Incorrect reconstruction of nonultrametric data by UPGMA

Tree which corresponds to non-ultrametric distances Incorrect ultrametric reconstruction by UPGMA algorithm

Checking for additivity

- How can we check if our data is additive?
- Let i, j, k and I be four *distinct* species
- Compute 3 sums: $d_{ij} + d_{kl}$, $d_{ik} + d_{jl}$, $d_{il} + d_{jk}$

Four-point condition

- The sums are represented by the three figures
 - Left and middle sum cover all edges, right sum does not
- Four-point condition: i, j, k and I satisfy the four-point condition if two of the sums $d_{ij} + d_{kl}$, $d_{ik} + d_{jl}$, $d_{il} + d_{jk}$ are the same, and the third one is smaller than these two

Checking for additivity

An n x n matrix D is additive if and only if the four point condition holds for every 4 distinct elements 1 ≤ i, j, k, l ≤ n

Finding an additive phylogenetic tree

- Additive trees can be found with, for example, the neighbor joining method (Saitou & Nei, 1987)
- The neighbor joining method produces unrooted trees, which have to be rooted by other means
 - A common way to root the tree is to use an outgroup
 - Outgroup is a species that is known to be more distantly related to every other species than they are to each other
 - Root node candidate: position where the outgroup would join the phylogenetic tree
- However, in real-world data, even additivity usually does not hold very well

- Neighbor joining works in a similar fashion to UPGMA
 - Find clusters C_1 and C_2 that minimise a function $f(C_1, C_2)$
 - Join the two clusters C_1 and C_2 into a new cluster C
 - Add a node to the tree corresponding to C
 - Assign distances to the new branches
- Differences in
 - The choice of function $f(C_1, C_2)$
 - How to assign the distances

Recall that the distance d_{ij} for clusters C_i and C_j was

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$

 Let u(C_i) be the separation of cluster C_i from other clusters defined by

$$u(C_i) = \frac{1}{n-2} \sum_{C_j} d_{ij}$$

where n is the number of clusters.

- Instead of trying to choose the clusters C_i and C_j closest to each other, neighbor joining at the same time
 - Minimises the distance between clusters C_i and C_j and
 - Maximises the separation of both C_{i} and C_{j} from other clusters

- Initialisation as in UPGMA
- I teration
 - Find clusters i and j for which $d_{ij} u(C_i) u(C_j)$ is minimal
 - Define new cluster k by $C_k = C_i \cup C_j$, and define d_{kl} for all l
 - Define a node k with children i and j. Remove clusters i and j
 - Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_i) u(C_j))$ to the edge i -> k
 - Assign length $\frac{1}{2} d_{ij} + \frac{1}{2} (u(C_j) u(C_i))$ to the edge j -> k
- Termination:
 - When only one cluster remains

Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

Estimation of distances

- Many alternative ways to derive the distances d_{ii} exist
 - Simple solution: align each sequence pair and use the alignment score
 - This would not take into account that a change in base might revert back to the original base
 - We would then underestimate the distances
- Next: derivation of a simple stochastic model for the evolution of a DNA sequence
- Obtain the distances from the model

Estimation of distances

Key assumptions:

- mutations at sites are rare events in the course of time => poisson process
- sites evolve individually and by an identical mechanism
- number of mismatched bases is a sum of mutations at individual sites => binomial variable

A stochastic model for base substitutions

- Consider a single homologous site in two sequences
- Assume the sites diverged for time length t: the sites are separated by time 2t
- Suppose that the number of substitutions in any
 branch of length t has a Poisson distribution with mean
 λt
- Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^{k}/(k!)$, k = 0, 1, 2, ...

Substitutions at one site

- General model: P(substitution results in base j | site was base i) = m_{ij}
- Felsenstein model: $m_{ij} = \pi_j$, with $\pi_j \ge 0$ and $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$
 - The previous base does not affect the outcome!
- Assume that the set of probabilities π_j is same at every position in the sequence

Substitutions at one site (2)

- Probability q_{ij}(t) that a base i at time 0 is substituted by a base j a time t later
- $q_{ij}(t) = e^{-\lambda t} + (1 e^{-\lambda t}) \pi_j$, if i = j
- $q_{ij}(t) = (1 e^{-\lambda t}) \pi_j$, otherwise

Substitutions at one site (3)

- We assume stationarity: distribution of base frequencies is the same for every time t
- In other words, we want that

P(base a time t later = j) = π_i^0

where π_i^0 is the frequency of base j at time 0.

For our simple model, this can be shown to hold

Estimating distances

- Distances should take into account the mutation mechanism
- Average of λt substitutions occur at a particular site on a branch of length t
- However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

Mean number of substitutions in time t

- What is the chance H that a substitution actually changes a base?
- $H = \sum \pi_i (1 \pi_i) = 1 \sum \pi_i^2$
- Average number of real substitutions is then λtH
- Distance K between two sequences is

 $K = 2\lambda t H$

Estimating distances from sequence data

- We want to estimate $K = 2\lambda tH$ from sequence data
- The chance F_{ij}(t) that we observe a base i in one sequence and a base j in another is

$$\mathsf{F}_{ij}(t) = \sum_{I} \pi_{I} q_{Ii}(t) q_{Ij}(t)$$

by averaging over the possible ancestral nucleotides

Estimating distances from sequence data

Expression $F_{ij}(t) = \sum_{l} \pi_{l} q_{li}(t) q_{lj}(t)$ can be simplified by assuming that the mutation process is reversible:

$$\pi_i m_{ij} = \pi_j m_{ji}$$
 for all $i \neq j$

From this it can be shown that

$$\pi_{I}q_{ij}(t) = \pi_{j}q_{ji}(t)$$
 for all i, j and t > 0

Now the model simplifies into $F_{ij}(t) = \pi_i q_{ij}(2t)$

Estimating distances from sequence data

What is the probability F = F(t) that the bases at a particular position in two immediate descendants of the same ancestor are identical?

$$F = \sum_{i} \pi_{i} q_{ii}(2t) = e^{-2\lambda t} + (1 - e^{-2\lambda t})(1 - H)$$

Putting the sites together

- Assume that
 - sites evolve independently of one other and
 - mutation process is identical at each site
 - The two sequences have been aligned against each other and gaps have been removed
- Do the bases at site i in the sequences differ?
 - $X_i = 1$ if the ith pair of sites differs
 - $X_i = 0$ otherwise

Putting the sites together (2)

- $P(X_i = 1) = 1 F = (1 e^{-2\lambda t})H$
- Now $D = X_1 + ... + X_s$ is the number of mismatched pairs of bases
- D is a binomial random variable with parameters s and 1 F
- Notice that D is the Hamming distance for the sequences

Putting the sites together (3)

- F is unknown and has to be estimated from the sequence data
- Recall that the observed proportion of successes is a good estimator of the binomial success probability:
 estimate 1 F with D/s
- $D/s = (1 e^{-2\lambda t})H$
- $\sim 2\lambda t = -\log(1 D/(sH))$
- Finally, we obtain $K = 2\lambda tH = -H \log(1 D/(sH))$

Jukes-Cantor formula

- Estimate $2\lambda tH = -H \log(1 D/(sH))$ of the distance K is known as the Jukes-Cantor formula
- When H (chance that a substitution actually occurs) approaches 1, the estimate decreases and approaches the Poisson mean 2λt
- H is usually not known and has to be estimated from the data as well

Inferring the Past: Phylogenetic Trees (chapter 12)

- The biological problem
- Parsimony and distance methods
- Models for mutations and estimation of distances
- Maximum likelihood methods

Maximum likelihood methods

- Consider the tree on the right with three sequences
- Probability $p(i_1, i_2, i_3)$ of observing bases i_1 , i_2 and i_3 can be computed by summing over all possible ancestral bases,

 $p(i1, i2, i3) = \sum_{a} \sum_{b} \pi_{a} q_{ai3}(t_{2}) q_{ab}(t_{2}-t_{1}) q_{bi2}(t_{1}) q_{bi1}(t_{1})$

Hard to compute for complex trees

Maximum likelihood estimation

- We would like to calculate likelihood $p(i_1, i_2, ..., i_n)$ in the general case
- Calculations can be arranged using the peeling algorithm (see exercises)
- Basic idea is to move all summation signs as far to the right as possible

Maximum likelihood estimation

Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

- General recipe for maximum likelihood estimation:
 - Maximize over all model parameters for a given tree
 - Maximize previous expression over *all* possible trees

Problems with tree-building

- Assumptions
 - Sites evolve independently of one other
 - Sites evolve according to the same stochastic model
 - The tree is rooted
 - The sequences are aligned
 - Vertical inheritance

Additional material on phylogenetic trees

- Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
- Jones, Pevzner: An introduction to bioinformatics algorithms
- Gusfield: Algorithms on strings, trees, and sequences