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Administrative issues

l Master level course

l Obligatory course in the Master’s Degree Programme in
Bioinformatics

l 4 credits

l Prerequisites: basic mathematical skills

l Lectures: Tuesdays and Fridays 14-16 in Exactum C222

l Exercises: Wednesday 14-16 in Exactum C221
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Teachers

l Esa Pitkänen, Department of Computer Science, University of
Helsinki

l Prof. Elja Arjas, Department of Mathematics and Statistics,
University of Helsinki

l Prof. Samuel Kaski, Laboratory of Computer and Information
Science, Helsinki University of Technology

l Lauri Eronen, Department of Computer Science, University of
Helsinki
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How to enrol for the course?

l Use the registration system of the Computer Science
department: https://ilmo.cs.helsinki.fi

l If you don’t have a student number or Finnish id yet, don’t
worry: attend the lectures and exercises, and register when you
have the id

https://ilmo.cs.helsinki.fi
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How to successfully pass the course?

l You can get a maximum of 60 points

− Course exam: maximum of 50 points

− Exercises: maximum of 10 points

l 0% completed assignments gives you 0 points, 80% gives 10
points, the rest by linear interpolation

l “A completed assignment” means that you are willing to
present your solution to the class in the exercise session

l Course will be graded on the scale 0-5

− To get the lowest passing grade 1/5, you need to have at least 30
points

l Course exam: Wednesday 17.10. at 16.00-19.00 in A111
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Course material

l Course book: Richard C. Deonier, Simon
Tavare & Michael S. Waterman:
Computational Genome Analysis – an
Introduction, Springer 2005

l Available at Kumpula and Viikki science
libraries; book stores (Amazon.com ~$56,
Akateeminen kirjakauppa ~75€,
Yliopistokirjakauppa 71€)

l It is recommended that you have access to
the course book!

l Slides for some lectures will be available on
the course web page (copies in room C127)



Introduction to bioinformatics, Autumn 2007 7

Additional material

• Check the course web site

• N. C. Jones & P. A.
Pevzner: An introduction to
bioinformatics algorithms

• Alberts et al.: Molecular
biology of the cell

• Lodish et al.: Molecular cell
biology
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Course contents
• Biological background (book chapter 1)
• Probability calculus (chapters 2 and 3)
• Sequence alignment (chapter 6)
• Rapid alignment methods: FASTA and

BLAST (chapter 7)
• Phylogenetic trees (chapter 12)
• Expression data analysis (chapter 11)
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Master's Degree Programme in
Bioinformatics (MBI)

l Two-year MSc programme

l Admission for 2008-2009 in January 2008
− You need to have your Bachelor’s degree ready by August 2008

www.cs.helsinki.fi/mbi

http://www.cs.helsinki.fi/mbi
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MBI programme

• MBI educates
bioinformatics
professionals who
– Specialise in computational

and statistical methods
– Work in R&D tasks in

biology and medicine
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MBI programme

• Two-year masters programme
(120 cr)

• Offered jointly by the
University of Helsinki (HY)
and Helsinki University of
Technology (TKK)

• Began in 2006 as a national
programme, 2007
international admission

• Students 8 + 7 (2006 + 2007)
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MBI programme organizers
Department of Computer
Science, Department of
Mathematics and Statistics,
HY

Laboratory of Computer and
Information Science, TKK

Faculty of Medicine, HY

Faculty of Biosciences,
Faculty of Agriculture and

Forestry, HY
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Bioinformatics courses at the University of
Helsinki

l Department of Computer Science
− Practical course in biodatabases (II period): techniques for

accessing and integrating data in biology databases.

− Biological sequence analysis (III period): basic probabilistic
methods for modelling and analysis of biological sequences.

− Modeling of vision (III period): mechanisms and modeling of
human perception.

− Seminar: Regulatory networks (I & II periods)

− Seminar: Management of biological databases (III & IV
periods)
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Bioinformatics courses at the University of
Helsinki

l Department of Mathematics and Statistics
− Statistical methods in genetic epidemiology and gene

mapping (I period)

− Mathematical modelling (I & II periods)

− Practical course on phylogenetic analysis (IV period):
recommended to take also Biological sequence analysis

− Adaptive dynamics (III & IV periods)
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Bioinformatics courses at Helsinki University of
Technology

l Laboratory of Computer and Information Science
− Computational genomics (I & II periods): Algorithms and

models for biological sequences and genomics

− Signal processing in neuroinformatics (I and II periods):
overview of some of the main biomedical signal processing
techniques

− High-throughput bioinformatics (III and IV periods):
computational and statistical methods for analyzing modern
high-throughput biological data

− Image analysis in neuroinformatics (III and IV periods):
biomedical image processing techniques
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Biology for methodological scientists (8 cr)

l Course organized by the Faculties of Bioscience and Medicine
for the MBI programme

l Introduction to basic concepts of microarrays, medical genetics
and developmental biology

l Book exam in I period (2 cr)

l Organized in three lectured modules, 2 cr each

l Each module has an individual registration so you can
participate even if you missed the first module

l www.cs.helsinki.fi/mbi/courses/07-08/bfms/

http://www.cs.helsinki.fi/mbi/courses/07-08/bfms/
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Bioinformatics courses

l Visit the website of Master's Degree Programme in
Bioinformatics for up-to-date course lists:
http://www.cs.helsinki.fi/mbi

http://www.cs.helsinki.fi/mbi
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An introduction to bioinformatics
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What is bioinformatics?

l Solving biological problems with computation?

l Collecting, storing and analysing biological data?

l Informatics - library science?
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What is bioinformatics?

l Bioinformatics, n. The science of information and information
flow in biological systems, esp. of the use of computational
methods in genetics and genomics. (Oxford English Dictionary)

l "The mathematical, statistical and computing methods that aim
to solve biological problems using DNA and amino acid
sequences and related information."
-- Fredj Tekaia

l "I do not think all biological computing is bioinformatics, e.g.
mathematical modelling is not bioinformatics, even when
connected with biology-related problems. In my opinion,
bioinformatics has to do with management and the subsequent
use of biological information, particular genetic information."
-- Richard Durbin
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What is not bioinformatics?

l Biologically-inspired computation, e.g., genetic algorithms and
neural networks

l However, application of neural networks to solve some
biological problem, could be called bioinformatics

l What about DNA computing?
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Related concepts
l Computational biology

− Application of computing to biology (broad definition)

− Often used interchangeably with bioinformatics

l Biometry: the statistical analysis of biological data

l Biophysics: "an interdisciplinary field which applies techniques from the
physical sciences to understanding biological structure and function" --
British Biophysical Society

l Mathematical biology “tackles biological problems, but the methods it uses to
tackle them need not be numerical and need not be implemented in software
or hardware.” -- Damian Counsell



Introduction to bioinformatics, Autumn 2007 23

Related concepts

• Systems biology
– “biology of networks”
– integrating different levels

of information to
understand how biological
systems work

• Computational systems
biology

Overview of metabolic pathways in KEGG
database, www.genome.jp/kegg/

http://www.genome.jp/kegg/
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Why is bioinformatics important?

l New measurement techniques produce huge
quantities of biological data

− Advanced data analysis methods are needed to make sense
of the data

− Typical data sources produce noisy data with a lot of missing
values

l Paradigm shift in biology to utilise bioinformatics in
research

l To give you a glimpse of a typical situation in
bioinformatics…
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DNA microarray data

Outi Monni, Biochip Center, Biomedicum
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Biological background

l Molecular Biology Primer: www.bioalgorithms.info

http://www.bioalgorithms.info
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Today’s program
• Biological background (book chapter 1)

– Molecular primer continues
– Recap of the most important material

with respect to the course
• A word or two about exercises and the

exam
• Note that the lecture on 9.10. is moved

to room ExactumB222
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Course contents (18.9.)
• Biological background (book chapter 1)
• Probability calculus (chapters 2 and 3)
• Sequence alignment (chapter 6)

– This week (18.9. and 21.9.)
• Rapid alignment methods: FASTA and

BLAST (chapter 7)
– Next week (25.9. and 28.9.)

• Phylogenetic trees (chapter 12)
• Expression data analysis (chapter 11)



Introduction to bioinformatics, Autumn 2007 29

Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Background: comparative genomics

l Basic question in biology: what properties are shared
among organisms?

l Genome sequencing allows comparison of organisms
at DNA and protein levels

l Comparisons can be used to
− Find evolutionary relationships between organisms

− Identify functionally conserved sequences

− Identify corresponding genes in human and model
organisms: develop models for human diseases
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Homologs

• Two genes gB and gC
evolved from the same
ancestor gene gA are
called homologs

• Homologs usually exhibit
conserved functions

• Close evolutionary
relationship => expect a
high number of homologs

gB = agtgccgttaaagttgtacgtc

gC = ctgactgtttgtggttc

gA = agtgtccgttaagtgcgttc
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l Intuitively, similarity of two sequences refers to the
degree of match between corresponding positions in
sequence

l What about sequences that differ in length?

Sequence similarity

agtgccgttaaagttgtacgtc

ctgactgtttgtggttc
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Similarity vs homology

l Sequence similarity is not sequence homology
− If the two sequences gB and gC have accumulated enough mutations, the

similarity between them is likely to be low

Homology is more difficult to detect over greater evolutionary
distances.

0 agtgtccgttaagtgcgttc
1     agtgtccgttatagtgcgttc
2     agtgtccgcttatagtgcgttc
4     agtgtccgcttaagggcgttc
8     agtgtccgcttcaaggggcgt
16    gggccgttcatgggggt
32    gcagggcgtcactgagggct

64    acagtccgttcgggctattg
128   cagagcactaccgc
256   cacgagtaagatatagct
512   taatcgtgata
1024  acccttatctacttcctggagtt
2048  agcgacctgcccaa
4096 caaac

#mutations #mutations
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Similarity vs homology (2)

l Sequence similarity can occur by chance
− Similarity does not imply homology

l Consider comparing two short sequences against
each other
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Orthologs and paralogs
l We distinguish between two types of homology

− Orthologs: homologs from two different species, separated by a
speciation event

− Paralogs: homologs within a species, separated by a gene
duplication event

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A

Gene duplication event

Orthologs
Paralogs
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Orthologs and paralogs (2)

l Orthologs typically retain the original function

l In paralogs, one copy is free to mutate and acquire
new function (no selective pressure)

gA

gB gC

Organism B Organism C

gA

gA gA’

gB gC

Organism A
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Paralogy example: hemoglobin

• Hemoglobin is a protein
complex which transports
oxygen

• In humans, hemoglobin
consists of four protein
subunits and four non-
protein heme groups

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

Sickle cell diseases
are caused by mutations

in hemoglobin genes

http://en.wikipedia.org/wiki/Image:Sicklecells.jpg

http://www.rcsb.org/pdb/explore.do?structureId=1GZX
http://en.wikipedia.org/wiki/Image:Sicklecells.jpg
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Paralogy example: hemoglobin

• In adults, three types are
normally present
– Hemoglobin A: 2 alpha and

2 beta subunits
– Hemoglobin A2: 2 alpha

and 2 delta subunits
– Hemoglobin F: 2 alpha and

2 gamma subunits
• Each type of subunit

(alpha, beta, gamma,
delta) is encoded by a
separate gene

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

http://www.rcsb.org/pdb/explore.do?structureId=1GZX
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Paralogy example: hemoglobin

• The subunit genes are
paralogs of each other, i.e.,
they have a common ancestor
gene

• Demonstration in lecture:
hemoglobin human paralogs
in NCBI sequence databases
http://www.ncbi.nlm.nih.gov/sites/entrez
?db=Nucleotide

– Find human hemoglobin alpha, beta,
gamma and delta

– Compare sequences

Hemoglobin A,
www.rcsb.org/pdb/explore.do?structureId=1GZX

http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.rcsb.org/pdb/explore.do?structureId=1GZX
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Orthology example: insulin

l The genes coding for insulin in human (Homo sapiens)
and mouse (Mus musculus) are orthologs:

− They have a common ancestor gene in the ancestor species
of human and mouse

− Demonstration in lecture: find insulin orthologs from human
and mouse in NCBI sequence databases
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Sequence alignment

l Alignment specifies which positions in two sequences
match

acgtctag
|||||

-actctag

5 matches
2 mismatches
1 not aligned

acgtctag
||
actctag-

2 matches
5 mismatches
1 not aligned

acgtctag
|| |||||
ac-tctag

7 matches
0 mismatches
1 not aligned
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Mutations: Insertions, deletions and
substitutions

l Insertions and/or deletions are called indels
− We can’t tell whether the ancestor sequence had a base or

not at indel position

acgtctag
|||||

-actctag

Indel: insertion or
deletion of a base
with respect to the
ancestor sequence

Mismatch: substitution
(point mutation) of
a single base



Introduction to bioinformatics, Autumn 2007 43

Problems
l What sorts of alignments should be considered?
l How to score alignments?
l How to find optimal or good scoring alignments?
l How to evaluate the statistical significance of scores?

In this course, we discuss each of these problems
briefly.

Course Biological sequence analysis tackles all four in-
depth.
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Global alignment
l Problem: find optimal scoring alignment between two

sequences (Needleman & Wunsch 1970)

l Every position in both sequences is included in the alignment

l We give score for each position in alignment
− Identity (match)                    +1

− Substitution (mismatch)       -µ

− Indel

l Total score: sum of position scores

WHAT

||

WH-Y

S(WHAT/WH-Y) = 1 + 1 – – µ
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Dynamic programming

l How to find the optimal alignment?

l We use previous solutions for optimal alignments of
smaller subsequences

l This general approach is known as dynamic
programming
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Introduction to dynamic programming:
the money change problem

l Suppose you buy a pen for 4.23€ and pay for with a
5€ note

l You get 77 cents in change – what coins is the cashier
going to give you if he or she tries to minimise the
number of coins?

l The usual algorithm: start with largest coin
(denominator), proceed to smaller coins until no
change is left:

− 50, 20, 5 and 2 cents

l This greedy algorithm is incorrect, in the sense that it
does not always give you the correct answer
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The money change problem

• How else to compute the
change?

• We could consider all possible
ways to reduce the amount of
change

• Suppose we have 77 cents
change, and the following
coins: 50, 20, 5 cents

• We can compute the change
with recursion

• Figure shows the recursion
tree for the example

77

7227 57

7 22 7 37 52 22 52 67
…

50 20 5

• Many values are computed
more than once!

• This leads to a correct but
very inefficient algorithm
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The money change problem

l We can speed the computation up by solving the
change problem for all i n

− Example: solve the problem for 9 cents with available coins
being 1, 2 and 5 cents

l Solve the problem in steps, first for 1 cent, then 2
cents, and so on

l In each step, utilise the solutions from the previous
steps
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The money change problem

0 1 2 3 4 5 6 7 8 9Amount of
change left

l Algorithm runs in time proportional to Md, where M is
the amount of change and d is the number of coin
types

l The same technique of storing solutions of
subproblems can be utilised in aligning sequences
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Representing alignments and scores

XY

XXH

XW

-

TAHW-

WHAT

||

WH-Y

Alignments can be
represented in the
following tabular form.

Each alignment
corresponds to a path
through the table.
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Y

H

W

-

TAHW-WHAT

||

WH-Y

Global alignment
score S3,4 = 2- -µ

2- -µ

2-2

1

0

Representing alignments and scores
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Filling the alignment matrix

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Consider the alignment process
at shaded square.

Case 1. Align H against H
(match or substitution).

Case 2. Align H in WHY against
– (indel) in WHAT.

Case 3. Align H in WHAT
against – (indel) in WHY.
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Filling the alignment matrix (2)

Y

H

W

-

TAHW-

Case 1
Case 2

Case 3

Scoring the alternatives.

Case 1. S2,2 = S1,1 + s(2, 2)

Case 2. S2,2 = S1,2

Case 3. S2,2 = S2,1

s(i, j) = 1 for matching positions,

s(i, j) = - µ for substitutions.

Choose the case (path) that
yields the maximum score.

Keep track of path choices.



Introduction to bioinformatics, Autumn 2007 55

Global alignment: formal
development

A = a1a2a3…an,
B = b1b2b3…bm

a3

a2

a1

-

b4b3b2b1-

3

2

1

0

43210

b1 b2 b3 b4 -
- -a1 a2 a3

l Any alignment can be written
as a unique path through the
matrix

l Score for aligning A and B up
to positions i and j:

Si,j = S(a1a2a3…ai, b1b2b3…bj)
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Scoring partial alignments

l Alignment of A = a1a2a3…an with B = b1b2b3…bm can end in
three ways

− Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

− Case 2: (a1a2…ai-1) ai

(b1b2…bj) -

− Case 3: (a1a2…ai) –

(b1b2…bj-1) bj
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Scoring alignments

l Scores for each case:

− Case 1: (a1a2…ai-1) ai

(b1b2…bj-1) bj

− Case 2: (a1a2…ai-1) ai

(b1b2…bj) –

− Case 3: (a1a2…ai) –

(b1b2…bj-1) bj

s(ai, bj) = { -µ otherwise

+1  if ai = bj

s(ai, -) = s(-, bj) = -
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Scoring alignments (2)

• First row and first column
correspond to initial alignment
against indels:

S(i, 0) = -i 
S(0, j) = -j 

• Optimal global alignment
score S(A, B) = Sn,m

a3

a2

a1

-

b4b3b2b1-

-33

-22

1

-4-3-200

43210



Introduction to bioinformatics, Autumn 2007 59

Algorithm for global alignment
Input sequences A, B, n = |A|, m = |B|

Set Si,0 := - i for all i

Set S0,j := - j for all j

for i := 1 to n

for j := 1 to m

Si,j := max{Si-1,j – , Si-1,j-1 + s(ai,bj), Si,j-1 – }

end

end

Algorithm takes O(nm) time and space.
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Global alignment: example

?-10T
-8G
-6C
-4T
-2A

-10-8-6-4-20-
GTGGT-

µ = 1

= 2
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Global alignment: example (2)

-20-3-4-7-10T
-4-3-1-2-5-8G
-5-5-3-2-3-6C
-6-4-4-2-1-4T
-9-7-5-3-1-2A

-10-8-6-4-20-
GTGGT-

µ = 1

= 2

ATCGT-

| ||

-TGGTG
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Local alignment: rationale

• Otherwise dissimilar proteins may have local regions of
similarity
-> Proteins may share a function

Human bone
morphogenic protein
receptor type II
precursor (left) has a
300 aa region that
resembles 291 aa
region in TGF-
receptor (right).

The shared function
here is protein kinase.
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Local alignment: rationale

• Global alignment would be inadequate
• Problem: find the highest scoring local alignment

between two sequences
• Previous algorithm with minor modifications solves this

problem (Smith & Waterman 1981)

A

B
Regions of
similarity
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From global to local alignment

l Modifications to the global alignment algorithm
− Look for the highest-scoring path in the alignment matrix

(not necessarily through the matrix), or in other words:

− Allow preceding and trailing indels without penalty
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Scoring local alignments

A = a1a2a3…an, B = b1b2b3…bm

Let I and J be intervals (substrings) of A and B,
respectively:             ,

Best local alignment score:

where S(I, J) is the score for substrings I and J.
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Allowing preceding and trailing
indels

• First row and column
initialised to zero:
Mi,0 = M0,j = 0

a3

a2

a1

-

b4b3b2b1-

03

02

01

000000

43210

b1 b2 b3
- - a1
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Recursion for local alignment

• Mi,j = max {
Mi-1,j-1 + s(ai, bi),
Mi-1,j ,
Mi,j-1 ,
0

}

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-
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Finding best local alignment

• Optimal score is the highest
value in the matrix

= maxi,j Mi,j

• Best local alignment can be
found by backtracking from
the highest value in M

020010T

101100G

000000C

010010T

000000A

000000-

GTGGT-



Introduction to bioinformatics, Autumn 2007 70

Local alignment: example

0G8
0G7
0A6
0A5
0T4
0C3
0C2
0A1

00000000000-0
ACTAACTCGG-

109876543210
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24321002420G8
13543000220G7

32465100000A6
31134320000A5
21201240000T4
13001212000C3
02110202000C2
20022000000A1
00000000000-0
ACTAACTCGG-

109876543210
Scoring

Match: +2

Mismatch: -1

Indel: -2

C T – A A
C T C A A

Local alignment: example
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Non-uniform mismatch penalties

l We used uniform penalty for mismatches:

s(’A’, ’C’) = s(’A’, ’G’) = … = s(’G’, ’T’) = µ

l Transition mutations (A->G, G->A, C->T, T->C) are
approximately twice as frequent than transversions (A-
>T, T->A, A->C, G->T)

− use non-uniform mismatch

penalties collected into a

substitution matrix

1-1-0.5-1T
-11-1-0.5G

-0.5-11-1C
-1-0.5-11A
TGCA
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Gaps in alignment

l Gap is a succession of indels in alignment

l Previous model scored a length k gap as w(k) = -k

l Replication processes may produce longer stretches
of insertions or deletions

− In coding regions, insertions or deletions of codons may
preserve functionality

C T – - - A A
C T C G C A A
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Gap open and extension penalties (2)

l We can design a score that allows the penalty opening
gap to be larger than extending the gap:

w(k) = - (k – 1)

l Gap open cost , Gap extension cost

l Our previous algorithm can be extended to use w(k)
(not discussed on this course)
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Amino acid sequences

l We have discussed mainly dna sequences

l Amino acid sequences can be aligned as well

l However, the design of the substitution matrix is more
involved because of the larger alphabet

l More on the topic in the course Biological sequence
analysis
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Demonstration of the EBI web site

l European Bioinformatics Institute (EBI) offers many
biological databases and bioinformatics tools at
http://www.ebi.ac.uk/

http://www.ebi.ac.uk/
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Sequence Alignment (chapter 6)

l The biological problem

l Global alignment

l Local alignment

l Multiple alignment
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Multiple alignment

• Consider a set of n
sequences on the right
– Orthologous sequences from

different organisms
– Paralogs from multiple

duplications

• How can we study
relationships between these
sequences?

aggcgagctgcgagtgcta
cgttagattgacgctgac
ttccggctgcgac
gacacggcgaacgga
agtgtgcccgacgagcgaggac
gcgggctgtgagcgcta
aagcggcctgtgtgcccta
atgctgctgccagtgta
agtcgagccccgagtgc
agtccgagtcc
actcggtgc
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Optimal alignment of three
sequences

l Alignment of A = a1a2…ai and B = b1b2…bj can end
either in (-, bj), (ai, bj) or (ai, -)

l 22 – 1 = 3 alternatives
l Alignment of A, B and C = c1c2…ck can end in 23 – 1

ways: (ai, -, -), (-, bj, -), (-, -, ck), (-, bj, ck), (ai, -, ck), (ai,
bj, -) or (ai, bj, ck)

l Solve the recursion using three-dimensional dynamic
programming matrix: O(n3) time and space

l Generalizes to n sequences but impractical with
moderate number of sequences
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Multiple alignment in practice

l In practice, real-world multiple alignment problems are
usually solved with heuristics

l Progressive multiple alignment
− Choose two sequences and align them

− Choose third sequence w.r.t. two previous sequences and
align the third against them

− Repeat until all sequences have been aligned

− Different options how to choose sequences and score
alignments
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Multiple alignment in practice

l Profile-based progressive multiple alignment:
CLUSTALW

− Construct a distance matrix of all pairs of sequences using
dynamic programming

− Progressively align pairs in order of decreasing similarity

− CLUSTALW uses various heuristics to contribute to
accuracy
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Additional material

l R. Durbin, S. Eddy, A. Krogh, G. Mitchison: Biological
sequence analysis

l N. C. Jones, P. A. Pevzner: An introduction to
bioinformatics algorithms

l Course Biological sequence analysis in Spring 2008
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Chapter 7: Rapid alignment methods:
FASTA and BLAST

l The biological problem

l Search strategies

l FASTA

l BLAST
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The biological problem

• Global and local
alignment algoritms are
slow in practice

• Consider the scenario of
aligning a query
sequence against a large
database of sequences
– New sequence with

unknown function • For instance, the size of NCBI
GenBank in January 2007 was
65,369,091,950 bases
(61,132,599 sequences)



Introduction to bioinformatics, Autumn 2007 85

Problem with large amount of
sequences

l Exponential growth in both number and total length of
sequences

l Possible solution: Compare against model organisms
only

l With large amount of sequences, changes are that
matches occur by random

− Need for statistical analysis
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Application of sequence alignment:
shotgun sequencing

l Shotgun sequencing is a method for sequencing
whole-organism genomes

− First, a large number of short sequences (~500-1000 bp), or
reads are generated from the genome

− Reads are contiguous subsequences (substrings) of the
genome

− Due to sequencing errors and repetitions in the reads, the
genome has be covered multiple times by reads
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Shotgun sequencing

l Ordering of the reads is initially unknown

l Overlaps resolved by aligning the reads

l In a 3x109 bp genome with 500 bp reads and 5x coverage, there
are ~107 reads and ~107(107-1)/2 = ~5x1013 pairwise sequence
comparisons

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig
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Shotgun sequencing

l ~5x1013 pairwise sequence comparisons
l Recall that local alignment takes O(nm) time, where n and m are

sequence lengths
l Already with n=m=500, the computation cost is prohibitive

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig
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Search strategies

l How to speed up the computation?
− Find ways to limit the number of pairwise comparisons

l Compare the sequences at word level to find out
common words

− Word means here a k-tuple (or a k-word), a substring of
length k
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Analyzing the word content
l Example query string I: TGATGATGAAGACATCAG

l For k = 8, the set of k-tuples of I is

TGATGATG

GATGATGA

ATGATGAA

TGATGAAG

…

GACATCAG
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Analyzing the word content

l There are n-k+1 k-tuples in a string of length n

l If at least one word of I is not found from another string
J, we know that I differs from J

l Need to consider statistical significance:    I and J
might share words by chance only

l Let n=|I| and m=|J|
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Word lists and comparison by content

l The k-words of I can be arranged into a table of word
occurences Lw(I)

l Consider the k-words when k=2 and I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC

AT: 3
CA: 2
CG: 5
GC: 1, 7
GG: 6
TC: 4

Start indecies of k-word GC in I

Building Lw(I) takes O(n) time
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Common k-words

l Number of common k-words in I and J can be
computed using Lw(I) and Lw(J)

l For each word w in I, there are |Lw(J)| occurences in J

l Therefore I and J have

common words

l This can be computed in O(n + m + 4k) time
− O(n + m) time to build the lists

− O(4k) time to calculate the sum
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Common k-words

l I = GCATCGGC

l J = CCATCGCCATCG

Lw(J)
AT: 3, 9
CA: 2, 8
CC: 1, 7
CG: 5, 11
GC: 6

TC: 4, 10

Lw(I)
AT: 3
CA: 2

CG: 5
GC: 1, 7
GG: 6
TC: 4

Common words
2
2
0
2
2
0
2
10 in total
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Properties of the common word list

l Exact matches can be found using binary search (e.g., where
TCGT occurs in I?)

− O(log 4k) time

l For large k, the table size is too large to compute the common
word count in the previous fashion

l Instead, an approach based on merge sort can be utilised
(details skipped, see course book)

l The common k-word technique can be combined with the local
alignment algorithm to yield a rapid alignment approach
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Chapter 7: Rapid alignment methods:
FASTA and BLAST

l The biological problem

l Search strategies

l FASTA

l BLAST
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FASTA

l FASTA is a multistep algorithm for sequence alignment (Wilbur
and Lipman, 1983)

l The sequence file format used by the FASTA software is widely
used by other sequence analysis software

l Main idea:
− Choose regions of the two sequences that look promising (have some

degree of similarity)

− Compute local alignment using dynamic programming in these regions
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FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments
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Dot matrix comparisons
l Word matches in two sequences I and J can be represented as

a dot matrix

l Dot matrix element (i, j) has ”a dot”, if the word starting at
position i in I is identical to the word starting at position j in J

l The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …
J = … TGGTGTCGC …

i

j



Introduction to bioinformatics, Autumn 2007 100

k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)



Introduction to bioinformatics, Autumn 2007 101

k=1 k=4

k=8 k=16

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1  (531 aa)
CAA72681.1  (588 aa)

Shading indicates
now the match score
according to a
score matrix
(Blosum62 here)
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Computing diagonal sums

l We would like to find high scoring diagonals of the dot matrix

l Lets index diagonals by the offset, l = i - j

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

k=2

I

J

Diagonal l = i – j = -6
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Computing diagonal sums

l As an example, lets compute diagonal sums for  I =
GCATCGGC, J = CCATCGCCATCG, k = 2

l 1. Construct k-word list Lw(J)

l 2. Diagonal sums Sl are computed into a table, indexed with the
offset and initialised to zero
l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  0  0  0  0  0  0 0 0 0 0 0 0 0
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Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J For the first 2-word in I,
GC, LGC(J) = {6}.

We can then update
the sum of diagonal
l = i – j = 1 – 6 = -5 to
S-5 := S-5 + 1 = 0 + 1 = 1
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Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is CA,
for which LCA(J) = {2, 8}.

Two diagonal sums are
updated:
l = i – j = 2 – 2 = 0
S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6
S-6 := S-6 + 1 = 0 + 1 = 1
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Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is AT,
for which LAT(J) = {3, 9}.

Two diagonal sums are
updated:
l = i – j = 3 – 3 = 0
S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6
S-6 := S-6 + 1 = 1 + 1 = 2
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Computing diagonal sums

After going through the k-words of I, the result is:

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  4  1  0  0  0  0 4 1 0 0 0 0 0

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J
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Algorithm for computing diagonal sum of scores

Sl := 0 for all 1 – m l n – 1

Compute Lw(J) for all words w

for i := 1 to n – k – 1 do

w := IiIi+1…Ii+k-1

for j Lw(J) do

l := i – j

Sl := Sl + 1

end

end

Match score is here 1



Introduction to bioinformatics, Autumn 2007 109

FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments
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Rescoring initial regions

l Each high-scoring diagonal chosen in the previous step is
rescored according to a score matrix

l This is done to find subregions with identities shorter than k

l Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G
J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G
J’: A C A T C A A A T A A A

75% identity, no 4-word identities

33% identity, one 4-word identity
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Joining diagonals

l Two offset diagonals can be joined with a gap, if the resulting
alignment has a higher score

l Separate gap open and extension are used

l Find the best-scoring combination of diagonals

High-scoring
diagonals

Two diagonals
joined by a gap
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FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments
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Local alignment in the highest-scoring
region

• Last step of FASTA: perform local
alignment using dynamic
programming around the highest-
scoring

• Region to be aligned covers –w
and +w offset diagonal to the
highest-scoring diagonals

• With long sequences, this region is
typically very small compared to the
whole n x m matrix

w

w

Dynamic programming matrix
M filled only for the green region
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Properties of FASTA

l Fast compared to local alignment using dynamic programming
only

− Only a narrow region of the full matrix is aligned

l Increasing parameter k decreases the number of hits: increases
specificity, decreases sensitivity

l FASTA can be very specific when identifying long regions of
low similarity

− Specific method does not produce many incorrect results

− Sensitive method produces many of the correct results
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Properties of FASTA

l FASTA looks for initial exact matches to query
sequence

− Two proteins can have very different amino acid sequences
and still be biologically similar

− This may lead into a lack of sensitivity with diverged
sequences
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Demonstration of FASTA at EBI

l http://www.ebi.ac.uk/fasta/

l Note that parameter ktup in the software corresponds
to parameter k in lectures

http://www.ebi.ac.uk/fasta/
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Chapter 7: Rapid alignment methods:
FASTA and BLAST

l The biological problem

l Search strategies

l FASTA

l BLAST
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BLAST: Basic Local Alignment Search
Tool

l BLAST (Altschul et al., 1990) and its variants are some of the
most common sequence search tools in use

l Roughly, the basic BLAST has three parts:
− 1. Find local alignments between the query sequence and a database

sequence (”seed hits”)

− 2. Extend seed hits into high-scoring local alignments

− 3. Calculate p-values and a rank ordering of the local alignments

l High-scoring local alignments are called high scoring segment
pairs (HSPs)

l Gapped BLAST introduced in 1997 allows for gaps in
alignments
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Finding seed hits

l First, we generate a set of neighborhood sequences for given k,
match score matrix and threshold T

l Neighborhood sequences of a k-word w include all strings of
length k that, when aligned against w, have the alignment score
at least T

l For instance, let I = GCATCGGC, J = CCATCGCCATCG and k
= 5, match score be 1, mismatch score be 0 and T = 4
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Finding seed hits

l I = GCATCGGC, J = CCATCGCCATCG, k = 5, match score 1,
mismatch score 0, T = 4

l This allows for one mismatch in each k-word

l The neighborhood of the first k-word of I, GCATC, is GCATC
and the 15 sequences

A       A       C       A       A

CCATC,G GATC,GC GTC,GCA CC,GCAT G

T       T       T       G       T
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Finding seed hits

l I = GCATCGGC has 4 k-words and thus 4x16 = 64 5-word
patterns (seed hits) to locate in J

l These patterns can be found using exact search in time
proportional to the sum of pattern lengths + length of J +
number of matches (Aho-Corasick algorithm)

− Methods for pattern matching are developed on course 58093 String
processing algorithms
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Extending seed hits: original BLAST

• Initial seed hits are extended
• Extensions do not add gaps to the

alignment
• Sequence is extended into a HSP until

the alignment score drops below the
maximum attained score minus a
threshold parameter value

• All statistically significant HSPs
reported

AACCGTTCATTA
| || || ||

TAGCGATCTTTT

Initial seed hit

Extension

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and
Lipman,D.J., J. Mol. Biol., 215, 403-410, 1990
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Extending seed hits: gapped BLAST

• In later version of BLAST, two seed
hits have to be found on the same
diagonal
– Hits have to be non-overlapping
– If the hits are closer than A (additional

parameter), then they are joined into a
HSP

• Threshold value T is lowered to
achieve comparable sensitivity

• If the resulting HSP achieves a score
at least Sg, a gapped extension is
triggered

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, and
Lipman DJ, Nucleic Acids Res. 1;25(17), 3389-402, 1997
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Gapped extensions of HSPs

• Local alignment is performed
starting from the HSP

• Dynamic programming matrix
filled in ”forward” and ”backward”
directions (see figure)

• Skip cells where value would be
Xg below the best alignment
score found so far

Region potentially searched
by the alignment algorithm

HSP

Region searched with score
above cutoff parameter
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Estimating the significance of
results

l In general, we have a score S(D, X) = s for a
sequence X found in database D

l BLAST rank-orders the sequences found by p-values

l The p-value for this hit is P(S(D, Y) s) where Y is a
random sequence

− Measures the amount of ”surprise” of finding sequence X

l A smaller p-value indicates more significant hit
− A p-value of 0.1 means that one-tenth of random sequences

would have as large score as our result
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Estimating the significance of
results

l In BLAST, p-values are computed roughly as follows

l There are nm places to begin an optimal alignment in
the n x m alignment matrix

l Optimal alignment is preceded by a mismatch and has
t matching (identical) letters

− (Assume match score 1 and mismatch score 0)

l Let p = P(two random letters are equal)

l The probability of having a mismatch and then t
matches is (1-p)pt
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Estimating the significance of
results

l We model this event by a Poisson distribution (why?)
with mean = nm(1-p)pt

l P(there is local alignment t or longer)
= 1 – P(no such event)
= 1 – e = 1 – exp(-nm(1-p)pt)

l An equation of the same form is used in Blast:
l E-value = P(S(D, Y) s) 1 – exp(-nm t) where > 0

and 0 < < 1
l Parameters and are estimated from data
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Scoring amino acid
alignments

• We need a way to compute the
score S(D, X) for aligning the
sequence X against database D

• Scoring DNA alignments was
discussed previously

• Constructing a scoring model for
amino acids is more challenging
– 20 different amino acids vs. 4 bases

• Figure shows the molecular
structures of the 20 amino acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Scoring amino acid
alignments

• Substitutions between
chemically similar amino acids
are more frequent than between
dissimilar amino acids

• We can check our scoring model
against this

http://en.wikipedia.org/wiki/List_of_standard_amino_acids

http://en.wikipedia.org/wiki/List_of_standard_amino_acids
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Score matrices

l Scores s = S(D, X) are obtained from score matrices

l Let A = A1a2…an and B = b1b2…bn be sequences of
equal length (no gaps allowed to simplify things)

l To obtain a score for alignment of A and B, where ai is
aligned against bi, we take the ratio of two probabilities

− The probability of having A and B where the characters
match (match model M)

− The probability that A and B were chosen randomly (random
model R)
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Score matrices: random model

l Under the random model, the probability of having X
and Y is

where qxi is the probability of occurence of amino acid
type xi

l Position where an amino acid occurs does not affect
its type
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Score matrices: match model

l Let pab be the probability of having amino acids of type
a and b aligned against each other given they have
evolved from the same ancestor c

l The probability is
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Score matrices: log-odds ratio score

l We obtain the score S by taking the ratio of these two
probabilities

and taking a logarithm of the ratio
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Score matrices: log-odds ratio score

l The score S is obtained by summing over character
pair-specific scores:

l The probabilities qa and pab are extracted from data
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Calculating score matrices for
amino acids

• Probabilities qa are in
principle easy to obtain:
– Count relative frequencies of

every amino acid in a sequence
database
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• To calculate pab we can use a
known pool of aligned
sequences

• BLOCKS is a database of highly
conserved regions for proteins

• It lists multiply aligned,
ungapped and conserved
protein segments

• Example from BLOCKS shows
genes related to human gene
associated with DNA-repair
defect xeroderma pigmentosum

Calculating score matrices for amino
acids

Block PR00851A
ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 ( 74)   RPLWVAPDGHIFLEAFSPVYK 54
P91579 ( 80)             RPLYLAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 ( 84)   RPLWVAPNGHVFLESFSPVYK 79
RA25_YEAST|Q00578 ( 131) PLWISPSDGRIILESFSPLAE 100
Q38861 ( 52)             RPLWACADGRIFLETFSPLYK 71
O13768 ( 90)             PLWINPIDGRIILEAFSPLAE 100
O00835 ( 79)             RPIWVCPDGHIFLETFSAIYK 86

http://blocks.fhcrc.org

http://blocks.fhcrc.org
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BLOSUM matrix
• BLOSUM is a score matrix

for amino acid sequences
derived from BLOCKS data

• First, count pairwise
matches fx,y for every amino
acid type pair (x, y)

• For example, for column 3
and amino acids L and W,
we find 8 pairwise matches:
fL,W = fW,L = 8

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD
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• Probability pab is obtained by
dividing fab with the total
number of pairs (note
difference with course book):

• We get probabilities qa by

RPLWVAPD
RPLWVAPR
RPLWVAPN
PLWISPSD
RPLWACAD
PLWINPID
RPIWVCPD

Creating a BLOSUM matrix
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Creating a BLOSUM matrix

l The probabilities pab and qa can now be plugged into

to get a 20 x 20 matrix of scores s(a, b).

l Next slide presents the BLOSUM62 matrix
− Values scaled by factor of 2 and rounded to integers

− Additional step required to take into account expected
evolutionary distance

− Described in the course book in more detail
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BLOSUM62
A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B Z  X  *

A  4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4
N -2  0  6  1 -3  0  0  0  1 -3 -3 0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4
D -2 -2 1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3 4  1 -1 -4
C  0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4
E -1  0  0  2 -4  2  5 -2  0 -3 -3 1 -2 -3 -1  0 -1 -3 -2 -2 1  4 -1 -4
G  0 -2  0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3  0  0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4
K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2 0  1 -1 -4
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2 1  3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S  1 -1  1  0 -1  0  0  0 -1 -2 -2 0 -1 -2 -1  4  1 -3 -2 -2 0  0  0 -4
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -2 -2 0 -1 -1 0 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2 2  7 -1 -3 -2 -1 -4
V  0 -3 -3 -3 -1 -2 -2 -3 -3 3  1 -2  1 -1 -2 -2 0 -3 -1  4 -3 -2 -1 -4
B -2 -1  3  4 -3  0  1 -1  0 -3 -4  0 -3 -3 -2  0 -1 -4 -3 -3 4  1 -1 -4
Z -1  0  0  1 -3  3  4 -2  0 -3 -3 1 -1 -3 -1  0 -1 -3 -2 -2 1  4 -1 -4
X  0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2  0  0 -2 -1 -1 -1 -1 -1 -4
* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1
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Using BLOSUM62 matrix

MQLEANADTSV

|  | |

LQEQAEAQGEM

= 2 + 5 – 3 – 4 + 4 + 0 + 4 + 0 – 2 + 0 + 1

= 7
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Demonstration of BLAST at NCBI

l http://www.ncbi.nlm.nih.gov/BLAST/

http://www.ncbi.nlm.nih.gov/BLAST/
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Phylogeny

• We want to study ancestor-
descendant relationships, or
phylogeny, among groups of
organisms

• Groups are called taxa
(singular: taxon)

• Organisms are usually called
operational taxonomic units or
OTUs in the context of
phylogeny
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Phylogenetic trees

• Leaves (external nodes) ~
species, observed (OTUs)

• Internal nodes ~ ancestral
species/divergence events,
not observed

• Unrooted tree does not
specify ancestor-
descendant relationships
beyond the observation
”leaves are not ancestors”

1

2

3

4

5

6

7
8

Unrooted tree with 5 leaves
and 3 internal nodes.

Is node 7 ancestor of node 6?
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Phylogenetic trees

• Rooting a tree specifies
all ancestor-descendant
relationships in the tree

• Root is the ancestor to
the other species

• There are n-1 ways to
root a tree with n nodes

1

2

3

4

5

6

7
8

R1 R2

2 3 4 51

6

7

8

R1

2 3 451

6

7
8

R2

roo
t(R

1
)

root(R
2 )
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Questions

l Can we enumerate all possible phylogenetic trees for
n species (or sequences?)

l How to score a phylogenetic tree with respect to data?

l How to find the best phylogenetic tree given data?



Introduction to bioinformatics, Autumn 2007 148

Finding the best phylogenetic tree:
naive method

l How can we find the phylogenetic tree that best
represents the data?

l Naive method: enumerate all possible trees

l How many different trees are there of n species?

l Denote this number by bn
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Enumerating unordered trees

• Start with the only
unordered tree with 3
leaves (b3 = 1)

• Consider all ways to add a
leaf node to this tree

• Fourth node can be added to
3 different branches (edges),
creating 1 new internal branch

• Total number of branches is n
external and n – 3 internal
branches

• Unrooted tree with n leaves
has 2n – 3 branches

1 2

3

1 2

3

4

1 2

3

4

1 2

3
4
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Enumerating unordered trees

• Thus, we get the number of unrooted trees
bn = (2(n – 1) – 3)bn-1 = (2n – 5)bn-1

= (2n – 5) * (2n – 7) * …* 3 * 1
= (2n – 5)! / ((n-3)!2n-3), n > 2

• Number of rooted trees b’n is
b’n = (2n – 3)bn = (2n – 3)! / ((n-2)!2n-2), n > 2

that is, the number of unrooted trees times the
number of branches in the trees



Introduction to bioinformatics, Autumn 2007 151

Number of possible rooted and
unrooted trees

8.20E+0212.22E+02020
4.95E+0388.69E+03630

34459425202702510
20270251351359
135135103958
103959547
9451056
105155
1534
313
b’nBnn
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Too many trees?

l We can’t construct and evaluate every phylogenetic
tree even for a smallish number of species

l Better alternative is to
− Devise a way to evaluate an individual tree against the data

− Guide the search using the evaluation criteria to reduce the
search space
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Parsimony method

l The parsimony method finds the tree that explains the
observed sequences with a minimal number of
substitutions

l Method has two steps
− Compute smallest number of substitutions for a given tree

with a parsimony algorithm

− Search for the tree with the minimal number of substitutions
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Parsimony: an example

l Consider the following short sequences

1 ACTTT

2 ACATT

3 AACGT

4 AATGT

5 AATTT

l There are 105 possible rooted trees for 5 sequences

l Example: which of the following trees explains the
sequences with least number of substitutions?
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

This tree explains the sequences
with 4 substitutions
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3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 AATGT

7 AATTT

8 ACTTT

9 AATTT

T->C

T->G

T->A

A->C

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 ACCTTC->T

7 AACGT
8 AATGT

9 AATTT

G->T
T->C

T->G

A->C

C->A

6 substitutions…

First tree is
more
parsimonious!

4 substitutions…
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Computing parsimony

l Parsimony treats each site (position in a sequence)
independently

l Total parsimony cost is the sum of parsimony costs of
each site

l We can compute the minimal parsimony cost for a
given tree by

− First finding out possible assignments at each node, starting
from leaves and proceeding towards the root

− Then, starting from the root, assign a letter at each node,
proceeding towards leaves
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Labelling tree nodes

l An unrooted tree with n leaves contains 2n-1 nodes
altogether

l Assign the following labels to nodes in a rooted tree
− leaf nodes: 1, 2, …, n
− internal nodes: n+1, n+2, …, 2n-1
− root node: 2n-1

l The label of a child node is always
smaller than the label of the
parent node 2 3 4 51

6

8

7

9
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Parsimony algorithm: first phase
l Find out possible assignments at every node for each site u

independently. Denote site u in sequence i by si,u.

For i := 1, …, n do
Fi := {si,u}                  % possible assignments at node i
Li := 0                       % number of substitutions up to node i

For i := n+1, …, 2n-1 do
Let j and k be the children of node i
If Fj Fk = then Li := Lj + Lk + 1, Fi := Fj Fk

else Li := Lj + Lk, Fi := Fj Fk
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Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

Choose u = 3 (for example, in general we do this for all u)
F1 := {T}
L1 := 0

F2 := {A}
L2 := 0

F3 := {C}, L3 := 0

F4 := {T}, L4 := 0

F5 := {T}, L5 := 0

6

7

8

9



Introduction to bioinformatics, Autumn 2007 162

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A, T}

9 T

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F6 := F3 F4 = {C, T}

L6 := L3 + L4 + 1 = 1

F7 := F5 F6 = {T}
L7 := L5 + L6 = 1

F9 := F7 F8 = {T}
L9 := L7 + L8 = 2 Parsimony cost for site 3 is 2
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Parsimony algorithm: second phase

l Backtrack from the root and assign x Fi at each node

l If we assigned y at parent of node i and y Fi, then
assign y

l Else assign x Fi by random
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Parsimony algorithm: second phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A,T}

9 T

At node 6, the algorithm
assigns T because T
was assigned to parent
node 7 and T F6.

T is assigned to node 8
for the same reason.

The other nodes have
only one possible letter
to assign



Introduction to bioinformatics, Autumn 2007 165

Parsimony algorithm

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 T

7 T

8 T

9 T

First and second phase are
repeated for each site in the
sequences,
summing the parsimony
costs at each site
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Properties of parsimony algorithm

l Parsimony algorithm requires that the sequences are
of same length

− First align the sequences against each other and remove
indels

− Then compute parsimony for the resulting sequences

l Is the most parsimonious tree the correct tree?
− Not necessarily but it explains the sequences with least

number of substitutions

− We can assume that the probability of having fewer
mutations is higher than having many mutations
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Finding the most parsimonious tree

l Parsimony algorithm calculates the parsimony cost for
a given tree…

l …but we still have the problem of finding the tree with
the lowest cost

l Exhaustive search (enumerating all trees) is in general
impossible

l More efficient methods exist, for example
− Probabilistic search

− Branch and bound
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Branch and bound in parsimony

l We can exploit the fact that adding edges to a tree can
only increase the parsimony cost

1

AATGT

2

AATTT

3

AACGT

1

AATGT

2

AATTT

{T}
{T}

{C, T}

cost 0 cost 1
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Branch and bound in parsimony
Branch and bound is a
general search strategy
where

l Each solution is potentially
generated

l Track is kept of the best
solution found

l If a partial solution cannot
achieve better score, we
abandon the current search
path

In parsimony…

l Start from a tree with 1
sequence

l Add a sequence to the tree
and calculate parsimony
cost

l If the tree is complete, check
if found the best tree so far

l If tree is not complete and
cost exceeds best tree cost,
do not continue adding
edges to this tree
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Branch and bound graphically

…

1 2 34

…

Partial tree, no best complete tree constructed yet

Complete tree: calculate parsimony cost and store
Partial tree, cost exceeds the cost of the best tree this far
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Distance methods

l The parsimony method works on sequence (character
string) data

l We can also build phylogenetic trees in a more
general setting

l Distance methods work on a set of pairwise distances
dij for the data

l Distances can be obtained from phenotypes as well as
from genotypes (sequences)
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Distances in a phylogenetic tree

l Distance matrix D = (dij)
gives pairwise distances for
leaves of the phylogenetic
tree

l In addition, the phylogenetic
tree will now specify
distances between leaves
and internal nodes

− Denote these with dij as well

2 3 4 51

6

7

8

Distance dij states how
far apart species i and j
are evolutionary (e.g.,
number of mismatches in
aligned sequences)
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Distances in evolutionary context

l Distances dij in evolutionary context satisfy the
following conditions

− Symmetry: dij = dji for each i, j

− Distinguishability: dij 0 if and only if i j
− Triangle inequality: dij dik + dkj for each i, j, k

l Distances satisfying these conditions are called metric
l In addition, evolutionary mechanisms may impose

additional constraints on the distances
additive and ultrametric distances
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Additive trees

l A tree is called additive, if the distance between any
pair of leaves (i, j) is the sum of the distances between
the leaves and the first node k that they share in the
tree

dij = dik + djk

l ”Follow the path from the leaf i to the leaf j to find the
exact distance dij between the leaves.”
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Additive trees: example

0244D

2044C

4402B

4420A

DCBA
A

B

C

D

1

1

2 1

1
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Ultrametric trees

l A rooted additive tree is called a ultrametric tree, if the
distances between any two leaves i and j, and their
common ancestor k are equal

dik = djk

l Edge length dij corresponds to the time elapsed since
divergence of i and j from the common parent

l In other words, edge lengths are measured by a
molecular clock with a constant rate
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Identifying ultrametric data

l We can identify distances to be ultrametric by the
three-point condition:

D corresponds to an ultrametric tree if and only if for
any three species i, j and k, the distances satisfy
dij max(dik, dkj)

l If we find out that the data is ultrametric, we can utilise
a simple algorithm to find the corresponding tree
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Only vertical segments of the
tree have correspondence to
some distance dij:

Horizontal segments act as
connectors.

d8,9
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

dik = djk for any two leaves
i, j and any ancestor k of
i and j
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Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Three-point condition: there exists
no leaf i, j for which dij > max(dik, djk)
for some leaf k.
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UPGMA algorithm

l UPGMA (unweighted pair group method using
arithmetic averages) constructs a phylogenetic tree via
clustering

l The algorithm works by at the same time
− Merging two clusters

− Creating a new node on the tree

l The tree is built from leaves towards the root

l UPGMA produces a ultrametric tree
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Cluster distances

l Let distance dij between clusters Ci and Cj be

that is, the average distance between points (species)
in the cluster.
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UPGMA algorithm
l Initialisation

− Assign each point i to its own cluster Ci

− Define one leaf for each sequence, and place it at height zero
l Iteration

− Find clusters i and j for which dij is minimal
− Define new cluster k by Ck = Ci Cj, and define dkl for  all l
− Define a node k with children i and j. Place k at height dij/2
− Remove clusters i and j

l Termination:

− When only two clusters i and j remain, place root at height dij/2
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1 2

3

4

5
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1 2

3

4

5
1 2

6
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1 2

3

4

5
1 2 4 5

6 7
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1 2

3

4

5
1 2 4 5

6 7

8

3
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1 2

3

4

5
1 2 4 5

6 7

8

3

9
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UPGMA implementation

l In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

l The algorithm can be implemented to take only O(n2)
time (Gronau & Moran, 2006)
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Problem solved?

l We now have a simple algorithm which finds a
ultrametric tree

− If the data is ultrametric, then there is exactly one ultrametric
tree corresponding to the data (we skip the proof)

− The tree found is then the ”correct” solution to the phylogeny
problem, if the assumptions hold

l Unfortunately, the data is not ultrametric in practice
− Measurement errors distort distances

− Basic assumption of a molecular clock does not hold usually
very well
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Incorrect reconstruction of non-
ultrametric data by UPGMA

1

2 3

4
1 2 34

Tree which corresponds
to non-ultrametric
distances

Incorrect ultrametric reconstruction
by UPGMA algorithm
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Checking for additivity

l How can we check if our data is additive?

l Let i, j, k and l be four distinct species

l Compute 3 sums: dij + dkl, dik + djl, dil + djk
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Four-point condition

i

j l

k i

j l

k i

j l

kdik

djl

dil

djk

dij dkl

l The sums are represented by the three figures
− Left and middle sum cover all edges, right sum does not

l Four-point condition: i, j, k and l satisfy the four-point
condition if two of the sums dij + dkl, dik + djl, dil + djk are
the same, and the third one is smaller than these two



Introduction to bioinformatics, Autumn 2007 195

Checking for additivity

l An n x n matrix D is additive if and only if the four point
condition holds for every 4 distinct elements 1 i, j, k, l

n
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Finding an additive phylogenetic
tree

l Additive trees can be found with, for example, the
neighbor joining method (Saitou & Nei, 1987)

l The neighbor joining method produces unrooted trees,
which have to be rooted by other means

− A common way to root the tree is to use an outgroup
− Outgroup is a species that is known to be more distantly

related to every other species than they are to each other
− Root node candidate: position where the outgroup would join

the phylogenetic tree

l However, in real-world data, even additivity usually
does not hold very well
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Neighbor joining algorithm

l Neighbor joining works in a similar fashion to UPGMA
− Find clusters C1 and C2 that minimise a function f(C1, C2)

− Join the two clusters C1 and C2 into a new cluster C

− Add a node to the tree corresponding to C

− Assign distances to the new branches

l Differences in
− The choice of function f(C1, C2)

− How to assign the distances
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Neighbor joining algorithm

l Recall that the distance dij for clusters Ci and Cj was

l Let u(Ci) be the separation of cluster Ci from other
clusters defined by

where n is the number of clusters.
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Neighbor joining algorithm

l Instead of trying to choose the clusters Ci and Cj
closest to each other, neighbor joining at the same
time

− Minimises the distance between clusters Ci and Cj and

− Maximises the separation of both Ci and Cj from other
clusters
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Neighbor joining algorithm
l Initialisation as in UPGMA

l Iteration

− Find clusters i and j for which dij – u(Ci) – u(Cj) is minimal
− Define new cluster k by Ck = Ci Cj, and define dkl for  all l
− Define a node k with children i and j. Remove clusters i

and j
− Assign length ½ dij + ½ (u(Ci) – u(Cj)) to the edge i -> k
− Assign length ½ dij + ½ (u(Cj) – u(Ci)) to the edge j -> k

l Termination:

− When only one cluster remains
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Neighbor joining algorithm:
example

a  b  c  d
a  0  6  7  5
b     0 11  9
c        0  6
d           0

i  u(i)
a  (6+7+5)/2 = 9
b  (6+11+9)/2 = 13
c  (7+11+6)/2 = 12
d  (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6  - 9   - 13 = -16
a,c 7  - 9   - 12 = -14
a,d 5  - 9   - 10 = -14
b,c 11  - 13   - 12 = -14
b,d 9  - 13   - 10 = -14
c,d 6  - 12   - 10 = -16

Choose either pair
to join
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Neighbor joining algorithm:
example

a  b  c  d
a  0  6  7  5
b     0 11  9
c        0  6
d           0

i  u(i)
a  (6+7+5)/2 = 9
b  (6+11+9)/2 = 13
c  (7+11+6)/2 = 12
d  (5+9+6)/2 = 10

i,j dij – u(Ci) – u(Cj)
a,b 6  - 9   - 13 = -16
a,c 7  - 9   - 12 = -14
a,d 5  - 9   - 10 = -14
b,c 11  - 13   - 12 = -14
b,d 9  - 13   - 10 = -14
c,d 6  - 12   - 10 = -16

a    b    c    d    e

f

daf = ½ 6 + ½ (9 – 13) = 1
dbf = ½ 6 + ½ (13 – 9) = 5

dbfdaf
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods



Introduction to bioinformatics, Autumn 2007 204

Estimation of distances

l Many alternative ways to derive the distances dij exist
− Simple solution: align each sequence pair and use the

alignment score

− This would not take into account that a change in base might
revert back to the original base

− We would then underestimate the distances

l Next: derivation of a simple stochastic model for the
evolution of a DNA sequence

l Obtain the distances from the model
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Estimation of distances

Key assumptions:
l mutations at sites are rare events in the course of time =>

poisson process

l sites evolve individually and by an identical mechanism

l number of mismatched bases is a sum of mutations at
individual sites => binomial variable
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A stochastic model for base
substitutions

l Consider a single homologous site in two sequences

l Assume the sites diverged for time length t: the sites
are separated by time 2t

l Suppose that the number of substitutions in any
branch of length t has a Poisson distribution with mean
t

l Probability that k substitutions occur is given by the
Poisson probability e t t)k/(k!), k = 0, 1, 2, …
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Substitutions at one site

l General model: P(substitution results in base j | site
was base i) = mij

l Felsenstein model: mij = j, with j 0 and 1 + 2 +
3+ 4 = 1

− The previous base does not affect the outcome!

l Assume that the set of probabilities j is same at every
position in the sequence
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Substitutions at one site (2)

l Probability qij(t) that a base i at time 0 is substituted by
a base j a time t later

l qij(t) = e t + (1 - e t) j, if i = j

l qij(t) = (1 - e t) j, otherwise
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Substitutions at one site (3)

l We assume stationarity: distribution of base
frequencies is the same for every time t

l In other words, we want that

P(base a time t later = j) = j
0

where j
0 is the frequency of base j at time 0.

l For our simple model, this can be shown to hold
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Estimating distances

l Distances should take into account the mutation
mechanism

l Average of t substitutions occur at a particular site on
a branch of length t

l However, some of the substitutions do not change the
base (A -> A or A -> G -> A, for example)
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Mean number of substitutions in
time t

l What is the chance H that a substitution actually
changes a base?

l H = i(1 - i) = 1 - i
2

l Average number of real substitutions is then tH

l Distance K between two sequences is

K = 2 tH
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Estimating distances from sequence
data

l We want to estimate K = 2 tH from sequence data

l The chance Fij(t) that we observe a base i in one
sequence and a base j in another is

Fij(t) = l lqli(t)qlj(t)

by averaging over the possible ancestral nucleotides
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Estimating distances from sequence
data

l Expression Fij(t) = l lqli(t)qlj(t) can be simplified by
assuming that the mutation process is reversible:

imij = jmji for all i j

l From this it can be shown that

lqij(t) = jqji(t) for all i, j and t > 0

l Now the model simplifies into Fij(t) = iqij(2t)
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Estimating distances from sequence
data

l What is the probability F = F(t) that the bases at a
particular position in two immediate descendants of
the same ancestor are identical?

F = i iqii(2t) = e-2 t + (1 - e-2 t)(1 – H)
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Putting the sites together

l Assume that
− sites evolve independently of one other and

− mutation process is identical at each site

− The two sequences have been aligned against each other
and gaps have been removed

l Do the bases at site i in the sequences differ?

Xi = 1 if the ith pair of sites differs

Xi = 0 otherwise
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Putting the sites together (2)

l P(Xi = 1) = 1 – F = (1 - e-2 t)H

l Now D = X1 + … + Xs is the number of mismatched
pairs of bases

l D is a binomial random variable with parameters s and
1  – F

l Notice that D is the Hamming distance for the
sequences
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Putting the sites together (3)

l F is unknown and has to be estimated from the
sequence data

l Recall that the observed proportion of successes is a
good estimator of the binomial success probability:
estimate 1 – F with D/s

l D/s = (1 - e-2 t)H

l t = -log(1 – D/(sH))

l Finally, we obtain K = 2 tH = -H log(1 – D/(sH))
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Jukes-Cantor formula

l Estimate 2 tH = -H log(1 – D/(sH)) of the distance K is
known as the Jukes-Cantor formula

l When H (chance that a substitution actually occurs)
approaches 1, the estimate decreases and
approaches the Poisson mean 2 t

l H is usually not known and has to be estimated from
the data as well
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Inferring the Past: Phylogenetic
Trees (chapter 12)

l The biological problem

l Parsimony and distance methods

l Models for mutations and estimation of distances

l Maximum likelihood methods
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Maximum likelihood methods

l Consider the tree on the right
with three sequences

l Probability p(i1, i2, i3) of
observing bases i1, i2 and i3 can
be computed by summing over
all possible ancestral bases,

l Hard to compute for complex
trees

1 2 3

p(i1, i2, i3) = a b aqai3(t2)qab(t2-t1)qbi2(t1)qbi1(t1)

a

b



Introduction to bioinformatics, Autumn 2007 221

Maximum likelihood estimation

l We would like to calculate likelihood p(i1, i2, …, in) in
the general case

l Calculations can be arranged using the peeling
algorithm (see exercises)

l Basic idea is to move all summation signs as far to the
right as possible
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Maximum likelihood estimation

l Likelihood for the data is then obtained by multiplying
the likelihoods of individual sites

l General recipe for maximum likelihood estimation:
− Maximize over all model parameters for a given tree

− Maximize previous expression over all possible trees
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Problems with tree-building

l Assumptions
− Sites evolve independently of one other

− Sites evolve according to the same stochastic model

− The tree is rooted

− The sequences are aligned

− Vertical inheritance
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Additional material on phylogenetic
trees

l Durbin, Eddy, Krogh, Mitchison: Biological sequence
analysis

l Jones, Pevzner: An introduction to bioinformatics
algorithms

l Gusfield: Algorithms on strings, trees, and sequences


