Chapter 7: Rapid alignment methods: FASTA and BLAST

, The biological problem
, Search strategies
FASTA
, BLAST

BLAST: Basic Local Alignment Search Tool

, BLAST (Altschul et al., 1990) and its variants are some of the most common sequence search tools in use

- Roughly, the basic BLAST has three parts:
- 1. Find local alignments between the query sequence and a database sequence ("seed hits")
- 2. Extend seed hits into high-scoring local alignments
- 3. Calculate p-values and a rank ordering of the local alignments
, High-scoring local alignments are called high scoring segment pairs (HSPs)
, Gapped BLAST introduced in 1997 allows for gaps in alignments

Finding seed hits

, First, we generate a set of neighborhood sequences for given k, match score matrix and threshold T
, Neighborhood sequences of a k-word winclude all strings of length k that, when aligned against w , have the alignment score at least T
, For instance, let $\mathrm{I}=$ GCATCGGC, $\mathrm{J}=\mathrm{CCATCGCCATCG}$ and k $=5$, match score be 1 , mismatch score be 0 and $\mathrm{T}=4$

Finding seed hits

, $\mathrm{I}=\mathrm{GCATCGGC}, \mathrm{J}=\mathrm{CCATCGCCATCG}, \mathrm{k}=5$, match score 1 , mismatch score $0, \mathrm{~T}=4$

This allows for one mismatch in each k-word
The neighborhood of the first k-word of I, GCATC, is GCATC and the 15 sequences

Finding seed hits

1 $\mathrm{I}=$ GCATCGGC has 4 k -words and thus $4 \times 16=645$-word patterns (seed hits) to locate in J
, These patterns can be found using exact search in time proportional to the sum of pattern lengths + length of $J+$ number of matches (Aho-Corasick algorithm)

- Methods for pattern matching are developed on course 58093 String processing algorithms

Extending seed hits: original BLAST

- Initial seed hits are extended
- Extensions do not add gaps to the alignment
- Sequence is extended into a HSP until the alignment score drops below the maximum attained score minus a threshold parameter value
- All statistically significant HSPs reported

Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J., J. Mol. Biol., 215, 403-410, 1990

Extending seed hits: gapped BLAST

- In later version of BLAST, two seed hits have to be found on the same diagonal
- Hits have to be non-overlapping
- If the hits are closer than A (additional parameter), then they are joined into a HSP
- Threshold value T is lowered to
 achieve comparable sensitivity
- If the resulting HSP achieves a score at least S_{g}, a gapped extension is triggered

Gapped extensions of HSPs

- Local alignment is performed starting from the HSP
- Dynamic programming matrix filled in "forward" and "backward" directions (see figure)
- Skip cells where value would be X_{g} below the best alignment score found so far

Region searched with score Region potentially searched above cutoff parameter by the alignment algorithm

Estimating the significance of results

- In general, we have a score $S(D, X)=s$ for a sequence X found in database D
, BLAST rank-orders the sequences found by p-values
, The p-value for this hit is $P(S(D, Y) \geq s)$ where Y is a random sequence
- Measures the amount of "surprise" of finding sequence X
, A smaller p-value indicates more significant hit
- A p-value of 0.1 means that one-tenth of random sequences would have as large score as our result

Estimating the significance of results

, In BLAST, p-values are computed roughly as follows
There are nm places to begin an optimal alignment in the $\mathrm{n} \times \mathrm{m}$ alignment matrix
, Optimal alignment is preceded by a mismatch and has t matching (identical) letters

- (Assume match score 1 and mismatch score 0)

Let $p=P$ (two random letters are equal)
The probability of having a mismatch and then t matches is $(1-p) p^{t}$

Estimating the significance of results

We model this event by a Poisson distribution (why?) with mean $\lambda=n m(1-p) p^{t}$
, P (there is local alignment t or longer)
$=1-P($ no such event $)$
$=1-e^{-\lambda}=1-\exp \left(-n m(1-p) p^{t}\right)$
An equation of the same form is used in Blast:

- E -value $=P(S(D, Y) \geq s) \approx 1-\exp \left(-n m y \xi^{t}\right)$ where $\gamma>0$ and $0<\xi<1$
Parameters y and ξ are estimated from data

Scoring amino acid alignments

- We need a way to compute the score $\mathrm{S}(\mathrm{D}, \mathrm{X})$ for aligning the sequence X against database D
- Scoring DNA alignments was discussed previously
- Constructing a scoring model for amino acids is more challenging
- 20 different amino acids vs. 4 bases
- Figure shows the molecular structures of the 20 amino acids
 L-Alanine
(Ala / A)

L-Cysteine
(Cys/C)

L-Histidine

C's

L-Methionine (Met/M)

L-Threonine
(Thr/T)

L-Arginine
$($ Arg $/ \mathrm{R})$

L-Isoleucine

L-Phenylalanine
(Phe $/ \mathrm{F}$)

L-Tyyptophan
(Trp/W)

L-Asparagine
$($ Asn $/ N)$

L-Glutamine
(GIn /Q)
Glycine
(Gly/G)

L-Aspartic acid
(Asp/D)

L-Lysine

L-Serine
(Ser/S)

L-Valine
(vali/V)

Scoring amino acid alignments

- Substitutions between chemically similar amino acids are more frequent than between dissimilar amino acids
- We can check our scoring model against this

L-Alanine
(Ala/A) (Ala / A)

L-Cysteine (Cys IC)

L-Histidine
(His / H)

L-Methionine
(Met/M)

L-Threonine
(Thr/T)

L-Asparagine
$($ Asn $/ N)$ (Asn/N)

L-Glutamic acid
(Glu/E)

L-Isoleucine
(lle sl)

L-Phenylalanine
(Phe /F)

L-Typtophan
${ }_{(\text {Glinsamine }}^{\text {L-Gl }}$

L-Aspartic acid
(Asp/D)

Glycine
(Gly/G)

L-Lysine
(Lys/K)

L-Serine
(Ser/S)

(valiv)

Score matrices

1 Scores $s=S(D, X)$ are obtained from score matrices
, Let $A=A_{1} a_{2} \ldots a_{n}$ and $B=b_{1} b_{2} \ldots b_{n}$ be sequences of equal length (no gaps allowed to simplify things)
, To obtain a score for alignment of A and B, where a_{i} is aligned against b_{i}, we take the ratio of two probabilities

- The probability of having A and B where the characters match (match model M)
- The probability that A and B were chosen randomly (random model R)

Score matrices: random model

, Under the random model, the probability of having X and Y is

$$
P(A, B \mid R)=\prod_{i} q_{a i} \prod_{i} q_{b i}
$$

where $q_{x i}$ is the probability of occurence of amino acid type x_{i}
, Position where an amino acid occurs does not affect its type

Score matrices: match model

, Let $p_{a b}$ be the probability of having amino acids of type a and b aligned against each other given they have evolved from the same ancestor c

The probability is

$$
P(A, B \mid M)=\prod_{i} p_{a_{i} b_{i}}
$$

Score matrices: log-odds ratio score

We obtain the score S by taking the ratio of these two probabilities

$$
\frac{P(A, B \mid M)}{P(A, B \mid R)}=\frac{\prod_{i} p_{a_{i} b_{i}}}{\prod_{i} q_{a_{i}} \prod_{i} q_{b_{i}}}=\prod_{i} \frac{p_{a_{i} b_{i}}}{q_{a_{i}} q_{b_{i}}}
$$

and taking a logarithm of the ratio

$$
S=\log _{2} \frac{P(A, B \mid M)}{P(A, B \mid R)}=\sum_{i=1}^{n} \log _{2} \frac{p_{a_{i} b_{i}}}{a_{a_{i}} q_{b_{i}}}=\sum_{i=1}^{n} s\left(a_{i}, b_{i}\right)
$$

Score matrices: log-odds ratio score

$$
S=\log _{2} \frac{P(A, B \mid M)}{P(A, B \mid R)}=\sum_{i=1}^{n} \log _{2} \frac{p_{a_{i} b_{i}}}{q_{a_{i}} q_{b_{i}}}=\sum_{i=1}^{n} s\left(a_{i}, b_{i}\right)
$$

The score S is obtained by summing over character pair-specific scores:

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

The probabilities q_{a} and $p_{a b}$ are extracted from data

Calculating score matrices for amino acids

- Probabilities q_{a} are in principle easy to obtain:

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

- Count relative frequencies of every amino acid in a sequence database

Calculating score matrices for amino
 acids

- To calculate $p_{a b}$ we can use a known pool of aligned sequences
- BLOCKS is a database of highly conserved regions for proteins
- It lists multiply aligned, ungapped and conserved protein segments
- Example from BLOCKS shows genes related to human gene associated with DNA-repair defect xeroderma pigmentosum

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

```
Block PR 00851A
```

Block PR 00851A
ID XRODRMPGMNTB; BLOCK
ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 (74) RPLWVAPDGHIFLEAFSPVYK 54
XPB_HUMAN|P19447 (74) RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 (74) RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 (74) RPLWVAPDGHIFLEAFSPVYK 54
P91579 (80) RPLYLAPDGHIFLESFSPVYK 67
P91579 (80) RPLYLAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 (84) RPLWVAPNGHVFLESFSPVYK }7
XPB_DROME|Q02870 (84) RPLWVAPNGHVFLESFSPVYK }7
RA25_YEAST|Q00578 (131) PLWISPSDGRIILESFSPLAE 100
RA25_YEAST|Q00578 (131) PLWISPSDGRIILESFSPLAE 100
Q38861 (52) RPLWACADGRIFLETFSPLYK }7
Q38861 (52) RPLWACADGRIFLETFSPLYK }7
O13768 (90) PLWINPIDGRIILEAFSPLAE 100
O13768 (90) PLWINPIDGRIILEAFSPLAE 100
O00835 (79) RPIWVCPDGHIFLETFSAIYK 86
O00835 (79) RPIWVCPDGHIFLETFSAIYK 86
P91579 (80) RNLYARDGHIFLESFSPVYK 67

```
P91579 ( 80) RNLYARDGHIFLESFSPVYK 67
```


BLOSUM matrix

- BLOSUM is a score matrix for amino acid sequences derived from BLOCKS data
- First, count pairwise matches $\mathrm{f}_{\mathrm{x}, \mathrm{y}}$ for every amino acid type pair (x, y)
- For example, for column 3 and amino acids L and W, we find 8 pairwise matches: $f_{L, W}=f_{W, L}=8$

Creating a BLOSUM matrix

- Probability p_{ab} is obtained by dividing $f_{a b}$ with the total number of pairs (note difference with course book):

$$
p_{a b}=f_{a b} / \sum_{x=1}^{20} \sum_{y=1}^{x} f_{x y}
$$

- We get probabilities q_{a} by

$$
q_{a}=\sum_{b=1}^{20} p_{a b}
$$

Creating a BLOSUM matrix

, The probabilities $p_{a b}$ and q_{a} can now be plugged into

$$
s(a, b)=\log _{2} \frac{p_{a b}}{q_{a} q_{b}}
$$

to get a 20×20 matrix of scores $s(a, b)$.
, Next slide presents the BLOSUM62 matrix

- Values scaled by factor of 2 and rounded to integers
- Additional step required to take into account expected evolutionary distance
- Described in the course book in more detail

BLOSUM62

Using BLOSUM62 matrix

MQLEANADTSV

$s=\sum_{i=1}^{11} s\left(a_{i}, b_{i}\right)$
$=2+5-3-4+4+0+4+0-2+0+1$
$=7$

Demonstration of BLAST at NCBI

, http://www.ncbi.nlm.nih.gov/BLAST/

