Stoichiometric network analysis

In stoichiometric analysis of metabolic networks, one concerns the
effect of the network structure on the behaviour and capabilities of

metabolism.
Questions that can be tackled include:

» Discovery of pathways that carry a distinct biological function
(e.g. glycolysis) from the network, discovery of dead ends and
futile cycles, dependent subsets of enzymes

» Identification of optimal and suboptimal operating conditions
for an organism

» Analysis of network flexibility and robustness, e.g. under gene
knockouts



Stoichiometric coefficients

Soitchiometric coefficients denote the proportion of substrate and
product molecules involved in a reaction. For example, for a
reaction

r: A+ B+ 2C,

the stoichiometric coefficients for A, B and C are —1,—1 and 2,
respectively.

> Assignment of the coeefficients is not unique: we could as well
choose —1/2,—1/2,1 as the coefficients

» However, the relative sizes of the coeefficients remain in any
valid choice.

» Note! We will denote both the name of a metabolite and its
concentration by the same symbol.



Reaction rate and concentration vectors

» Let us assume that our metabolic network has the reactions
R={Ri,Ro,....,R}

» Let the reaction R; operate with rate v;

» We collect the individual reaction rates to a rate vector
v=(vi,...,v)"

» Similarly, the concentration vector
X(t) = (X1(t),..., Xm(t))T contains the concentration of
each metabolite in the system (at time t)



Stoichiometric vector and matrix

» The stoichiometric

coefficients of a reaction - [ 0]
are collected to a vector s, - 10

» In s, there is a one position Al-1
for each metabolite in the Y
metabolic system ss=- 10

» The stoichiometric B|-1
co-efficient of the reaction 0
are inserted to appropriate |0
positions, e.g. for the ClL2]
reaction

r:A+ Bw— 2C,



Stoichiometric matrix

» The stoichiometric vectors
can be combined into the
stoichiometric matrix S.

» In the matrix S, the is one
row for each metabolite
My, dots, M, and one
column for each reaction
Ri,...,R,.

» The coefficients s,; along
the j'th column are the
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stoichiometric coeefficients
of of the reaction j.
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Systems equations

In a network of m metabolites and r reactions, the dynamics of the
system are characterized by the systems equations

dXi <
dtl :Zs,-jvj, fori=1,...,m
j=1

» X; is the concentration of the ith metabolite

> vj is the rate of the jth reaction and

> s is the stoichiometric coefficient of ith metabolite in the jth
reaction.

Intuitively, each system equation states that the rate of change of

concentration of a is the sum of metabolite flows to and from the
metabolite.



Systems equations in matrix form

» The systems equation can be expressed in vector form as
=Y sy =T
j=1

where S; contains the stoichiometric coefficients of a single
metabolite, that is a row of the stoichiometric matrix

» All the systems equations of different equations together can
then be expressed by a matrix equation

dX
Y
dt Yy

» Above, the vector

dX  (dX;  dXa\T
dt — \ dt ' dt

collects the rates of concentration changes of all metabolites



Steady state analysis

» Most applications of stoichiometric matrix assume that the
system is in so called steady state

» In a steady state, the concentrations of metabolites remain
constant over time, thus the derivative of the concentration is

zero:
dXi < ,
dtl :Zs,-jvjzo, fori=1,...,n
Jj=1

» The requires the production to equal consumption of each
metabolite, which forces the reaction rates to be invariant
over time.



Steady state analysis and fluxes

> The steady-state reaction rates v;,j = 1,...,r are called the
fluxes

» Note: Biologically, live cells do not exhibit true steady states
(unless they are dead)

» In suitable conditions (e.g. continuous bioreactor cultivations)
steady-state can be satisfied approximately.

» Pseudo-steady state or quasi-steady state are formally correct
terms, but rarely used

dX; <
dt’ :Zs,-jvj:O, fori=1,...,n
j=1




Defining the system boundary

When analysing a metabolic system we need to consider what to
include in our system
We have the following choices:
1. Metabolites and reactions internal to the cell (leftmost
picture)
2. (1) + exchange reactions transporting matter accross the cell
membrane (middle picture)

3. (1) + (2) + Metabolites outside the cell (rightmost picture)

‘closed” 1 B ‘closed’

(Picture from Palsson: Systems Biology, 2006)



System boundary and the total stoichiometric matrix

The placement of the system
bonfnd.ary reflects in the . ISy Se
stoichiometric matrix that will S= [ 0 SEJ
partition into four blocks:
» S : contains the stoichiometric coefficients of internal
metabolites w.r.t internal reactions
» Sie : coefficients of internal metabolites in exchange reactions
i.e. reactions transporting metabolites accross the system
boundary
» Sgi(=0) @ coefficients of external metabolites w.r.t internal
reactions; always identically zero
» See : coefficients of external metabolites w.r.t exchange
reactions; this is a diagonal matrix.




Exchange stoichiometrix matrix

In most applications handled on this course we will not consider
external compounds

» The (exchange) stoichiometric
matrix, containing the internal
metabolites and both internal and
exchange reactions, will be used

» Our metabolic system will be then S= [S” S'E]

open, containing exhange

reactions of type A =-, and = B

‘closed” 1 B ‘closed’




System boundary and steady state analysis

» Exchange stoichiometric matrix is used for steady state
analysis for a reason: it will not force the external metabolites
to satisfy the steady state condition

dXi
dtl :Zs,-jvj:O, fori=1,...,n
j=1

» Requiring steady state for external metabolites would drive
the rates of exchange reactions to zero

» That is, in steady-state, no transport of substrates into the
system or out of the system would be possible!



Internal stoichiometrix matrix

» The internal stoichiometric matrix,
containing only the internal
metabolites and internal reactions
can be used for analysis of
conserved pools in the metabolic
system

» The system is closed with no
exchange of material to and from
the system

‘closed”

‘closed’

S




System boundary of our example system

» Our example system is a closed one: we do not have exchange
reactions carrying to or from the system.

» We can change our system to an open one, e..g by
introducing a exchange reaction Rg := aG6P feeding aG6P
into the system and another reaction Ry : X5P = to push
X5P out of the system

Ry: BG6P + NADP+ 2 6PGL + NADPH
Ry: 6PGL + H,0 & 6PG
Rs: 6PG + NADP+ £ R5P + NADPH

rpe

Ry: R5P & X5P
Rs: aG6P & 5G6P
Re: aG6P & 3F6P
R;: 3G6P & 3F6P



Example

The stoichiometric matrix of our extended example contains two
extra columns, corresponding to the exchange reactions
Rg := aG6P and Ry : X5P =

BG6P [—1
aG6P | 0
BF6P | 0
6PGL | 1
6PG 0

0
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Steady state analysis, continued

» The requirements of non-changing concentrations

r

dX;
dtl :Zs,-jvj-zo, fori=1,...,n
j=1

constitute a set of linear equations constraining to the
reaction rates v;.

» We can write this set of linear constraints in matrix form with

the help of the stoichiometric matrix S and the reaction rate
vector v

daxX

dt

» A reaction rate vector v satisfying the above is called the flux
vector.

Sv =0,



Null space of the stoichiometrix matrix

> Any flux vector v that the cell can maintain in a steady-state
is a solution to the homogeneous system of equations

Sv=0
» By definition, the set
N(S) = {u|Su =0}

contains all valid flux vectors

» In linear algebra AN/(A) is referred to as the null space of the
matrix A

» Studying the null space of the stoichiometric matrix can give
us important information about the cell's capabilities



Null space of the stoichiometric matrix

The null space N(S) is a linear vector space, so all properties of
linear vector spcaes follow, e.g:

» N(S) contains the zero vector, and closed under linear
combination: vi,vy € N(S) = aivi + avp € N(S)

> The null space has a basis {ki, ..., kq}, a set of ¢ < min(n,r)
linearly independent vectors, where r is the number of
reactions and n is the number of metabolites.

» The choice of basis is not unique, but the number g of vector
it contains is determined by the rank of S.



Null space and feasible steady state rate vectors

» The kernel K = (ki,...,kq) of the stoichiometric matrix
formed by the above basis vectors has a row corresponding to
each reaction. (Note: the term 'kernel’ here has no relation to
kernel methods and SVMs)

» K characterizes the feasible steady state reaction rate vectors:
for each feasible flux vector v, there is a vector b € R9 such
that Kb =v

» In other words, any steady state flux vector is a linear
combination

biky +---+ bqkq
of the basis vectors of N(S).



|dentifying dead ends in metabolism

» From the matrix K, one can identify reactions that can only
have zero rate in a steady state.

» Such reactions may indicate a dead end: if the reaction is not
properly connected the rest of the network, the reaction
cannot operate in a steady state

> Such reactions necessarily have the corresponding row K;
identically equal to zero, K; =0



Proof outline

» This can be easily proven by contradiction using the the
equation Kb = v:

> Assume reaction R; is constrained to have zero rate in steady
state, but assume for some i/, kj # 0.

» Then we can pick the i'th basis vector of K as the feasible
solution v = k;.

> Then v; = kj; # 0 and the jth reaction has non-zero rate in a
steady state.



Enzyme subsets

» An enzyme subset is a
group of enzymes which,
in a steady state, must
always operate together so
that their reaction rates
have a fixed ratio.

» Consider a pair of
reactions R; and R» in the
metabolic network that !
form a linear sequence.




Enzyme subsets

> Let B be a metabolite that
is an intermediate within
the pathway produced by
R1 and consumed by R»
for which the steady-state
assumption holds. Due to
the steady state
assumption, it must hold
true that

visi1 + vosip =0

giving vo = —v15;1/5p2.
» That is, the rates of the

two reactions are linearly

dependent.



Enzyme subsets

» Also other than linear
pathways may be force to
operate in 'lock-step’.

» In the figure, R1 and R4
form an enzyme subset,
but R2 and R3 are not in
that subset.



|dentifying enzyme subsets

» Enzyme subsets are easy to recognize from the matrix K: the
rows corresponding to an enzyme subset are scalar multiples
of each other.

» That is, there is a constant « that satisfies K; = aKj» where
K; denotes the j'th row of the kernel matrix K

» This is again easy to see from the equation

Kb = v.



Proof outline

» Assume that reactions along rows j,j’ in K correspond to an
enzyme subset.

» Now assume contrary to the claim that the rows are not scalar
multiples of each other. Then we can find a pair of columns
i,i', where Kjj = aKjy; and Kji = Ky and o # 3.

» Both columns i, i’ are feasible flux vectors. By the above, the
rates of j and j’ differ by factor « in the flux vector given by
the column i and by factor (3 in the flux vector given by the
column /.

» Thus the ratio of reaction rates of j, ;' can vary and the
reactions are not force to operate with a fixed ratio, which is a
contradiction.



Independent components

» Finally, the matrix K can
be used to discover
subnetworks that can work
independently from the
rest of the metabolism, in
a steady state.

» Such components are
characterized by a K =
block-diagonal K: Kj; # 0
for a subset of rows
(j1,---,Js) and a subset of
columns (iy, ..., it).

» Given such a block we can
change bj, ..., bj, freely,
and that will only affect

ity « -5 Vis



Example: Null space of PPP

» Consider again the set of reactions from the
penthose-phospate pathway

Ry: BG6P + NADP 2 6pGL +

NADPH _
) =
Ry: 6PGL + H,0 % 6PG

2 2 end BG6P [—1 0 0 0
Rs: 6PG + NADP' &% RsP + NADPH aGeP | o 0 0 0
Ry: R5P & xsP BF6P 10 0 0 0
; 6PGL |1 -1 0 0
Rs: aG6P & 3G6P 6PG | 0 1 -1 o
Re: aG6P & gF6P RsPf0 0 1 -1
: XsP | o 0 0 1
R;: BG6P & BF6P naDPt -1 0 -1 o
Rg := aG6P NADPH | 1 0 1 0
Ho Lo -1 o0 0

Ry : X5P =
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Null space of PPP

Null space of this system has only one vector

K =(0,0,0,0,0.5774, —0.5774,0.5774,0,0,0) "

» Thus, in a steady state
only reactions Rs, R and
R; can have non-zero
fluxes.

» The reason for this is that
there are no producers of
NADPT or H,O and no
consumers of NADPH.

» Thus our PPP is
effectively now a dead
end!

. BG6P + NADP+ 2¢ 6PGL + NADPH
. 6PGL + H,0 % 6PG

gnd

: 6PG + NADP* = R5P + NADPH

rpe

- RSP 2 X5P
. aG6P & 5G6P
- aG6P & 3F6P
- 5G6P & 3F6P

= aG6P
: X5P =



Null space of PPP

To give our PPP non-trivial (fluxes different from zero) steady
states, we need to modify our system

» We add reaction Ryg :=

H>O as a water source

We add reaction Ri1:
NADPH = NADP™ to
regenerate NADP™T from
NADPH.

We could also have
removed the metabolites
in question to get the
same effect

. BG6P + NADPT 2 6PGL + NADPH
|

: 6PGL + H,0 % 6PG

: 6PG + NADP™ &% RsP + NADPH

rpe

: R5P £ xsp
. aG6P £ BG6P
. aG6P &' gF6P

. BG6P & sFep
= aG6P
: X5P =

Ryp: = H0
Ri11: NADPH = NADP™



Enzyme subsets of PPP

From the kernel, we can immediately identify enzyme subsets that
operate with fixed flux ratios in any steady state:

» reactions
{R1 — R4, Rg — Ru1} are [0.2727  0.1066 ]
one subset: Ry; has 0.2727 0.1066
double rate to all the 0.2727 0.1066
others 0.2727 0.1066
0.3920 —0.4667
» {Re, R7} are another: Rs K- |-01193 05733
has the opposite sign of R; 0.1193 —0.5733
» Rs does not belong to 0.2727  0.1066
non-trivial enzyme 0.2727  0.1066
subsets, so it is not forced 0.2727  0.1066
| 0.5454 02132 |

to operate in lock-step
with other reactions



