Null space of the stoichiometrix matrix

> Any flux vector v that the cell can maintain in a steady-state
is a solution to the homogeneous system of equations

Sv=0
» By definition, the set
N(S) = {u|Su =0}

contains all valid flux vectors

» In linear algebra AN/(A) is referred to as the null space of the
matrix A

» Studying the null space of the stoichiometric matrix can give
us important information about the cell's capabilities



Null space of the stoichiometric matrix

The null space N(S) is a linear vector space, so all properties of
linear vector spcaes follow, e.g:

» N(S) contains the zero vector, and closed under linear
combination: vi,vy € N(S) = aivi + avp € N(S)

> The null space has a basis {ki, ..., kq}, a set of ¢ < min(n,r)
linearly independent vectors, where r is the number of
reactions and n is the number of metabolites.

» The choice of basis is not unique, but the number g of vector
it contains is determined by the rank of S.



Null space and feasible steady state rate vectors

» The kernel K = (ki,...,kq) of the stoichiometric matrix
formed by the above basis vectors has a row corresponding to
each reaction. (Note: the term 'kernel’ here has no relation to
kernel methods and SVMs)

» K characterizes the feasible steady state reaction rate vectors:
for each feasible flux vector v, there is a vector b € R9 such
that Kb =v

» In other words, any steady state flux vector is a linear
combination

biky +---+ bqkq
of the basis vectors of N(S).



Applications of null space analysis

Three properties of the metabolic network can be found directly
from the kernel matrix
» Dead ends in metabolism (reactions that cannot carry a flus in
any steady state): correspond to identically zero rows in the
kernel
» Enzyme subsets (reactions that are forced to operate in lock
step in any steedy state): correspond to kernel rows that are
scalar multiples of each other
» Independent components (groups of reactions that can carry
flux independently from reactions outside the group):
block-diagonal structure in the kernel



Singular value decomposition of S

» Singular value decomposition can be used to discover a basis
for the null space as well as three other fundamental
subspaces of the stoichiometric matrix S

» The SVD of S is the product S = ULV T, where

» Uisa mx m (mis the number of metabolites) orthonormal

matrix (columns are normalized to length one |Ju|| = 1,
columns are orthogonal to each other u/ u; = 0)
» ¥ = diag(o1,02,...,0,) is m X n matrix containing the

singular values o; on its diagonal. The rank of X (and S) is

the number of non-zero signular values
» Vs a nx n orthonormal matrix (n is the number of reactions)



Singular value decomposition of S: matrix U

» The columns of U can be seen as as prototypical or 'eigen-’
reactions

» All reaction stoichiometries in the metabolic system can be
expressed as linear combinations of the eigen-reactions.

» The eigen-reactions are linearly independent, while the original
reactions (columns of S) may not be (e.g. duplicate reactions)
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Singular value decomposition of S: matrix U

» The first r columns of S span the column space of S

» The column space contains all possible time derivatives of the
concentration vector

» i.e. what kind of changes to each metabolite concentrations
are possible given the network structure and the activity of the

reactions
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Singular value decomposition of S: matrix U

» The m — r vectors u,; span the left null space of S

» Left null space of S isthe set {u|STu = 0} (or alternatively
u’S=0)

> Given a vector u form the left null space, for any column s; of
S (i.e. reaction stoichiometry), the equation ), s;ju; =0

holds
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Singular value decomposition of S: matrix U
» The left null space represents metabolite conservation via the

equations
Z Sjju; = 0
i

» The non-zero coefficients of the left null space vectors u
represent pools of metabolites that remains of constant size
regardless of which reactions are active and how active they

are
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Conservation in PPP

The left null space of our PPP system only contains a single
vector, stating that the sum of NADP™ and NADPH is constant in
all reactions.

BG6P [ 0
aG6P 0
BF6P 0
6PGL 0

7 _ 6PG 0
R5P 0
X5P 0
NADP* |0.7071 %
NADPH |0.7071
H,O0 | 0 |



Singular value decomposition of S: matrix V

» The columns of matrix V can be seen as systems equations of
prototypical 'eigen-" metabolites.

» These eigen- systems equations are linearly independent

» All systems equations of the metabolism can be expressed as
their linear combinations.
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Singular value decomposition of S: matrix V

» The first r columns of V span the row space of S

» The row space contains all non-steady state reaction rate
vectors that are possible for the system represented by S

u > Vv
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Singular value decomposition of S: matrix V

» The last n — r columns of V span the null space of S

» These are flux vectors that can operate in steady state, i.e.
statifying Sv;, =0,/ =r+1,...,n

» These can be taken as the kernel K used to analyze steady
state fluxes (this is how we obtained K previously).
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SVD of PPP

MATLAB script pppsvd.m computes
» The stoichiometric matrix S
» The singular value decomposition S = ULV T
» The kernel matrix of the null space K

» The kernel matrix of the left null space K



Other conserved quantitites

» Above look at conservation of pool sizes of metabolites
» Conservation of other items can be analyzed as well:
» Elemental balance: for each element species (C,N,O,P,...) the
number of elements is conserved
» Charge balance: total electrical charge, the total number of
electrons in a reaction does not change.



Elemental balancing (1/2)

» All chemical reactions need to be elementally balanced
» The number of elements of different species (carbon,
hydrogen, oxygen, ...) need to be balanced

» Let D be a matrix defining the elemental composition of the
participating metabolites, and vector S denote the
stoichiometric coefficients of a reaction

GLC + ATP LD— G6P + ADP
GLC ATP G6P ADP
6 10 6 10
12 13

6

(picture from B Palsson course material
http://gcrg.ucsd.edu/classes/)



Elemental balancing (2/2)

» Multiplication of any row of D with the stoichiometric
coefficient vector should give 0

» A balance for carbons can be verified form the first row by
multiplying with the stoichiometric coefficients

6-—1+10--1+6-1+10-1=0
» The same calculation for hydrogen results in an error
12.-1+13--1+4+11-1+13-1=-1

» The reaction equation is not balanced, a should be corrected.
The correct equation is GLC + ATP — G6P + ADP + H

@
H
0
P
N



Basis steady state flux modes from SVD

» A basis for the null space is thus obtained by picking the n —r
last columns of V from the SVD of S:

K= [Vr—l-la-"’vn]
» In MATLAB, the same operation is performed directly by the
command null(S).

» Let us examine the following simple system

Ry

C——

Ry Ry }y

R . 1 -1 0 0 0 ©
Ry s_ 01 -1 -1 0 0

Rs 00 1 0 -1 0

— 00 0 1 0 -1



Basis steady state flux modes from SVD

» The two flux modes given
by SVD for our example

system 0.577
0.298 0.298

» All steady state flux vectors

VSVDI1 0.577:
C ——

—A —— B

can be expressed as linear 0.2793
combinations of these two 0.2793
flux modes D~—
VsvD2 0.010¢
C -
0.2980  0.4945 0.010
0.2980  0.4945 0.4945 0.4945 /V
——A —— B
05772  —0.0108
K=1-02793 05053 &5053
0.5053

0.5772  —0.0108
—0.2793  0.5053

D—



Basis steady state flux modes from SVD

The kernel matrix obtained from » The flux values are all

SVD suffers from two non-integral
shortcomings, illustrated by our  VSVDI 0.577%
small example system 0577
» Reaction reversibility 0'298A 0'298]3
constraints are VIO|E'ltedZ in 02793
Vsvd1, RS operates in wrong 02793
direction, in Vs,go, Ra D~—
operates in wrong direction VSVD2 0.0105
» All reactions are active in C-——
both flux modes, which 0.4945 04945 1
makes visual interpretation ——A ——B
impossible for all but very &5053
small systems 0.5053

D——



Choice of basis

» SVD is only one of the many ways that a basis for the null
space can be defined.

» The root cause for hardness of interpretation is the
orthonormality of matrix V in SVD S = ULVT

» The basis vectors are orthogonal: v, vsygo =0
» The basis vectors have unit length ||vea1]| = ||Veva1]] =1

» Neither criteria has direct biological relevance!



Biologically meaningful pathways

» From our example system, eg. v =
it is easy to find flux 0.0373veyg1 + 1.997 vsyao
vectors that are more
meaningful than those
given by SVD 1

» Both pathways on the right 1 1 /

. —A —— B
statisfy the steady state 0
requirement \ 0

\3l 1

_—

» Both pathways obey the D——
sign restrictions of the
system

» One can easily verify (by 0/

solving b form the equation
Kb = v) that they are 1
linear combinations of the \ 1

flux modes given by SVD, D——

Vo 0



Elementary flux modes

The two pathways are examples
of elementary flux modes
The study of elementary flux
modes (EFM) and concerns
decomposing the metabolic
network into components that
» can operate independently
from the rest of the
metabolism, in a steady
state,
» any steady state can be
described as a combination
of such components.

V1

V2



Representing EFMs

» Elementary flux modes are
given as reaction rate
vectors

e=(e1...,en),

» EFMs typically consists of
many zeroes, so they
represent pathways in the
network given by the
non-zero components

P(e) = {jlej # 0}



Properties of elementary flux modes

The following properties are statisfied by EFMs:

» (Quasi-) Steady state

» Thermodynamical feasibility. Irreversible reactions need to
proceed in the correct direction. Formally, one requires ¢; > 0
and that the stoichiometric coefficients s;; are written with the
sign that is consistent with the direction

» Non-decomposability. One cannot remove a reaction from an
EFM and still obtain a reaction rate vector that is feasible in
steady state. That is, if e is an EFM there is no vector v that
satisfies the above and P(v) C P(e)

These properties define EFMs upto a scaling factor: if e is an EFM
ae,a > 0 is also an EFM.



Example

Metabolic system:

EFMs:

R

Ry /\ Ry

C —

D




EFMs and steady state fluxes

» Any steady state flux vector v can be represented as a
non-negative combination of the elementary flux modes:
v =) ajej, where o > 0.

» However, the representation is not unique: one can often find
several coefficient sets « that satisfy the above.

» Thus, a direct composition of a flux vector into the underlying
EFPs is typically not possible. However, the spectrum of
potential contributions can be analysed



EFMs of PPP

» One of the elementary flux modes of our PPP system is given
below

> |t consist of a linear pathway through the system, exluding
reactions Rg and Ry

» Reaction Rj1 needs to operate with twice the rate of the
others
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EFMs of PPP

» Another elementary flux mode of our PPP system

» Similar linear pathway through the system, but exluding
reactions Rs and using Ry in reverse direction

» Again, reaction Rj1 needs to operate with twice the rate of

the others
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EFMs of PPP

» Third elementary flux mode contains only the small cycle
composed of Rs, R; and Rs. Rg is used in reverse direction

» A yet another EFM would be obtained by reversing all the
reactions in this cycle

Ry
R,
Rs

= O O OO

P
OO OO+



Building the kernel from EFMs

» In general there are more

elementary flux modes than
the dimension of the null
space

Thus a linearly independent
subset of elementary flux
modes suffices to span the
null space

In our PPP system, any
two of the three EFMs
together is linearly
independent, and can thus
be taken as the
representative vectors
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Software for finding EFMs

» From small systems it is relatively easy to find the EFMs by
manual inspection

» For larger systems this becomes impossible, as the number of
EFMs grows easily very large

» Computational methods have been devised for finding the
EFMs by Heinrich & Schuster, 1994 and Urbanczik and
Wagner, 2005

» Implemented in MetaTool package



Extreme pathways

» Extreme pathways (EP) are an alternative formalism to EFMs
for analyzing the steady state flux space
» Extreme pathways differ from EFMs in two ways

» The EPs are always non-negative v > 0. Bi-directional
reactions need to be represented as separate forward and
backward reactions.

» In EPs the maximum rates of the reactions are also considered
0 <vy; < Vi,max



Extreme pathways

> All steady state flux vectors can be expressed as convex
combinations of extreme pathways p;: v =) . ;p;,0 < «;

» Geometrically, the extreme pathways form a high-dimensional
polyhedron enclosing all legal steady state fluxes

» Flux balance analysis uses this polyhedron as the feasible set
of fluxes where the flux vector optimizing the objective (e.g.
biomass growth) needs to reside



