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1. Building the stoichiometric matrix.

Nothing produces A, B and D; and nothing consumes J and H. Thus the
system as such is a closed one, where likely no meaningful steady state
exists. To make the system an open one, we add exchange reactions:

r8 : → A

r9 : → B

r10 : → D

r11 : H →
r12 : J →

The stoichiometric matrix is:

-1 0 0 0 0 0 0 1 0 0 0 0
0 -1 0 0 0 -1 0 0 1 0 0 0
1 -1 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0 1 0 0
0 1 -1 -1 0 0 0 0 0 0 0 0
0 0 1 0 -2 0 0 0 0 0 0 0
0 0 0 1 0 -1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 -1 0
0 0 0 0 0 1 -1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 -1
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Figure 1: Metabolic network.

2. The kernel matrix found by solving the null space of stoichiometric matrix:

1



0.0270 0.3907
0.0270 0.3907
0.4060 0.2918
-0.3790 0.0989
0.2030 0.1459
-0.3790 0.0989
-0.3790 0.0989
0.0270 0.3907
-0.3519 0.4897
0.4060 0.2918
0.2030 0.1459
-0.1760 0.2448

The dead ends can be found by checking whether any zero rows exist in
the kernel matrix. There are no dead ends.

An enzyme subset consists of reactions which must operate in fixed ratio
in any steady state. This is computed from kernel matrix: enzyme subset
rows are scalar multiples of each other. Here the subsets are {1, 2, 8},
{3, 5, 10, 11}, {4, 6, 7} and {9, 12}.
Conserved pools of metabolites are seen from the left null space. It’s
empty and no conserved pools of metabolites exist.

Elementary flux modes can be found by visual inspection. There are no
cycles in the model, which makes our job easier. There are two EFM’s,
the first one producing both H and J, and the other one producing only
J.

2 1
2 1
2 0
0 1
1 0
0 1
0 1
2 1
2 1
2 0
1 0
1 1

In the first EFM metabolites A,C,B,E,D,F,H,J are active. In the second
one A,C,B,E,J,G,I,J are active.

3. Let’s formulate the problem:
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max
12∑

i=1

civi = max 1 · v12

Sv = 0

v9 ≤ 1
vi ≥ 0

To solve this in matlab, we need optimization function (zero vector except
for 12’th position 1), stoichiometric matrix, zero vector for stoichiometric
matrix, upperbound vector (infinities except for 9th entry 1) and lower-
bound vector (zeros). Also, because matlab’s linprog minimizes, we negate
the optimization vector to get a maximum.

f =

0
0
0
0
0
0
0
0
0
0
0
1

b =

0
0
0
0
0
0
0
0
0
0

b_lb =

0
0
0
0
0
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0
0
0
0
0
0
0

b_ub =

Inf
Inf
Inf
Inf
Inf
Inf
Inf
Inf
1

Inf
Inf
Inf

>> [flux, yield] = linprog(-f, [], [], S, b, b_lb, b_ub)
Optimization terminated.

flux =

0.8121
0.8121
0.6242
0.1879
0.3121
0.1879
0.1879
0.8121
1.0000
0.6242
0.3121
0.5000

yield =

-0.5000

The maximum production of J is 0,5. This solution most likely is unique.

4. With input set {r8, r9} the reachable nodes are A, B, C, D, E, G, I, J. F and
H are not reachable. Reachable reactions are 8,9,1,2,4,6,7,12. Reactions
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3,5,10 and 11 are not reachable.

In the procedure, one first adds the products of reactions 8 and 9: A and
B. Reaction 1 is now reachable, and it produces C. This makes reaction 2
available, and E with it. Now reaction 4 is available, which produces G.
Next reaction 6 can be produced with B and G, and then I, R7, J and
R12. Reaction 3 remains unreachable because D is not reachable.

With also r10 in the input set, all the reactions and metabolites are reach-
able.

J is possible to produce without uptake of D, which was seen in the reach-
able sets. This could also be computed using linear programming and
FBA, where one would set the reaction v10 = 0 and try to produce J.
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