
Introduction to bioinformatics, Autumn 2007 83

Chapter 7: Rapid alignment methods:
FASTA and BLAST

l The biological problem

l Search strategies

l FASTA

l BLAST



Introduction to bioinformatics, Autumn 2007 84

The biological problem

• Global and local
alignment algoritms are
slow in practice

• Consider the scenario of
aligning a query
sequence against a large
database of sequences
– New sequence with

unknown function • For instance, the size of NCBI
GenBank in January 2007 was
65,369,091,950 bases
(61,132,599 sequences)



Introduction to bioinformatics, Autumn 2007 85

Problem with large amount of
sequences

l Exponential growth in both number and total length of
sequences

l Possible solution: Compare against model organisms
only

l With large amount of sequences, changes are that
matches occur by random

− Need for statistical analysis



Introduction to bioinformatics, Autumn 2007 86

Application of sequence alignment:
shotgun sequencing

l Shotgun sequencing is a method for sequencing
whole-organism genomes

− First, a large number of short sequences (~500-1000 bp), or
reads are generated from the genome

− Reads are contiguous subsequences (substrings) of the
genome

− Due to sequencing errors and repetitions in the reads, the
genome has be covered multiple times by reads



Introduction to bioinformatics, Autumn 2007 87

Shotgun sequencing

l Ordering of the reads is initially unknown

l Overlaps resolved by aligning the reads

l In a 3x109 bp genome with 500 bp reads and 5x coverage, there
are ~107 reads and ~107(107-1)/2 = ~5x1013 pairwise sequence
comparisons

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig



Introduction to bioinformatics, Autumn 2007 88

Shotgun sequencing

l ~5x1013 pairwise sequence comparisons
l Recall that local alignment takes O(nm) time, where n and m are

sequence lengths
l Already with n=m=500, the computation cost is prohibitive

… …Original genome sequence

Reads
Non-overlapping
read

Overlapping reads
=> Contig



Introduction to bioinformatics, Autumn 2007 89

Search strategies

l How to speed up the computation?
− Find ways to limit the number of pairwise comparisons

l Compare the sequences at word level to find out
common words

− Word means here a k-tuple (or a k-word), a substring of
length k



Introduction to bioinformatics, Autumn 2007 90

Analyzing the word content
l Example query string I: TGATGATGAAGACATCAG

l For k = 8, the set of k-tuples of I is

TGATGATG

GATGATGA

ATGATGAA

TGATGAAG

…

GACATCAG



Introduction to bioinformatics, Autumn 2007 91

Analyzing the word content

l There are n-k+1 k-tuples in a string of length n

l If at least one word of I is not found from another string
J, we know that I differs from J

l Need to consider statistical significance:    I and J
might share words by chance only

l Let n=|I| and m=|J|



Introduction to bioinformatics, Autumn 2007 92

Word lists and comparison by content

l The k-words of I can be arranged into a table of word
occurences Lw(I)

l Consider the k-words when k=2 and I=GCATCGGC:

GC, CA, AT, TC, CG, GG, GC

AT: 3
CA: 2
CG: 5
GC: 1, 7
GG: 6
TC: 4

Start indecies of k-word GC in I

Building Lw(I) takes O(n) time



Introduction to bioinformatics, Autumn 2007 93

Common k-words

l Number of common k-words in I and J can be
computed using Lw(I) and Lw(J)

l For each word w in I, there are |Lw(J)| occurences in J

l Therefore I and J have

common words

l This can be computed in O(n + m + 4k) time
− O(n + m) time to build the lists

− O(4k) time to calculate the sum



Introduction to bioinformatics, Autumn 2007 94

Common k-words

l I = GCATCGGC

l J = CCATCGCCATCG

Lw(J)
AT: 3, 9
CA: 2, 8
CC: 1, 7
CG: 5, 11
GC: 6

TC: 4, 10

Lw(I)
AT: 3
CA: 2

CG: 5
GC: 1, 7
GG: 6
TC: 4

Common words
2
2
0
2
2
0
2
10 in total



Introduction to bioinformatics, Autumn 2007 95

Properties of the common word list

l Exact matches can be found using binary search (e.g., where
TCGT occurs in I?)

− O(log 4k) time

l For large k, the table size is too large to compute the common
word count in the previous fashion

l Instead, an approach based on merge sort can be utilised
(details skipped, see course book)

l The common k-word technique can be combined with the local
alignment algorithm to yield a rapid alignment approach



Introduction to bioinformatics, Autumn 2007 96

Chapter 7: Rapid alignment methods:
FASTA and BLAST

l The biological problem

l Search strategies

l FASTA

l BLAST



Introduction to bioinformatics, Autumn 2007 97

FASTA

l FASTA is a multistep algorithm for sequence alignment (Wilbur
and Lipman, 1983)

l The sequence file format used by the FASTA software is widely
used by other sequence analysis software

l Main idea:
− Choose regions of the two sequences that look promising (have some

degree of similarity)

− Compute local alignment using dynamic programming in these regions



Introduction to bioinformatics, Autumn 2007 98

FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments



Introduction to bioinformatics, Autumn 2007 99

Dot matrix comparisons
l Word matches in two sequences I and J can be represented as

a dot matrix

l Dot matrix element (i, j) has ”a dot”, if the word starting at
position i in I is identical to the word starting at position j in J

l The dot matrix can be plotted for various k

i

j

I = … ATCGGATCA …
J = … TGGTGTCGC …

i

j



Introduction to bioinformatics, Autumn 2007 100

k=1 k=4

k=8 k=16

Dot matrix (k=1,4,8,16)
for two DNA sequences
X85973.1 (1875 bp)
Y11931.1 (2013 bp)



Introduction to bioinformatics, Autumn 2007 101

k=1 k=4

k=8 k=16

Dot matrix
(k=1,4,8,16) for two
protein sequences
CAB51201.1  (531 aa)
CAA72681.1  (588 aa)

Shading indicates
now the match score
according to a
score matrix
(Blosum62 here)



Introduction to bioinformatics, Autumn 2007 102

Computing diagonal sums

l We would like to find high scoring diagonals of the dot matrix

l Lets index diagonals by the offset, l = i - j

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

k=2

I

J

Diagonal l = i – j = -6



Introduction to bioinformatics, Autumn 2007 103

Computing diagonal sums

l As an example, lets compute diagonal sums for  I =
GCATCGGC, J = CCATCGCCATCG, k = 2

l 1. Construct k-word list Lw(J)

l 2. Diagonal sums Sl are computed into a table, indexed with the
offset and initialised to zero
l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  0  0  0  0  0  0 0 0 0 0 0 0 0



Introduction to bioinformatics, Autumn 2007 104

Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J For the first 2-word in I,
GC, LGC(J) = {6}.

We can then update
the sum of diagonal
l = i – j = 1 – 6 = -5 to
S-5 := S-5 + 1 = 0 + 1 = 1



Introduction to bioinformatics, Autumn 2007 105

Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is CA,
for which LCA(J) = {2, 8}.

Two diagonal sums are
updated:
l = i – j = 2 – 2 = 0
S0 := S0 + 1 = 0 + 1 = 1

I = i – j = 2 – 8 = -6
S-6 := S-6 + 1 = 0 + 1 = 1



Introduction to bioinformatics, Autumn 2007 106

Computing diagonal sums

l 3. Go through k-words of I, look for matches in Lw(J) and update
diagonal sums

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J Next 2-word in I is AT,
for which LAT(J) = {3, 9}.

Two diagonal sums are
updated:
l = i – j = 3 – 3 = 0
S0 := S0 + 1 = 1 + 1 = 2

I = i – j = 3 – 9 = -6
S-6 := S-6 + 1 = 1 + 1 = 2



Introduction to bioinformatics, Autumn 2007 107

Computing diagonal sums

After going through the k-words of I, the result is:

l -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Sl 0  0  0  0  4  1  0  0  0  0 4 1 0 0 0 0 0

C C A T C G C C A T C G
G           *
C   *           *
A     *           *
T       *           *
C         *           *
G
G           *
C

I

J



Introduction to bioinformatics, Autumn 2007 108

Algorithm for computing diagonal sum of scores

Sl := 0 for all 1 – m l n – 1

Compute Lw(J) for all words w

for i := 1 to n – k – 1 do

w := IiIi+1…Ii+k-1

for j Lw(J) do

l := i – j

Sl := Sl + 1

end

end

Match score is here 1



Introduction to bioinformatics, Autumn 2007 109

FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments



Introduction to bioinformatics, Autumn 2007 110

Rescoring initial regions

l Each high-scoring diagonal chosen in the previous step is
rescored according to a score matrix

l This is done to find subregions with identities shorter than k

l Non-matching ends of the diagonal are trimmed

I: C C A T C G C C A T C G
J: C C A A C G C A A T C A

I’: C C A T C G C C A T C G
J’: A C A T C A A A T A A A

75% identity, no 4-word identities

33% identity, one 4-word identity



Introduction to bioinformatics, Autumn 2007 111

Joining diagonals

l Two offset diagonals can be joined with a gap, if the resulting
alignment has a higher score

l Separate gap open and extension are used

l Find the best-scoring combination of diagonals

High-scoring
diagonals

Two diagonals
joined by a gap



Introduction to bioinformatics, Autumn 2007 112

FASTA outline

l FASTA algorithm has five steps:
− 1. Identify common k-words between I and J
− 2. Score diagonals with k-word matches, identify 10 best

diagonals
− 3. Rescore initial regions with a substitution score matrix
− 4. Join initial regions using gaps, penalise for gaps
− 5. Perform dynamic programming to find final alignments



Introduction to bioinformatics, Autumn 2007 113

Local alignment in the highest-scoring
region

• Last step of FASTA: perform local
alignment using dynamic programming
around the highest-scoring

• Region to be aligned covers –w and
+w offset diagonal to the highest-
scoring diagonals

• With long sequences, this region is
typically very small compared to the
whole n x m matrix w

w

Dynamic programming matrix
M filled only for the green region



Introduction to bioinformatics, Autumn 2007 114

Properties of FASTA

l Fast compared to local alignment using dynamic programming
only

− Only a narrow region of the full matrix is aligned

l Increasing parameter k decreases the number of hits: increases
specificity, decreases sensitivity

l FASTA can be very specific when identifying long regions of
low similarity

− Specific method does not produce many incorrect results

− Sensitive method produces many of the correct results



Introduction to bioinformatics, Autumn 2007 115

Properties of FASTA

l FASTA looks for initial exact matches to query
sequence

− Two proteins can have very different amino acid sequences
and still be biologically similar

− This may lead into a lack of sensitivity with diverged
sequences



Introduction to bioinformatics, Autumn 2007 116

Demonstration of FASTA at EBI

l http://www.ebi.ac.uk/fasta/

l Note that parameter ktup in the software corresponds
to parameter k in lectures

http://www.ebi.ac.uk/fasta/

