Incorrect reconstruction of nonultrametric data by UPGMA

Tree which corresponds to non-ultrametric
 distances

Checking for additivity

, How can we check if our data is additive?

- Let $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and I be four distinct species
, Compute 3 sums: $\mathrm{d}_{\mathrm{ij}}+\mathrm{d}_{\mathrm{k} \mathrm{l}}, \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{j}}, \mathrm{d}_{\mathrm{il}}+\mathrm{d}_{\mathrm{jk}}$

Four-point condition

The sums are represented by the three figures

- Left and middle sum cover all edges, right sum does not

Four-point condition: $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and I satisfy the four-point condition if two of the sums $\mathrm{d}_{\mathrm{ij}}+\mathrm{d}_{\mathrm{k} \mid}, \mathrm{d}_{\mathrm{ik}}+\mathrm{d}_{\mathrm{j}}, \mathrm{d}_{\mathrm{il}}+\mathrm{d}_{\mathrm{jk}}$ are the same, and the third one is smaller than these two

Checking for additivity

An $\mathrm{n} \times \mathrm{n}$ matrix D is additive if and only if the four point condition holds for every 4 distinct elements $1 \leq i, j, k$, I $\leq n$

Finding an additive phylogenetic

 tree- Additive trees can be found with, for example, the neighbor joining method (Saitou \& Nei, 1987)
The neighbor joining method produces unrooted trees, which have to be rooted by other means
- A common way to root the tree is to use an outgroup
- Outgroup is a species that is known to be more distantly related to every other species than they are to each other
- Root node candidate: position where the outgroup would join the phylogenetic tree
, However, in real-world data, even additivity usually does not hold very well

Neighbor joining algorithm

, Neighbor joining works in a similar fashion to UPGMA

- Find clusters C_{1} and C_{2} that minimise a function $f\left(C_{1}, C_{2}\right)$
- Join the two clusters C_{1} and C_{2} into a new cluster C
- Add a node to the tree corresponding to C
- Assign distances to the new branches
, Differences in
- The choice of function $f\left(C_{1}, C_{2}\right)$
- How to assign the distances

Neighbor joining algorithm

, Recall that the distance d_{ij} for clusters C_{i} and C_{j} was

$$
d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i, q} \in C_{j}} d_{p q}
$$

, Let $u\left(\mathrm{C}_{\mathrm{i}}\right)$ be the separation of cluster C_{i} from other clusters defined by

$$
u\left(C_{i}\right)=\frac{1}{n-2} \sum_{C_{j}} d_{i j}
$$

where n is the number of clusters.

Neighbor joining algorithm

- Instead of trying to choose the clusters C_{i} and C_{j} closest to each other, neighbor joining at the same time
- Minimises the distance between clusters C_{i} and C_{j} and
- Maximises the separation of both C_{i} and C_{j} from other clusters

Neighbor joining algorithm

1 Initialisation as in $\mathcal{U P} \mathcal{P} \mathcal{M A}$

- Iteration
- Find clusters i and j for which $d_{i j}-u\left(C_{i}\right)-u\left(C_{j}\right)$ is minimal
- Define new cluster \mathcal{K} by $\mathcal{C}_{k}=\mathcal{C}_{i} \cup \mathcal{C}_{j}$, and define $d_{k l}$ for all 1
- Define a node Kwitf children i and j. Remove clusters i and j
- Assignlengtf $1 / 2 d_{i j}+1 / 2\left(u\left(C_{i}\right)-u\left(C_{j}\right)\right)$ to the edge $i->K$
- Assignlength $1 / 2 d_{i j}+1 / 2\left(u\left(C_{j}\right)-u\left(C_{i}\right)\right)$ to the edge $j \rightarrow K$
, Termination:
- When only one cluster remains

Neighbor joining algorithm:

 example| | a | b | c | d |
| ---: | ---: | ---: | ---: | ---: |
| a | 0 | 6 | 7 | 5 |
| b | | 0 | 11 | 9 |
| c | | | 0 | 6 |
| d | | | | 0 |

i	$u(i)$
a	$(6+7+5) / 2=9$
b	$(6+11+9) / 2=13$
c	$(7+11+6) / 2=12$
d	$(5+9+6) / 2=10$

Neighbor joining algorithm: example

	a	b	c	d
a	0	6	7	5
b		0	11	9
c			0	6
d				0

i	$u(i)$
a	$(6+7+5) / 2=9$
b	$(6+11+9) / 2=13$
c	$(7+11+6) / 2=12$
d	$(5+9+6) / 2=10$

i, j	$d_{i j}-u\left(C_{i}\right)$	$-u\left(C_{j}\right)$		
a, b	6	-	9	$-13=-16$
a, c	7	-	9	$-12=-14$
a, d	5	-	-10	$=-14$
b, c	11	-13	$-12=-14$	
b, d	9	-13	$-10=-14$	
c, d	6	-12	$-10=-16$	

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods

- Models for mutations and estimation of distances
, Maximum likelihood methods

Estimation of distances

- Many alternative ways to derive the distances d_{ij} exist
- Simple solution: align each sequence pair and use the alignment score
- This would not take into account that a change in base might revert back to the original base
- We would then underestimate the distances
, Next: derivation of a simple stochastic model for the evolution of a DNA sequence

Obtain the distances from the model

Estimation of distances

Key assumptions: mutations at sites are rare events in the course of time => poisson process
, sites evolve individually and by an identical mechanism
, number of mismatched bases is a sum of mutations at individual sites => binomial variable

A stochastic model for base substitutions

, Consider a single homologous site in two sequences
, Assume the sites diverged for time length t : the sites are separated by time $2 t$
Suppose that the number of substitutions in any branch of length t has a Poisson distribution with mean λt
, Probability that k substitutions occur is given by the Poisson probability $e^{-\lambda t}(\lambda t)^{k} /(k!), k=0,1,2, \ldots$

Substitutions at one site

, General model: P(substitution results in base j | site was base i) $=\mathrm{m}_{\mathrm{ij}}$
, Felsenstein model: $m_{i j}=\pi_{j}$, with $\pi_{j} \geq 0$ and $\pi_{1}+\pi_{2}+$ $\pi_{3}+\pi_{4}=1$

- The previous base does not affect the outcome!
, Assume that the set of probabilities π_{j} is same at every position in the sequence

Substitutions at one site (2)

, Probability $q_{i j}(t)$ that a base i at time 0 is substituted by a base j a time t later

- $q_{i j}(t)=e^{-\lambda t}+\left(1-e^{-\lambda t}\right) \pi_{j}$, if $i=j$
- $q_{i j}(t)=\left(1-e^{-\lambda t}\right) \pi_{j}$, otherwise

Substitutions at one site (3)

We assume stationarity: distribution of base frequencies is the same for every time t
, In other words, we want that
$P($ base a time t later $=j)=\pi_{j}{ }^{0}$
where $\pi_{j}{ }^{0}$ is the frequency of base j at time 0 .

For our simple model, this can be shown to hold

Estimating distances

Distances should take into account the mutation mechanism

- Average of λt substitutions occur at a particular site on a branch of length t

However, some of the substitutions do not change the base (A -> A or A -> G -> A, for example)

Mean number of substitutions in time t

, What is the chance H that a substitution actually changes a base?
, $H=\sum \pi_{i}\left(1-\pi_{i}\right)=1-\sum \pi_{i}^{2}$
Average number of real substitutions is then $\lambda \mathrm{tH}$
Distance K between two sequences is
$K=2 \lambda t H$

Estimating distances from sequence data

We want to estimate $K=2 \lambda t H$ from sequence data The chance $F_{i j}(t)$ that we observe a base i in one sequence and a base j in another is
$F_{i j}(t)=\sum_{l} \Pi_{l} q_{l i}(t) q_{l j}(t)$
by averaging over the possible ancestral nucleotides

Estimating distances from sequence data

Expression $F_{i j}(t)=\sum_{l} \pi_{1} q_{l i}(t) q_{i j}(t)$ can be simplified by assuming that the mutation process is reversible:
$\pi_{\mathrm{i}} \mathrm{m}_{\mathrm{ij}}=\pi_{\mathrm{j}} \mathrm{m}_{\mathrm{ji}}$ for all $\mathrm{i} \neq \mathrm{j}$
, From this it can be shown that
$m_{I} q_{j j}(t)=\pi_{j} q_{j j}(t)$ for all i, j and $t>0$
, Now the model simplifies into $F_{i j}(t)=\pi_{i} q_{i j}(2 t)$

Estimating distances from sequence data

, What is the probability $F=F(t)$ that the bases at a particular position in two immediate descendants of the same ancestor are identical?

$$
F=\sum_{i} \Pi_{i} q_{i i}(2 t)=e^{-2 \lambda t}+\left(1-e^{-2 \lambda t}\right)(1-H)
$$

Putting the sites together

, Assume that

- sites evolve independently of one other and
- mutation process is identical at each site
- The two sequences have been aligned against each other and gaps have been removed
Do the bases at site i in the sequences differ?
$X_{i}=1$ if the ith pair of sites differs
$\mathrm{X}_{\mathrm{i}}=0$ otherwise

Putting the sites together (2)

- $P\left(X_{i}=1\right)=1-F=\left(1-e^{-2 \lambda t}\right) H$
- Now $D=X_{1}+\ldots+X_{s}$ is the number of mismatched pairs of bases

D is a binomial random variable with parameters s and 1 - F
, Notice that D is the Hamming distance for the sequences

Putting the sites together (3)

, F is unknown and has to be estimated from the sequence data
, Recall that the observed proportion of successes is a good estimator of the binomial success probability: estimate $1-F$ with D / s

- $\mathrm{D} / \mathrm{s}=\left(1-\mathrm{e}^{-2 \lambda t}\right) \mathrm{H}$
- $2 \lambda t=-\log (1-D /(s H))$

Finally, we obtain $\mathrm{K}=2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$

Jukes-Cantor formula

1 Estimate $2 \lambda \mathrm{tH}=-\mathrm{H} \log (1-\mathrm{D} /(\mathrm{sH}))$ of the distance K is known as the Jukes-Cantor formula
, When H (chance that a substitution actually occurs) approaches 1 , the estimate decreases and approaches the Poisson mean $2 \lambda t$
, H is usually not known and has to be estimated from the data as well

Inferring the Past: Phylogenetic Trees (chapter 12)

The biological problem
, Parsimony and distance methods
, Models for mutations and estimation of distances
, Maximum likelihood methods

Maximum likelihood methods

, Consider the tree on the right with three sequences
, Probability $p\left(i_{1}, i_{2}, i_{3}\right)$ of observing bases i_{1}, i_{2} and i_{3} can be computed by summing over all possible ancestral bases,

$p(i 1, i 2, i 3)=\sum_{a} \sum_{b} \pi_{a} q_{a i 3}\left(\mathrm{t}_{2}\right) q_{a b}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi2}}\left(\mathrm{t}_{1}\right) \mathrm{q}_{\mathrm{bi1}}\left(\mathrm{t}_{1}\right)$
, Hard to compute for complex trees

Maximum likelihood estimation

, We would like to calculate likelihood $p\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ in the general case
, Calculations can be arranged using the peeling algorithm (see exercises)

- Basic idea is to move all summation signs as far to the right as possible

Maximum likelihood estimation

, Likelihood for the data is then obtained by multiplying the likelihoods of individual sites

General recipe for maximum likelihood estimation:

- Maximize over all model parameters for a given tree
- Maximize previous expression over all possible trees

Problems with tree-building

, Assumptions

- Sites evolve independently of one other
- Sites evolve according to the same stochastic model
- The tree is rooted
- The sequences are aligned
- Vertical inheritance

Additional material on phylogenetic trees

, Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis
Jones, Pevzner: An introduction to bioinformatics algorithms

Gusfield: Algorithms on strings, trees, and sequences

