Inferring the Past: Phylogenetic Trees (chapter 12)

, The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

Phylogeny

- We want to study ancestordescendant relationships, or phylogeny, among groups of organisms
- Groups are called taxa (singular: taxon)
- Organisms are usually called operational taxonomic units or OTUs in the context of phylogeny

Phylogenetic trees

- Leaves (external nodes) ~ species, observed (OTUs)
- Internal nodes ~ ancestral species/divergence events, not observed
- Unrooted tree does not specify ancestordescendant relationships beyond the observation "leaves are not ancestors"

Unrooted tree with 5 leaves and 3 internal nodes.

Is node 7 ancestor of node 6?

Phylogenetic trees

- Rooting a tree specifies all ancestor-descendant relationships in the tree
- Root is the ancestor to the other species
- There are $\mathrm{n}-1$ ways to R_{1} root a tree with n nodes

Questions

- Can we enumerate all possible phylogenetic trees for n species (or sequences?)
, How to score a phylogenetic tree with respect to data?
, How to find the best phylogenetic tree given data?

Finding the best phylogenetic tree: naive method

, How can we find the phylogenetic tree that best represents the data?
, Naive method: enumerate all possible trees
How many different trees are there of n species?
Denote this number by b_{n}

Enumerating unordered trees

- Start with the only unordered tree with 3 leaves $\left(b_{3}=1\right)$
- Consider all ways to add a leaf node to this tree
- Fourth node can be added to 3 different branches (edges), creating 1 new internal branch
- Total number of branches is n external and $\mathrm{n}-3$ internal branches
- Unrooted tree with n leaves has $2 n-3$ branches

Enumerating unordered trees

- Thus, we get the number of unrooted trees

$$
\begin{aligned}
b_{n} & =(2(n-1)-3) b_{n-1}=(2 n-5) b_{n-1} \\
& =(2 n-5) *(2 n-7)^{*} \ldots * 3^{* 1} \\
& =(2 n-5)!/\left((n-3)!2^{n-3}\right), n>2
\end{aligned}
$$

- Number of rooted trees b_{n} is

$$
b_{n}^{\prime}=(2 n-3) b_{n}=(2 n-3)!/\left((n-2)!2^{n-2}\right), n>2
$$

that is, the number of unrooted trees times the number of branches in the trees

Number of possible rooted and unrooted trees

n	$\mathrm{~B}_{\mathrm{n}}$	$\mathrm{b}_{\mathrm{n}}^{\prime}$
3	1	3
4	3	15
5	15	105
6	105	945
7	954	10395
8	10395	135135
9	135135	2027025
10	2027025	34459425
20	$2.22 \mathrm{E}+020$	$8.20 \mathrm{E}+021$
30	$8.69 \mathrm{E}+036$	$4.95 \mathrm{E}+038$

Too many trees?

, We can't construct and evaluate every phylogenetic tree even for a smallish number of species
, Better alternative is to

- Devise a way to evaluate an individual tree against the data
- Guide the search using the evaluation criteria to reduce the search space

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods
Models for mutations and estimation of distances
Maximum likelihood methods

Parsimony method

The parsimony method finds the tree that explains the observed sequences with a minimal number of substitutions
, Method has two steps

- Compute smallest number of substitutions for a given tree with a parsimony algorithm
- Search for the tree with the minimal number of substitutions

Parsimony: an example

, Consider the following short sequences
$1 \mathcal{A C T} \mathcal{T} \mathcal{T}$
2 $\mathfrak{A C A T} \mathcal{T}$
3 AACGT
4 $\mathfrak{A A} \mathcal{A} \mathcal{G} \mathcal{T}$
$5 \mathcal{A} \mathcal{A T I T}$
, There are 105 possible rooted trees for 5 sequences
Example: which of the following trees explains the sequences with least number of substitutions?

This tree explains the sequences with 4 substitutions

