Course contents (18.9.)

- Biological background (book chapter 1)
- Probability calculus (chapters 2 and 3)
- Sequence alignment (chapter 6)
 - This week (18.9. and 21.9.)
- Rapid alignment methods: FASTA and BLAST (chapter 7)
 - Next week (25.9. and 28.9.)
- Phylogenetic trees (chapter 12)
- Expression data analysis (chapter 11)

Sequence Alignment (chapter 6)

- The biological problem
- Global alignment
- Local alignment
- Multiple alignment

Background: comparative genomics

- Basic question in biology: *what properties are shared among organisms?*
- Genome sequencing allows comparison of organisms at DNA and protein levels
- Comparisons can be used to
 - Find evolutionary relationships between organisms
 - Identify functionally conserved sequences
 - Identify corresponding genes in human and model organisms: develop models for human diseases

Homologs

 Two genes g_B and g_C evolved from the same ancestor gene g_A are called *homologs*

 $g_A = agtgtccgttaagtgcgttc$

 $g_B = agtgccgttaaagttgtacgtc$

Homologs usually exhibit conserved functions

 $g_{C} = ctgactgtttgtggttc$

 Close evolutionary relationship => expect a high number of homologs

Sequence similarity

 Intuitively, similarity of two sequences refers to the degree of match between corresponding positions in sequence

What about sequences that differ in length?

Similarity vs homology

Sequence similarity is not sequence homology

- If the two sequences g_B and g_C have accumulated enough mutations, the similarity between them is likely to be low

#mutations

- 0 agtgtccgttaagtgcgttc
- 1 agtgtccgttatagtgcgttc
- 2 agtgtccgcttatagtgcgttc
- 4 agtgtccgcttaagggcgttc
- 8 agtgtccgcttcaaggggcgt
- 16 gggccgttcatgggggt
- 32 gcagggcgtcactgagggct

#mutations

- 64 acagtccgttcgggctattg
- 128 cagagcactaccgc
- 256 cacgagtaagatatagct
- 512 taatcgtgata
- 1024 acccttatctacttcctggagtt
- 2048 agcgacctgcccaa
- 4096 caaac

Homology is more difficult to detect over greater evolutionary distances.

Similarity vs homology (2)

- Sequence similarity can occur by chance
 - Similarity does not imply homology

 Consider comparing two short sequences against each other

Orthologs and paralogs

- We distinguish between two types of homology
 - Orthologs: homologs from two different species, separated by a speciation event
 - Paralogs: homologs within a species, separated by a gene duplication event

Orthologs and paralogs (2)

- Orthologs typically retain the original function
- In paralogs, one copy is free to mutate and acquire new function (no selective pressure)

Paralogy example: hemoglobin

- Hemoglobin is a protein complex which transports oxygen
- In humans, hemoglobin consists of four protein subunits and four nonprotein heme groups

Sickle cell diseases are caused by mutations in hemoglobin genes

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Paralogy example: hemoglobin

- In adults, three types are normally present
 - Hemoglobin A: 2 alpha and 2 beta subunits
 - Hemoglobin A2: 2 alpha and 2 delta subunits
 - Hemoglobin F: 2 alpha and 2 gamma subunits
- Each type of subunit (alpha, beta, gamma, delta) is encoded by a separate gene

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Paralogy example: hemoglobin

- The subunit genes are paralogs of each other, i.e., they have a common ancestor gene
- Demonstration in lecture: hemoglobin human paralogs in NCBI sequence databases http://www.ncbi.nlm.nih.gov/sites/entrez ?db=Nucleotide
 - Find human hemoglobin alpha, beta, gamma and delta
 - Compare sequences

Hemoglobin A, www.rcsb.org/pdb/explore.do?structureId=1GZX

Orthology example: insulin

- The genes coding for insulin in human (*Homo sapiens*) and mouse (*Mus musculus*) are orthologs:
 - They have a common ancestor gene in the ancestor species of human and mouse
 - Demonstration in lecture: find insulin orthologs from human and mouse in NCBI sequence databases