \mathrm{y}}$ for every amino acid type pair (x, y)
- For example, for column 3 and amino acids L and W, we find 8 pairwise matches: $f_{L, W}=f_{W, L}=8$

Creating a BLOSUM matrix

- Probability p_{ab} is obtained by dividing $f_{a b}$ with the total number of pairs (note difference with course book):

$$
p_{a b}=f_{a b} / \sum_{x=1}^{20} \sum_{y=1}^{x} f_{x y}
$$

- We get probabilities q_{a} by

$$
q_{a}=\sum_{b=1}^{20} p_{a b}
$$

Creating a BLOSUM matrix

, The probabilities $p_{a b}$ and q_{a} can now be plugged into

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

to get a 20×20 matrix of scores $s(a, b)$.
, Next slide presents the BLOSUM62 matrix

- Values scaled by factor of 2 and rounded to integers
- Additional step required to take into account expected evolutionary distance
- Described in the course book in more detail

BLOSUM62

Using BLOSUM62 matrix

MQLEANADTSV

$s=\sum_{i=1}^{11} s\left(a_{i}, b_{i}\right)$
$=2+5-3-4+4+0+4+0-2+0+1$
$=7$

Demonstration of BLAST at NCBI

, http://www.ncbi.nlm.nih.gov/BLAST/

Inferring the Past: Phylogenetic Trees (chapter 12)

, The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

Phylogeny

- We want to study ancestordescendant relationships, or phylogeny, among groups of organisms
- Groups are called taxa (singular: taxon)
- Organisms are usually called operational taxonomic units or OTUs in the context of phylogeny

Phylogenetic trees

- Leaves (external nodes) ~ species, observed (OTUs)
- Internal nodes ~ ancestral species/divergence events, not observed
- Unrooted tree does not specify ancestordescendant relationships beyond the observation "leaves are not ancestors"

Unrooted tree with 5 leaves and 3 internal nodes.

Is node 7 ancestor of node 6?

Phylogenetic trees

- Rooting a tree specifies all ancestor-descendant relationships in the tree
- Root is the ancestor to the other species
- There are $\mathrm{n}-1$ ways to R_{1} root a tree with n nodes

Questions

- Can we enumerate all possible phylogenetic trees for n species (or sequences?)
, How to score a phylogenetic tree with respect to data?
, How to find the best phylogenetic tree given data?

Finding the best phylogenetic tree: naive method

, How can we find the phylogenetic tree that best represents the data?
, Naive method: enumerate all possible trees
How many different trees are there of n species?
Denote this number by b_{n}

Enumerating unordered trees

- Start with the only unordered tree with 3 leaves $\left(b_{3}=1\right)$
- Consider all ways to add a leaf node to this tree
- Fourth node can be added to 3 different branches (edges), creating 1 new internal branch
- Total number of branches is n external and $\mathrm{n}-3$ internal branches
- Unrooted tree with n leaves has $2 n-3$ branches

Enumerating unordered trees

- Thus, we get the number of unrooted trees

$$
\begin{aligned}
b_{n} & =(2(n-1)-3) b_{n-1}=(2 n-5) b_{n-1} \\
& =(2 n-5) *(2 n-7)^{*} \ldots * 3^{* 1} \\
& =(2 n-5)!/\left((n-3)!2^{n-3}\right), n>2
\end{aligned}
$$

- Number of rooted trees b_{n} is

$$
b_{n}^{\prime}=(2 n-3) b_{n}=(2 n-3)!/\left((n-2)!2^{n-2}\right), n>2
$$

that is, the number of unrooted trees times the number of branches in the trees

Number of possible rooted and unrooted trees

n	$\mathrm{~B}_{\mathrm{n}}$	$\mathrm{b}_{\mathrm{n}}^{\prime}$
3	1	3
4	3	15
5	15	105
6	105	945
7	954	10395
8	10395	135135
9	135135	2027025
10	2027025	34459425
20	$2.22 \mathrm{E}+020$	$8.20 \mathrm{E}+021$
30	$8.69 \mathrm{E}+036$	$4.95 \mathrm{E}+038$

Too many trees?

, We can't construct and evaluate every phylogenetic tree even for a smallish number of species
, Better alternative is to

- Devise a way to evaluate an individual tree against the data
- Guide the search using the evaluation criteria to reduce the search space

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods
Models for mutations and estimation of distances
Maximum likelihood methods

Parsimony method

The parsimony method finds the tree that explains the observed sequences with a minimal number of substitutions
, Method has two steps

- Compute smallest number of substitutions for a given tree with a parsimony algorithm
- Search for the tree with the minimal number of substitutions

Parsimony: an example

, Consider the following short sequences
$1 \mathcal{A C T} \mathcal{T} \mathcal{T}$
2 $\mathfrak{A C A T} \mathcal{T}$
3 AACGT
4 $\mathfrak{A A} \mathcal{A} \mathcal{G} \mathcal{T}$
$5 \mathcal{A} \mathcal{A T I T}$
, There are 105 possible rooted trees for 5 sequences
Example: which of the following trees explains the sequences with least number of substitutions?

This tree explains the sequences with 4 substitutions

Computing parsimony

, Parsimony treats each site (position in a sequence) independently
Total parsimony cost is the sum of parsimony costs of each site

We can compute the minimal parsimony cost for a given tree by

- First finding out possible assignments at each node, starting from leaves and proceeding towards the root
- Then, starting from the root, assign a letter at each node, proceeding towards leaves

Labelling tree nodes

An unrooted tree with n leaves contains $2 n-1$ nodes altogether

- Assign the following labels to nodes in a rooted tree
- leaf nodes: 1, 2, ..., n
- internal nodes: $n+1, n+2, \ldots, 2 n-1$

Parsimony algorithm: first phase

Find out possible assignments at every node for each site u independently. Denote site u in sequence i by $s_{i, u}$.

For $i:=1, \ldots, n$ do

$$
\begin{array}{rlrl}
\mathcal{F}_{i} & :=\left\{s_{i, u}\right\} & \text { \% possible assignments at node } i \\
\mathcal{L}_{i} & :=0 & \text { \% number of substitutions up to node } i \\
\text { For } i & :=n+1, \ldots, 2 n-1 \text { do }
\end{array}
$$

$$
\begin{aligned}
& \text { Let } j \text { and } k \text { be the cfildren of node } i \\
& \text { If } \mathcal{F}_{j} \cap \mathcal{F}_{k}=\varnothing \text { then } \mathcal{L}_{i}:=\mathcal{L}_{j}+\mathcal{L}_{k}+1, \mathcal{F}_{i}:=\mathcal{F}_{j} \cup \mathrm{~F}_{\mathrm{k}} \\
& \qquad \text { else } \mathcal{L}_{i}:=\mathcal{L}_{j}+\mathcal{L}_{\mathfrak{k}^{\prime}} \mathcal{F}_{i}:=\mathcal{F}_{j} \cap \mathrm{~F}_{\mathrm{k}}
\end{aligned}
$$

Parsimony algorithm: first phase

Choose $u=3$ (for example, in general we do this for all u)
$\mathrm{F}_{1}:=\{\mathrm{T}\}$
$\mathrm{L}_{1}:=0$
$\mathrm{F}_{2}:=\{\mathrm{A}\}$
$L_{2}:=0$
$F_{3}:=\{C\}, L_{3}:=0$
$F_{4}:=\{T\}, L_{4}:=0$
$F_{5}:=\{T\}, L_{5}:=0$

Parsimony algorithm: first phase

$$
\begin{array}{ll}
\mathrm{F}_{6}:=\mathrm{F}_{3} \cup \mathrm{~F}_{4}=\{\mathrm{C}, \mathrm{~T}\} \\
\mathrm{L}_{6} & :=\mathrm{L}_{3}+\mathrm{L}_{4}+1=1 \\
\mathrm{~F}_{7}:=\mathrm{F}_{5} \cap \mathrm{~F}_{6}=\{\mathrm{T}\} \\
\mathrm{L}_{7} & :=\mathrm{L}_{5}+\mathrm{L}_{6}=1 \\
\mathrm{~F}_{8}:=\mathrm{F}_{1} \cup \mathrm{~F}_{2}=\{\mathrm{A}, \mathrm{~T}\} & \\
\mathrm{L}_{8}:=\mathrm{L}_{1}+\mathrm{L}_{2}+1=1 & \\
\mathrm{~F}_{9}:=\mathrm{F}_{7} \cap \mathrm{~F}_{8}=\{\mathrm{T}\} & \\
\mathrm{L}_{9}:=\mathrm{L}_{7}+\mathrm{L}_{8}=2 & \\
\end{array}
$$

Parsimony algorithm: second phase

, Backtrack from the root and assign $x \in F_{i}$ at each node
, If we assigned y at parent of node i and $y \in F_{i}$, then assign y

Else assign $x \in F_{i}$ by random

Parsimony algorithm: second phase

At node 6, the algorithm assigns T because T was assigned to parent node 7 and $T \in F_{6}$.

T is assigned to node 8 for the same reason.

The other nodes have only one possible letter to assign

Parsimony algorithm

First and second phase are repeated for each site in the sequences, summing the parsimony costs at each site

Properties of parsimony algorithm

, Parsimony algorithm requires that the sequences are of same length

- First align the sequences against each other and remove indels
- Then compute parsimony for the resulting sequences
, Is the most parsimonious tree the correct tree?
- Not necessarily but it explains the sequences with least number of substitutions
- We can assume that the probability of having fewer mutations is higher than having many mutations

Finding the most parsimonious tree

, Parsimony algorithm calculates the parsimony cost for a given tree...
। ...but we still have the problem of finding the tree with the lowest cost

Exhaustive search (enumerating all trees) is in general impossible
, More efficient methods exist, for example

- Probabilistic search
- Branch and bound

Branch and bound in parsimony

We can exploit the fact that adding edges to a tree can only increase the parsimony cost

		$\{\mathrm{C}, \mathrm{T}\}$		
\{T \}				
				$\{T\}$
1	2	3	1	2
$\mathfrak{A H T G T}$	$\mathfrak{A R T I T}$	$\mathcal{A L C G T}$	$\mathfrak{A P T G T}$	$\mathfrak{A P T I T}$
			cost 1	

Branch and bound in parsimony

Branch and bound is a general search strategy where

Each solution is potentially generated

- Track is kept of the best solution found
- If a partial solution cannot achieve better score, we abandon the current search path

In parsimony...
, Start from a tree with 1 sequence

Add a sequence to the tree and calculate parsimony cost
, If the tree is complete, check if found the best tree so far

If tree is not complete and cost exceeds best tree cost, do not continue adding edges to this tree

Branch and bound graphically

Partial tree, no best complete tree constructed yet
Complete tree: calculate parsimony cost and store
Partial tree, cost exceeds the cost of the best tree this far

Distance methods

The parsimony method works on sequence (character string) data
, We can also build phylogenetic trees in a more general setting

Distance methods work on a set of pairwise distances d_{ij} for the data
Distances can be obtained from phenotypes as well as from genotypes (sequences)

Distances in a phylogenetic tree

Distance matrix $\mathrm{D}=\left(\mathrm{d}_{\mathrm{i}}\right)$ gives pairwise distances for leaves of the phylogenetic tree
, In addition, the phylogenetic tree will now specify distances between leaves and internal nodes

- Denote these with d_{ij} as well

Distance d_{ij} states how far apart species i and j are evolutionary (e.g., number of mismatches in aligned sequences)

Distances in evolutionary context

- Distances d_{ij} in evolutionary context satisfy the following conditions
- Symmetry: $\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ji}}$ for each i, j
- Distinguishability: $\mathrm{d}_{\mathrm{ij}} \neq 0$ if and only if $\mathrm{i} \neq \mathrm{j}$
- Triangle inequality: $\mathrm{d}_{\mathrm{ij}} \leq \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{kj}}$ for each $\mathrm{i}, \mathrm{j}, \mathrm{k}$
, Distances satisfying these conditions are called metric
, In addition, evolutionary mechanisms may impose additional constraints on the distances
\triangleright additive and ultrametric distances

Additive trees

A tree is called additive, if the distance between any pair of leaves (i, j) is the sum of the distances between the leaves and the first node k that they share in the tree

$$
\mathrm{d}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{jk}}
$$

"Follow the path from the leaf i to the leaf j to find the exact distance d_{ij} between the leaves."

Additive trees: example

	A	B	C	D
A	0	2	4	4
B	2	0	4	4
C	4	4	0	2
D	4	4	2	0

Ultrametric trees

A rooted additive tree is called a ultrametric tree, if the distances between any two leaves i and j, and their common ancestor k are equal
$\mathrm{d}_{\mathrm{ik}}=\mathrm{d}_{\mathrm{jk}}$
, Edge length d_{ij} corresponds to the time elapsed since divergence of i and j from the common parent
, In other words, edge lengths are measured by a molecular clock with a constant rate

Identifying ultrametric data

We can identify distances to be ultrametric by the three-point condition:

D corresponds to an ultrametric tree if and only if for any three species i, j and k, the distances satisfy $\mathrm{d}_{\mathrm{ij}} \leq \max \left(\mathrm{d}_{\mathrm{ik}}, \mathrm{d}_{\mathrm{kj}}\right)$
, If we find out that the data is ultrametric, we can utilise a simple algorithm to find the corresponding tree

Ultrametric trees

Ultrametric trees

Ultrametric trees

Ultrametric trees

UPGMA algorithm

UPGMA (unweighted pair group method using arithmetic averages) constructs a phylogenetic tree via clustering
, The algorithm works by at the same time

- Merging two clusters
- Creating a new node on the tree
, The tree is built from leaves towards the root
, UPGMA produces a ultrametric tree

Cluster distances

, Let distance d_{ij} between clusters C_{i} and C_{j} be

$$
d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i}, q \in C_{j}} d_{p q}
$$

that is, the average distance between points (species) in the cluster.

UPGMA algorithm

. Initialisation

- Assigneach point ito its own cluster C_{i}
- Define one le af for each sequence, and place it at feight zero
, Iteration
- Find clusters i and j for which $d_{i j}$ is minimal
- Define new cluster \mathcal{K} by $C_{K}=\mathcal{C}_{i} \cup \mathcal{C}_{j}$, and define $d_{k l}$ for all $[$
- Define a node Kwith cfildren i and j. Place Kat feight $d_{i j} / 2$
- Remove clusters i and j
, Termination:
- When only two clusters i and j remain, place root at height $d_{i j} / 2$

```
2
    O
```

```
    3
```

 3
 4
4
5

```
5
```


3
4
5

UPGMA implementation

, In naive implementation, each iteration takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time with n sequences $=>$ algorithm takes $O\left(n^{3}\right)$ time

The algorithm can be implemented to take only $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time (Gronau \& Moran, 2006)

Problem solved?

- We now have a simple algorithm which finds a ultrametric tree
- If the data is ultrametric, then there is exactly one ultrametric tree corresponding to the data (we skip the proof)
- The tree found is then the "correct" solution to the phylogeny problem, if the assumptions hold
, Unfortunately, the data is not ultrametric in practice
- Measurement errors distort distances
- Basic assumption of a molecular clock does not hold usually very well

Incorrect reconstruction of nonultrametric data by UPGMA

Tree which corresponds to non-ultrametric
 distances

Checking for additivity

, How can we check if our data is additive?

- Let $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and I be four distinct species
, Compute 3 sums: $\mathrm{d}_{\mathrm{ij}}+\mathrm{d}_{\mathrm{k} \mathrm{l}}, \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{j}}, \mathrm{d}_{\mathrm{il}}+\mathrm{d}_{\mathrm{jk}}$

Four-point condition

The sums are represented by the three figures

- Left and middle sum cover all edges, right sum does not

Four-point condition: $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and I satisfy the four-point condition if two of the sums $\mathrm{d}_{\mathrm{ij}}+\mathrm{d}_{\mathrm{k} \mid}, \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{j}}, \mathrm{d}_{\mathrm{il}}+\mathrm{d}_{\mathrm{jk}}$ are the same, and the third one is smaller than these two

Checking for additivity

An $\mathrm{n} \times \mathrm{n}$ matrix D is additive if and only if the four point condition holds for every 4 distinct elements $1 \leq i, j, k$, I $\leq n$

Finding an additive phylogenetic

 tree- Additive trees can be found with, for example, the neighbor joining method (Saitou \& Nei, 1987)
The neighbor joining method produces unrooted trees, which have to be rooted by other means
- A common way to root the tree is to use an outgroup
- Outgroup is a species that is known to be more distantly related to every other species than they are to each other
- Root node candidate: position where the outgroup would join the phylogenetic tree
, However, in real-world data, even additivity usually does not hold very well

Neighbor joining algorithm

, Neighbor joining works in a similar fashion to UPGMA

- Find clusters C_{1} and C_{2} that minimise a function $f\left(C_{1}, C_{2}\right)$
- Join the two clusters C_{1} and C_{2} into a new cluster C
- Add a node to the tree corresponding to C
- Assign distances to the new branches
, Differences in
- The choice of function $f\left(C_{1}, C_{2}\right)$
- How to assign the distances

Neighbor joining algorithm

1 Recall that the distance d_{ij} for clusters C_{i} and C_{j} was

$$
d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i, q} \in C_{j}} d_{p q}
$$

, Let $u\left(\mathrm{C}_{\mathrm{i}}\right)$ be the separation of cluster C_{i} from other clusters defined by

$$
u\left(C_{i}\right)=\frac{1}{n-2} \sum_{C_{j}} d_{i j}
$$

where n is the number of clusters.

Neighbor joining algorithm

- Instead of trying to choose the clusters C_{i} and C_{j} closest to each other, neighbor joining at the same time
- Minimises the distance between clusters C_{i} and C_{j} and
- Maximises the separation of both C_{i} and C_{j} from other clusters

Neighbor joining algorithm

1 Initialisation as in $\mathcal{U P} \mathcal{P} \mathcal{M A}$

- Iteration
- Find clusters i and j for which $d_{i j}-u\left(C_{i}\right)-u\left(C_{j}\right)$ is minimal
- Define new cluster \mathcal{K} by $\mathcal{C}_{k}=\mathcal{C}_{i} \cup \mathcal{C}_{j}$, and define $d_{k l}$ for all 1
- Define a node Kwitf children i and j. Remove clusters i and j
- Assignlengtf $1 / 2 d_{i j}+1 / 2\left(u\left(C_{i}\right)-u\left(C_{j}\right)\right)$ to the edge $i->K$
- Assignlength $1 / 2 d_{i j}+1 / 2\left(u\left(C_{j}\right)-u\left(C_{i}\right)\right)$ to the edge $j \rightarrow K$
, Termination:
- When only one cluster remains

Neighbor joining algorithm:

 example| | a | b | c | d |
| ---: | ---: | ---: | ---: | ---: |
| a | 0 | 6 | 7 | 5 |
| b | | 0 | 11 | 9 |
| c | | | 0 | 6 |
| d | | | | 0 |

i	$u(i)$
a	$(6+7+5) / 2=9$
b	$(6+11+9) / 2=13$
c	$(7+11+6) / 2=12$
d	$(5+9+6) / 2=10$

Neighbor joining algorithm: example

	a	b	c	d
a	0	6	7	5
b		0	11	9
c			0	6
d				0

i	$u(i)$
a	$(6+7+5) / 2=9$
b	$(6+11+9) / 2=13$
c	$(7+11+6) / 2=12$
d	$(5+9+6) / 2=10$

i, j	$d_{i j}-u\left(C_{i}\right)$	$-u\left(C_{j}\right)$		
a, b	6	-	9	$-13=-16$
a, c	7	-	9	$-12=-14$
a, d	5	-	-10	$=-14$
b, c	11	-13	$-12=-14$	
b, d	9	-13	$-10=-14$	
c, d	6	-12	$-10=-16$	

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods

- Models for mutations and estimation of distances
, Maximum likelihood methods

Estimation of distances

- Many alternative ways to derive the distances d_{ij} exist
- Simple solution: align each sequence pair and use the alignment score
- This would not take into account that a change in base might revert back to the original base
- We would then underestimate the distances
, Next: derivation of a simple stochastic model for the evolution of a DNA sequence

Obtain the distances from the model

Estimation of distances

Key assumptions: mutations at sites are rare events in the course of time => poisson process
, sites evolve individually and by an identical mechanism
, number of mismatched bases is a sum of mutations at individual sites => binomial variable

A stochastic model for base substitutions

, Consider a single homologous site in two sequences
, Assume the sites diverged for time length t : the sites are separated by time $2 t$
Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
, Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^{k} /(k!), k=0,1,2, \ldots$

Substitutions at one site

, General model: P(substitution results in base j | site was base i) $=\mathrm{m}_{\mathrm{ij}}$
, Felsenstein model: $m_{i j}=\pi_{j}$, with $\pi_{j} \geq 0$ and $\pi_{1}+\pi_{2}+$ $\pi_{3}+\pi_{4}=1$

- The previous base does not affect the outcome!
, Assume that the set of probabilities π_{j} is same at every position in the sequence

Substitutions at one site (2)

, Probability $q_{i j}(t)$ that a base i at time 0 is substituted by a base j a time t later

- $q_{i j}(t)=e^{-\lambda t}+\left(1-e^{-\lambda t}\right) \pi_{j}$, if $i=j$
- $q_{i j}(t)=\left(1-e^{-\lambda t}\right) \pi_{j}$, otherwise

Substitutions at one site (3)

We assume stationarity: distribution of base frequencies is the same for every time t
, In other words, we want that
$P($ base a time t later $=j)=\pi_{j}{ }^{0}$
where $\pi_{j}{ }^{0}$ is the frequency of base j at time 0 .

For our simple model, this can be shown to hold

Estimating distances

Distances should take into account the mutation mechanism

- Average of λt substitutions occur at a particular site on a branch of length t

However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

Mean number of substitutions in time t

, What is the chance H that a substitution actually changes a base?
, $H=\sum \pi_{i}\left(1-\pi_{i}\right)=1-\sum \pi_{i}^{2}$
Average number of real substitutions is then $\lambda \mathrm{tH}$
Distance K between two sequences is
$K=2 \lambda t H$

Estimating distances from sequence data

We want to estimate $K=2 \lambda t H$ from sequence data The chance $F_{i j}(t)$ that we observe a base i in one sequence and a base j in another is
$F_{i j}(t)=\sum_{l} \Pi_{l} q_{l i}(t) q_{l j}(t)$
by averaging over the possible ancestral nucleotides

Estimating distances from sequence data

Expression $F_{i j}(t)=\sum_{l} \pi_{1} q_{l i}(t) q_{i j}(t)$ can be simplified by assuming that the mutation process is reversible:
$\pi_{\mathrm{i}} \mathrm{m}_{\mathrm{ij}}=\pi_{\mathrm{j}} \mathrm{m}_{\mathrm{ji}}$ for all $\mathrm{i} \neq \mathrm{j}$
, From this it can be shown that
$m_{I} q_{j j}(t)=\pi_{j} q_{j j}(t)$ for all i, j and $t>0$
, Now the model simplifies into $F_{i j}(t)=\pi_{i} q_{i j}(2 t)$

Estimating distances from sequence data

, What is the probability $F=F(t)$ that the bases at a particular position in two immediate descendants of the same ancestor are identical?

$$
F=\sum_{i} \Pi_{i} q_{i i}(2 t)=e^{-2 \lambda t}+\left(1-e^{-2 \lambda t}\right)(1-H)
$$

Putting the sites together

, Assume that

- sites evolve independently of one other and
- mutation process is identical at each site
- The two sequences have been aligned against each other and gaps have been removed
Do the bases at site i in the sequences differ?
$X_{i}=1$ if the ith pair of sites differs
$\mathrm{X}_{\mathrm{i}}=0$ otherwise

Putting the sites together (2)

- $P\left(X_{i}=1\right)=1-F=\left(1-e^{-2 \lambda t}\right) H$
- Now $D=X_{1}+\ldots+X_{s}$ is the number of mismatched pairs of bases

D is a binomial random variable with parameters s and 1 - F
, Notice that D is the Hamming distance for the sequences

Putting the sites together (3)

, F is unknown and has to be estimated from the sequence data
, Recall that the observed proportion of successes is a good estimator of the binomial success probability: estimate $1-F$ with D / s

- $\mathrm{D} / \mathrm{s}=\left(1-\mathrm{e}^{-2 \lambda t}\right) \mathrm{H}$
- $2 \lambda t=-\log (1-D /(s H))$

Finally, we obtain $\mathrm{K}=2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$

Jukes-Cantor formula

1 Estimate $2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$ of the distance K is known as the Jukes-Cantor formula
, When H (chance that a substitution actually occurs) approaches 1 , the estimate decreases and approaches the Poisson mean $2 \lambda t$
, H is usually not known and has to be estimated from the data as well

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

Maximum likelihood methods

, Consider the tree on the right with three sequences
, Probability $p\left(i_{1}, i_{2}, i_{3}\right)$ of observing bases i_{1}, i_{2} and i_{3} can be computed by summing over all possible ancestral bases,

$p(i 1, i 2, i 3)=\sum_{a} \sum_{b} \pi_{a} q_{a i 3}\left(\mathrm{t}_{2}\right) q_{a b}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi2}}\left(\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi1}}\left(\mathrm{t}_{1}\right)$
, Hard to compute for complex trees

Maximum likelihood estimation

, We would like to calculate likelihood $p\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ in the general case
, Calculations can be arranged using the peeling algorithm (see exercises)

- Basic idea is to move all summation signs as far to the right as possible

Maximum likelihood estimation

, Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

General recipe for maximum likelihood estimation:

- Maximize over all model parameters for a given tree
- Maximize previous expression over all possible trees

Problems with tree-building

, Assumptions

- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance

Additional material on phylogenetic trees

, Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
Jones, Pevzner: An introduction to bioinformatics algorithms

Gusfield: Algorithms on strings, trees, and sequences

