
Introduction to bioinformatics, Autumn 2007 158

Computing parsimony

l Parsimony treats each site (position in a sequence)
independently

l Total parsimony cost is the sum of parsimony costs of
each site

l We can compute the minimal parsimony cost for a
given tree by

− First finding out possible assignments at each node, starting
from leaves and proceeding towards the root

− Then, starting from the root, assign a letter at each node,
proceeding towards leaves

Introduction to bioinformatics, Autumn 2007 159

Labelling tree nodes

l An unrooted tree with n leaves contains 2n-1 nodes
altogether

l Assign the following labels to nodes in a rooted tree
− leaf nodes: 1, 2, …, n
− internal nodes: n+1, n+2, …, 2n-1
− root node: 2n-1

l The label of a child node is always
smaller than the label of the
parent node 2 3 4 51

6

8

7

9

Introduction to bioinformatics, Autumn 2007 160

Parsimony algorithm: first phase
l Find out possible assignments at every node for each site u

independently. Denote site u in sequence i by si,u.

For i := 1, …, n do
Fi := {si,u} % possible assignments at node i
Li := 0 % number of substitutions up to node i

For i := n+1, …, 2n-1 do
Let j and k be the children of node i
If Fj Fk = then Li := Lj + Lk + 1, Fi := Fj Fk

else Li := Lj + Lk, Fi := Fj Fk

Introduction to bioinformatics, Autumn 2007 161

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

Choose u = 3 (for example, in general we do this for all u)
F1 := {T}
L1 := 0

F2 := {A}
L2 := 0

F3 := {C}, L3 := 0

F4 := {T}, L4 := 0

F5 := {T}, L5 := 0

6

7

8

9

Introduction to bioinformatics, Autumn 2007 162

Parsimony algorithm: first phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A, T}

9 T

F8 := F1 F2 = {A, T}
L8 := L1 + L2 + 1 = 1

F6 := F3 F4 = {C, T}

L6 := L3 + L4 + 1 = 1

F7 := F5 F6 = {T}
L7 := L5 + L6 = 1

F9 := F7 F8 = {T}
L9 := L7 + L8 = 2 Parsimony cost for site 3 is 2

Introduction to bioinformatics, Autumn 2007 163

Parsimony algorithm: second phase

l Backtrack from the root and assign x Fi at each node

l If we assigned y at parent of node i and y Fi, then
assign y

l Else assign x Fi by random

Introduction to bioinformatics, Autumn 2007 164

Parsimony algorithm: second phase

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 {C,T}

7 T

8 {A,T}

9 T

At node 6, the algorithm
assigns T because T
was assigned to parent
node 7 and T F6.

T is assigned to node 8
for the same reason.

The other nodes have
only one possible letter
to assign

Introduction to bioinformatics, Autumn 2007 165

Parsimony algorithm

3

AACGT

4

AATGT

5

AATTT

2

ACATT

1

ACTTT

6 T

7 T

8 T

9 T

First and second phase are
repeated for each site in the
sequences,
summing the parsimony
costs at each site

Introduction to bioinformatics, Autumn 2007 166

Properties of parsimony algorithm

l Parsimony algorithm requires that the sequences are
of same length

− First align the sequences against each other and remove
indels

− Then compute parsimony for the resulting sequences

l Is the most parsimonious tree the correct tree?
− Not necessarily but it explains the sequences with least

number of substitutions

− We can assume that the probability of having fewer
mutations is higher than having many mutations

Introduction to bioinformatics, Autumn 2007 167

Finding the most parsimonious tree

l Parsimony algorithm calculates the parsimony cost for
a given tree…

l …but we still have the problem of finding the tree with
the lowest cost

l Exhaustive search (enumerating all trees) is in general
impossible

l More efficient methods exist, for example
− Probabilistic search

− Branch and bound

Introduction to bioinformatics, Autumn 2007 168

Branch and bound in parsimony

l We can exploit the fact that adding edges to a tree can
only increase the parsimony cost

1

AATGT

2

AATTT

3

AACGT

1

AATGT

2

AATTT

{T}
{T}

{C, T}

cost 0 cost 1

Introduction to bioinformatics, Autumn 2007 169

Branch and bound in parsimony
Branch and bound is a
general search strategy
where

l Each solution is potentially
generated

l Track is kept of the best
solution found

l If a partial solution cannot
achieve better score, we
abandon the current search
path

In parsimony…

l Start from a tree with 1
sequence

l Add a sequence to the tree
and calculate parsimony
cost

l If the tree is complete, check
if found the best tree so far

l If tree is not complete and
cost exceeds best tree cost,
do not continue adding
edges to this tree

Introduction to bioinformatics, Autumn 2007 170

Branch and bound graphically

…

1 2 34

…

Partial tree, no best complete tree constructed yet

Complete tree: calculate parsimony cost and store
Partial tree, cost exceeds the cost of the best tree this far

Introduction to bioinformatics, Autumn 2007 171

Distance methods

l The parsimony method works on sequence (character
string) data

l We can also build phylogenetic trees in a more
general setting

l Distance methods work on a set of pairwise distances
dij for the data

l Distances can be obtained from phenotypes as well as
from genotypes (sequences)

Introduction to bioinformatics, Autumn 2007 172

Distances in a phylogenetic tree

l Distance matrix D = (dij)
gives pairwise distances for
leaves of the phylogenetic
tree

l In addition, the phylogenetic
tree will now specify
distances between leaves
and internal nodes

− Denote these with dij as well

2 3 4 51

6

7

8

Distance dij states how
far apart species i and j
are evolutionary (e.g.,
number of mismatches in
aligned sequences)

Introduction to bioinformatics, Autumn 2007 173

Distances in evolutionary context

l Distances dij in evolutionary context satisfy the
following conditions

− Symmetry: dij = dji for each i, j

− Distinguishability: dij 0 if and only if i j
− Triangle inequality: dij dik + dkj for each i, j, k

l Distances satisfying these conditions are called metric
l In addition, evolutionary mechanisms may impose

additional constraints on the distances
additive and ultrametric distances

Introduction to bioinformatics, Autumn 2007 174

Additive trees

l A tree is called additive, if the distance between any
pair of leaves (i, j) is the sum of the distances between
the leaves and the first node k that they share in the
tree

dij = dik + djk

l ”Follow the path from the leaf i to the leaf j to find the
exact distance dij between the leaves.”

Introduction to bioinformatics, Autumn 2007 175

Additive trees: example

0244D

2044C

4402B

4420A

DCBA
A

B

C

D

1

1

2 1

1

Introduction to bioinformatics, Autumn 2007 176

Ultrametric trees

l A rooted additive tree is called a ultrametric tree, if the
distances between any two leaves i and j, and their
common ancestor k are equal

dik = djk

l Edge length dij corresponds to the time elapsed since
divergence of i and j from the common parent

l In other words, edge lengths are measured by a
molecular clock with a constant rate

Introduction to bioinformatics, Autumn 2007 177

Identifying ultrametric data

l We can identify distances to be ultrametric by the
three-point condition:

D corresponds to an ultrametric tree if and only if for
any three species i, j and k, the distances satisfy
dij max(dik, dkj)

l If we find out that the data is ultrametric, we can utilise
a simple algorithm to find the corresponding tree

Introduction to bioinformatics, Autumn 2007 178

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Introduction to bioinformatics, Autumn 2007 179

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Only vertical segments of the
tree have correspondence to
some distance dij:

Horizontal segments act as
connectors.

d8,9

Introduction to bioinformatics, Autumn 2007 180

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

dik = djk for any two leaves
i, j and any ancestor k of
i and j

Introduction to bioinformatics, Autumn 2007 181

Ultrametric trees

9

8

7

5 4 3 2 1

6

Observation time

Ti
m

e

Three-point condition: there exists
no leaf i, j for which dij > max(dik, djk)
for some leaf k.

Introduction to bioinformatics, Autumn 2007 182

UPGMA algorithm

l UPGMA (unweighted pair group method using
arithmetic averages) constructs a phylogenetic tree via
clustering

l The algorithm works by at the same time
− Merging two clusters

− Creating a new node on the tree

l The tree is built from leaves towards the root

l UPGMA produces a ultrametric tree

Introduction to bioinformatics, Autumn 2007 183

Cluster distances

l Let distance dij between clusters Ci and Cj be

that is, the average distance between points (species)
in the cluster.

Introduction to bioinformatics, Autumn 2007 184

UPGMA algorithm
l Initialisation

− Assign each point i to its own cluster Ci

− Define one leaf for each sequence, and place it at height zero
l Iteration

− Find clusters i and j for which dij is minimal
− Define new cluster k by Ck = Ci Cj, and define dkl for all l
− Define a node k with children i and j. Place k at height dij/2
− Remove clusters i and j

l Termination:

− When only two clusters i and j remain, place root at height dij/2

Introduction to bioinformatics, Autumn 2007 185

1 2

3

4

5

Introduction to bioinformatics, Autumn 2007 186

1 2

3

4

5
1 2

6

Introduction to bioinformatics, Autumn 2007 187

1 2

3

4

5
1 2 4 5

6 7

Introduction to bioinformatics, Autumn 2007 188

1 2

3

4

5
1 2 4 5

6 7

8

3

Introduction to bioinformatics, Autumn 2007 189

1 2

3

4

5
1 2 4 5

6 7

8

3

9

Introduction to bioinformatics, Autumn 2007 190

UPGMA implementation

l In naive implementation, each iteration takes O(n2)
time with n sequences => algorithm takes O(n3) time

l The algorithm can be implemented to take only O(n2)
time (Gronau & Moran, 2006)

Introduction to bioinformatics, Autumn 2007 191

Problem solved?

l We now have a simple algorithm which finds a
ultrametric tree

− If the data is ultrametric, then there is exactly one ultrametric
tree corresponding to the data (we skip the proof)

− The tree found is then the ”correct” solution to the phylogeny
problem, if the assumptions hold

l Unfortunately, the data is not ultrametric in practice
− Measurement errors distort distances

− Basic assumption of a molecular clock does not hold usually
very well

